Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting
Abstract
:1. Introduction
2. Theoretical Basis
3. Experimental Research
3.1. Experimental System
3.2. Experimental Materials
3.3. Experimental Process
4. Results and Discussion
4.1. Rock Masses Compaction Associated with Grouting
4.2. Mechanism of Filling Volume Increase under Compaction Grouting
5. Case Study
5.1. Compaction of Rock Masses Response to Grouting in Linhuan Coal Mine
5.2. Compaction of Rock Masses Associated with Grouting in Haizi Coal Mine
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, A.; Saunders, J.M. Road and bridge construction across gypsum karst in England. Eng. Geol. 2002, 65, 217–223. [Google Scholar] [CrossRef]
- Ma, K.; Tang, C.; Liang, Z.; Zhuang, D.; Zhang, Q. Stability analysis and reinforcement evaluation of high-steep rock slope by microseismic monitoring. Eng. Geol. 2017, 218, 22–38. [Google Scholar] [CrossRef]
- Park, D.; Oh, J. Permeation grouting for remediation of dam cores. Eng. Geol. 2018, 233, 63–75. [Google Scholar] [CrossRef]
- Seiphoori, A.; Zamanian, M. Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles. Eng. Geol. 2022, 298, 106538. [Google Scholar] [CrossRef]
- Salmi, E.F.; Sellers, E.J. A Rock Engineering System Based Abandoned Mine Instability Assessment Index with Case Studies for Waihi Gold Mine. Eng. Geol. 2022, 310, 106869. [Google Scholar] [CrossRef]
- Kharisova, O.; Kharisov, T. Searching for possible precursors of mining-induced ground collapse using long-term geodetic monitoring data. Eng. Geol. 2021, 289, 106173. [Google Scholar] [CrossRef]
- Tichavský, R.; Jiránková, E.; Fabiánová, A. Dating of mining-induced subsidence based on a combination of dendrogeomorphic methods and in situ monitoring. Eng. Geol. 2020, 272, 105650. [Google Scholar] [CrossRef]
- Bar, N.; Dixon, R. Unveiling unknowns: Practical application of InSAR for slope performance monitoring and risk management across multiple surface mines. Eng. Geol. 2021, 293, 106326. [Google Scholar] [CrossRef]
- Donnelly, L.; De La Cruz, H.; Asmar, I.; Zapata, O.; Perez, J. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia. Eng. Geol. 2001, 59, 103–114. [Google Scholar] [CrossRef]
- Salmi, E.F.; Nazem, M.; Deng, K.Z.; Karakus, M. Numerical analysis of a large landslide induced by coal mining subsidence. Eng. Geol. 2017, 217, 141–152. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Ma, S.; Liu, Z.; Du, C.; Zhu, Y.; Cao, M. Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. Catena 2021, 209, 105830. [Google Scholar] [CrossRef]
- Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire 2023, 6, 95. [Google Scholar] [CrossRef]
- Helm, P.R.; Davie, C.T.; Glendinning, S. Numerical modelling of shallow abandoned mine working subsidence affecting transport in-frastructure, Engineering. Geology 2013, 154, 6–19. [Google Scholar]
- Malinowska, A.A.; Witkowski, W.; Guzy, A.; Hejmanowski, R. Mapping ground movements caused by mining-induced earthquakes applying satellite radar interferometry. Eng. Geol. 2018, 246, 402–411. [Google Scholar] [CrossRef]
- Balovtsev, S.; Skopintseva, O. Assessment of the influence of returned mines on aerological risks at coal mines. Min. Inf. Anal. Bull. 2021, 10, 40–53. [Google Scholar] [CrossRef]
- Golik, V.I.; Klyuev, R.V.; Martyushev, N.V.; Brigida, V.; Efremenkov, E.A.; Sorokova, S.N.; Mengxu, Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials 2023, 16, 726. [Google Scholar] [CrossRef]
- Xuan, D.; Xu, J.; Zhu, W. Dynamic disaster control under a massive igneous sill by grouting from surface boreholes. Int. J. Rock Mech. Min. Sci. 2014, 71, 176–187. [Google Scholar] [CrossRef]
- Xuan, D.; Xu, J.; Wang, B.; Teng, H. Borehole Investigation of the Effectiveness of Grout Injection Technology on Coal Mine Subsidence Control. Rock Mech. Rock Eng. 2015, 48, 2435–2445. [Google Scholar] [CrossRef]
- Xuan, D.; Xu, J.; Wang, B.; Teng, H. Investigation of fill distribution in post-injected longwall overburden with implications for grout take estimation. Eng. Geol. 2016, 206, 71–82. [Google Scholar] [CrossRef]
- Xuan, D.; Xu, J. Longwall surface subsidence control by technology of isolated overburden grout injection. Int. J. Min. Sci. Technol. 2017, 27, 813–818. [Google Scholar] [CrossRef]
- Kipko, E.; Kipko, A. A new technique for grouting old mine workings. Min. Sci. Technol. 1990, 11, 199–206. [Google Scholar] [CrossRef]
- Zhang, J.X.; Deng, X.J.; Zhao, X.; Ju, F.; Li, B.Y. Effective control and performance measurement of solid waste backfill in coal mining. Int. J. Min. Reclam. Environ. 2016, 31, 91–104. [Google Scholar] [CrossRef]
- Wanghua, S.; Dingyang, Z.; Cui, Z.C.; Zhaoyang, W.; Qingjie, Z. Environmental implications of mitigating overburden failure and subsidences using paste-like backfill mining; a case study. Int. J. Min. Reclam. Environ. 2015, 29, 521–543. [Google Scholar]
- Palchik, V. Experimental investigation of apertures of mining-induced horizontal fractures. Int. J. Rock Mech. Min. Sci. 2010, 47, 502–508. [Google Scholar] [CrossRef]
- Yavuz, H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines. Int. J. Rock Mech. Min. Sci. 2004, 41, 193–205. [Google Scholar] [CrossRef]
- Villegas, T.; Nordlund, E. Time-dependent movements of the hangingwall at the Kiirunavaara mine. Int. J. Min. Reclam. Environ. 2012, 26, 119–133. [Google Scholar] [CrossRef]
- Guney, A.; Gul, M. Analysis of surface subsidence due to longwall mining under weak geological conditions; Turgut Basin of Yata-gan-Mugla (Turkey) case study. Int. J. Min. Reclam. Environ. 2019, 33, 445–461. [Google Scholar] [CrossRef]
- Singh, A.; Singh, R.; Maiti, J.; Kumar, R.; Mandal, P. Assessment of mining induced stress development over coal pillars during depillaring. Int. J. Rock Mech. Min. Sci. 2011, 48, 805–818. [Google Scholar] [CrossRef]
- Suchowerska, A.; Merifield, R.; Carter, J. Vertical stress changes in multi-seam mining under supercritical longwall panels. Int. J. Rock Mech. Min. Sci. 2013, 61, 306–320. [Google Scholar] [CrossRef]
- Suchowerska, A.M.; Carter, J.P.; Merifield, R.S. Horizontal stress under supercritical longwall panels. Int. J. Rock Mech. Min. Sci. 2014, 70, 240–251. [Google Scholar] [CrossRef]
- Xu, J.L.; Qin, W.; Xuan, D.Y.; Zhu, W.B. Accumulative effect of overburden strata expansion induced by stress relief. J. China Coal Soc. 2020, 45, 35–43. [Google Scholar]
- Hebblewhite, B. Fracturing, caving propagation and influence of mining on groundwater above longwall panels–a review of predictive models. Int. J. Min. Sci. Technol. 2020, 30, 49–54. [Google Scholar] [CrossRef]
- Mondal, D.; Roy, P.; Kumar, M. Monitoring the strata behavior in the Destressed Zone of a shallow Indian longwall panel with hard sandstone cover using Mine-Microseismicity and Borehole Televiewer data. Eng. Geol. 2020, 271, 105593. [Google Scholar] [CrossRef]
- Palchik, V. Analysis of main factors influencing the apertures of mining-induced horizontal fractures at longwall coal mining. Géoméch. Geophys. Geo-Energy Geo-Resour. 2020, 6, 37. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, J.; Wu, R.; Qin, W.; Hu, G. Three-zone characterisation of coupled strata and gas behaviour in multi-seam mining. Int. J. Rock Mech. Min. Sci. 2015, 78, 91–98. [Google Scholar] [CrossRef]
- Qu, Q.; Guo, H.; Khanal, M. Monitoring and analysis of ground movement from multi-seam mining. Int. J. Rock Mech. Min. Sci. 2021, 148, 104949. [Google Scholar] [CrossRef]
- Wilkins, A.; Qu, Q. A formalism to compute permeability changes in anisotropic fractured rocks due to arbitrary deformations. Int. J. Rock Mech. Min. Sci. 2019, 125, 104159. [Google Scholar] [CrossRef]
- Ju, J.; Xu, J. Surface stepped subsidence related to top-coal caving longwall mining of extremely thick coal seam under shallow cover. Int. J. Rock Mech. Min. Sci. 2015, 78, 27–35. [Google Scholar] [CrossRef]
- Ghabraie, B.; Ren, G.; Smith, J.; Holden, L. Application of 3D laser scanner, optical transducers and digital image processing tech-niques in physical modelling of mining-related strata movement. Int. J. Rock Mech. Min. Sci. 2015, 80, 219–230. [Google Scholar] [CrossRef]
- Singh, R.; Mandal, P.; Singh, A.; Kumar, R.; Maiti, J.; Ghosh, A. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain. Int. J. Rock Mech. Min. Sci. 2008, 45, 29–46. [Google Scholar] [CrossRef]
- Yilmaz, E. Stope depth effect on field behaviour and performance of cemented paste backfills. Int. J. Min. Reclam. Environ. 2017, 32, 273–296. [Google Scholar] [CrossRef]
- Cho, J.; Kim, H.; Jeon, S.; Min, K. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. Sci. 2012, 50, 158–169. [Google Scholar] [CrossRef]
- Shimada, H.; Hamanaka, A.; Sasaoka, T.; Matsui, K. Behaviour of grouting material used for floor reinforcement in underground mines. Int. J. Min. Reclam. Environ. 2013, 28, 133–148. [Google Scholar] [CrossRef]
- Hughes, P.B.; Pakalnis, R.; Hitch, M.; Corey, G. Composite paste barricade performance at Goldcorp Inc. Red Lake Mine, Ontario, Canada. Int. J. Min. Reclam. Environ. 2010, 24, 138–150. [Google Scholar] [CrossRef]
- Shi, J.; Shen, B. Approximations for fluid pressure and flux of hydraulic flow in three-dimensional fractures. J. Pet. Sci. Eng. 2019, 178, 439–448. [Google Scholar] [CrossRef]
- Zelanko, J.C.; Karfakis, M.G.; Kim, K. Development of a polyester-based pumpable grout. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 357–369. [Google Scholar] [CrossRef]
- Alehossein, H. Viscous, cohesive, non-Newtonian, depositing, radial slurry flow. Int. J. Miner. Process. 2009, 93, 11–19. [Google Scholar] [CrossRef]
- Alehossein, H.; Shen, B.; Qin, Z.; Huddlestone-Holmes, C. Flow Analysis, Transportation, and Deposition of Frictional Viscoplastic Slurries and Pastes in Civil and Mining Engineering. J. Mater. Civ. Eng. 2012, 24, 644–657. [Google Scholar] [CrossRef]
- Palchik, V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines. Environ. Geol. 2002, 42, 92–101. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Xuan, D. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine. Int. J. Rock Mech. Min. Sci. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Xuan, D.; Li, J.; Zheng, K.; Xu, J. Experimental Study of Slurry Flow in Mining-Induced Fractures during Longwall Overburden Grout Injection. Geofluids 2020, 2020, 8877616. [Google Scholar] [CrossRef]
Lithology | Thickness (cm) | Material | Material Ratio | Layers | Strength (kPa) |
---|---|---|---|---|---|
Isolation layers | 4 | Paraffin: hydraulic oil: talcum powder: river sand: straw powder | 1:2:5.7:34.2:1 | 4 | 95 |
Soft rock layers | 6 | Sand: calcium carbonate: gypsum: water | 3.5:3.5:1.5:1 | 6 | 70 |
Soft rock layers | 6 | Sand: calcium carbonate: gypsum: water | 3.5:3.5:1.5:1 | 6 | 70 |
Soft rock layers | 6 | Sand: calcium carbonate: gypsum: water | 3.5:3.5:1.5:1 | 6 | 70 |
Key strata | 4 | Sand: calcium carbonate: gypsum: water | 3:3.5:1.5:1 | 4 | 78 |
Immediate roof | 4 | Sand: calcium carbonate: gypsum: water | 3.5:3.5:1.5:1 | 4 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xuan, D.; Xu, J.; Dong, Z.; Wang, C. Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting. Minerals 2023, 13, 633. https://doi.org/10.3390/min13050633
Li J, Xuan D, Xu J, Dong Z, Wang C. Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting. Minerals. 2023; 13(5):633. https://doi.org/10.3390/min13050633
Chicago/Turabian StyleLi, Jian, Dayang Xuan, Jialin Xu, Zebin Dong, and Chaochao Wang. 2023. "Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting" Minerals 13, no. 5: 633. https://doi.org/10.3390/min13050633
APA StyleLi, J., Xuan, D., Xu, J., Dong, Z., & Wang, C. (2023). Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting. Minerals, 13(5), 633. https://doi.org/10.3390/min13050633