The Covariation of Color and Orange Fluorescence Instabilities in Yellow Sapphires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photochromic Experiments and Fluorescence Observations
2.2. Chemical Composition Analysis
2.3. Micro-Ultraviolet-Visible Absorption Spectrum Test
2.4. Photoluminescence Spectrum Test
2.5. Peak Fitting
3. Results
3.1. Photochromic Experiments and Fluorescence Characteristics
3.2. Chemical Composition Analyses
3.3. Absorption Spectra
3.4. Photoluminescence Spectra
3.4.1. Emission Spectra
3.4.2. Excitation Spectra
4. Discussion
4.1. Covariation of Color and Orange Fluorescence Instabilities
4.2. Potential Mechanism of Photochromism in Yellow Sapphires
4.3. Implications and Limitations of the Photochromic Mechanism in Yellow Sapphires
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumentritt, F.; Fritsch, E. Photochromism and Photochromic Gems: A Review and Some New Data (Part 1). J. Gemmol. 2021, 8, 780–800. [Google Scholar] [CrossRef]
- Byrne, K.S.; Chapman, J.G.; Luiten, A.N. Photochromic charge transfer processes in natural pink and brown diamonds. J. Phys. Condens. Matter 2014, 26, 35501. [Google Scholar] [CrossRef]
- Fritsch, E.; Delaunay, A. What Truly Characterises a Chameleon Diamond? An Example of an Atypical 25.85 ct Stone. J. Gemmol. 2018, 36, 142–151. [Google Scholar]
- Schiffman, C.A. Unstable colour in a yellow sapphire from Sri Lanka. J. Gemmol. 1981, 17, 615–618. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Klumb, A.; Braun, J. Unstable colouration of Padparadscha-like sapphires. J. Gemmol. 2018, 36, 346–354. [Google Scholar] [CrossRef]
- Kondo, D.; Beaton, D. Hackmanite/Sodalite from Myanmar and Afghanistan. Gems Gemol. 2009, 45, 38–43. [Google Scholar] [CrossRef]
- Blumentritt, F.; Latouche, C.; Morizet, Y.; Caldes, M.T.; Fritsch, E. Unravelling the Origin of the Yellow-Orange Luminescence in Natural and Synthetic Scapolites. J. Phys. Chem. Lett. 2020, 11, 4591–4596. [Google Scholar] [CrossRef]
- Colinet, P.; Byron, H.; Vuori, S.; Lehtiö, J.; Laukkanen, P.; Van Goethem, L.; Lastusaari, M.; Le Bahers, T. The structural origin of the efficient photochromism in natural minerals. Proc. Natl. Acad. Sci. USA 2022, 119, e2202487119. [Google Scholar] [CrossRef]
- Suthiyuth, R. Tenebrescent Zircon. Gems Gemol. 2014, 50, 156–157. [Google Scholar]
- Lin, S.; Chou, Y.; Huang, K. A Zircon with Strong Photochromic Effect. Gems Gemol. 2022, 58, 252–254. [Google Scholar]
- Pough, F.H.; Rogers, T.H. Experiments in X-ray irradiation of gem stones. Am. Mineral. 1947, 32, 31–43. [Google Scholar]
- Nassau, K.; Valente, G.K. The Seven Types of Yellow Sapphire and their Stability to Light. Gems Gemol. 1987, 23, 222–231. [Google Scholar] [CrossRef]
- Williams, C.; Williams, B. Yellow sapphire with unstable colour-in reverse. J. Gemmol. 2016, 35, 18–19. [Google Scholar]
- Zhao, B.; Zhi, Y.; Lyu, X.; Wang, Y. Tenebrescence of Sapphire. J. Gems Gemmol. 2018, 20, 1–14. [Google Scholar]
- Smith, C.P.; Chaipaksa, M.; Perlmutter, A.; Vasquez, L.; Zellagui, R.; Chen, S. Heated Sapphires with Unstable Colour Centres. J. Gemmol. 2019, 36, 602–604. [Google Scholar] [CrossRef]
- Sasajima, N.; Matsui, T.; Furuno, S.; Hojou, K. Damage accumulation in Al2O3 during H2+ or He+ ion irradiation. Nucl. Instrum. Methods Phys. Res. 1999, 148, 745–751. [Google Scholar] [CrossRef]
- Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174–12277. [Google Scholar] [CrossRef]
- Park, J.; Feng, D.; Yuan, S.; Zhou, H.C. Frontispiece: Photochromic Metal-Organic Frameworks: Reversible Control of Singlet Oxygen Generation. Angew. Chem. Int. Ed. 2015, 54, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Norrbo, I.; Curutchet, A.; Kuusisto, A.; Mäkelä, J.; Laukkanen, P.; Paturi, P.; Laihinen, T.; Sinkkonen, J.; Wetterskog, E.; Mamedov, F.; et al. Solar UV index and UV dose determination with photochromic hackmanites: From the assessment of the fundamental properties to the device. Mater. Horiz. 2018, 5, 569–576. [Google Scholar] [CrossRef]
- Badour, Y.; Jubera, V.; Andron, I.; Frayret, C.; Gaudon, M. Photochromism in inorganic crystallised compounds. Opt. Mater. X 2021, 12, 100110. [Google Scholar] [CrossRef]
- Vuori, S.; Colinet, P.; Lehtiö, J.; Lemiere, A.; Norrbo, I.; Granström, M.; Konu, J.; Ågren, G.; Laukkanen, P.; Petit, L.; et al. Reusable radiochromic hackmanite with gamma exposure memory. Mater. Horiz. 2022, 9, 2773–2784. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Li, M.; Yang, P.; Shen, A.H.; Wang, C. Spectral Characteristics and Color Origin of Unstable Yellow Sapphire. Spectrosc. Spect. Anal. 2021, 41, 2611–2617. [Google Scholar]
- Vigier, M.; Fritsch, E.; Segura, O. Orange luminescence of corundum an atypical origin for gemmologists. Rev. Gemmol. AFG 2021, 211, 12–19. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Emmett, J.L.; Scarratt, K.; Mcclure, S.F.; Moses, T.; Kane, R.E. Beryllium Diffusion of Ruby and Sapphire. Gems Gemol. 2003, 39, 84–135. [Google Scholar] [CrossRef]
- Mcclure, D.S. Optical spectra of transition-metal ions in corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Eigenmann, K.; Kurtz, K.; Günthard, H.H. The optical spectrum of α-Al2O3:Fe3+. Chem. Phys. Lett. 1972, 13, 54–57. [Google Scholar] [CrossRef]
- Mohapatra, S.K.; Kröger, F.A. Defect Structure of α-Al2O3 Doph with Magnesium. J. Am. Ceram Soc. 1977, 60, 141–148. [Google Scholar] [CrossRef]
- Wang, H.A.; Lee, C.H.; Kr Ger, F.A.; Cox, R.T. Point defects in α-Al2O3:Mg studied by electrical conductivity, optical absorption, and ESR. Phys. Rev. B 1983, 27, 3821–3841. [Google Scholar] [CrossRef]
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A Quantitative Description of the Causes of Color in Corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
- Pogatshnik, G.J.; Chen, Y.; Evans, B.D. A Model of Lattice Defects in Sapphire. IEEE Trans. Nucl. Sci. 1987, 34, 1709–1712. [Google Scholar] [CrossRef]
- Evans, B.D.; Pogatshnik, G.J.; Chen, Y. Optical properties of lattice defects in α-Al2O3. Nucl. Instrum. Methods Phys. Res. 1994, 91, 258–262. [Google Scholar] [CrossRef]
- Akselrod, M.S.; Akselrod, A.E.; Orlov, S.S.; Sanyal, S.; Underwood, T.H. Fluorescent Aluminum Oxide Crystals for Volumetric Optical Data Storage and Imaging Applications. J. Fluoresc. 2003, 13, 503–511. [Google Scholar] [CrossRef]
- Sanyal, S.; Akselrod, M.S. Anisotropy of optical absorption and fluorescence in Al2O3:C,Mg crystals. J. Appl. Phys. 2005, 98, 33518. [Google Scholar] [CrossRef]
- Sykora, G.J.; Akselrod, M.S. Photoluminescence study of photochromically and radiochromically transformed Al2O3:C,Mg crystals used for fluorescent nuclear track detectors. Radiat. Meas. 2010, 45, 631–634. [Google Scholar] [CrossRef]
- Ramírez, R.; Tardío, M.; González, R.; Santiuste, J.E.M.; Kokta, M.R. Optical properties of vacancies in thermochemically reduced Mg-doped sapphire single crystals. J. Appl. Phys. 2007, 101, 123520. [Google Scholar] [CrossRef]
- Kulis, P.A.; Springis, M.J.; Tale, I.A.; Vainer, V.S.; Valbis, J.A. Impurity-Associated Colour Centres in Mg- and Ca-Doped Al2O3 Single Crystals. Phys. Status Solidi B 1981, 104, 719–725. [Google Scholar] [CrossRef]
- Atobe, K.; Nishimoto, N.; Nakagawa, M. Irradiation-Induced Aggregate Centers in Single Crystal Al2O3 A. Phys. Status Solidi 1985, 89, 155–162. [Google Scholar] [CrossRef]
- Fritsch, E.; Chalain, J.P.; Hnni, H.; Devouard, B.; Maitrallet, P. Le nouveau traitement produisant des couleurs orange à jaune dans les saphirs. Rev. Gemmol. 2003, 147, 11–23. [Google Scholar]
- Ananchenko, D.V.; Nikiforov, S.V.; Kuzovkov, V.N.; Popov, A.I.; Ramazanova, G.R.; Batalov, R.I.; Bayazitov, R.M.; Novikov, H.A. Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 466, 1–7. [Google Scholar] [CrossRef]
- Dodd, D.M.; Wood, D.L.; Barns, R.L. Spectrophotometric Determination of Chromium Concentration in Ruby. J. Appl. Phys. 1964, 35, 1183–1186. [Google Scholar] [CrossRef]
- Itou, M.; Fujiwara, A.; Uchino, T. Reversible Photoinduced Interconversion of Color Centers in α-Al2O3 Prepared under Vacuum. J. Phys. Chem. C 2009, 113, 20949–20957. [Google Scholar] [CrossRef]
Element (ppma) | Fe | Ti | Mg | Ga | V |
---|---|---|---|---|---|
S1 | 179.1 | 12.68 | 73.38 | 9.40 | 4.30 |
S2 | 267.9 | 18.85 | 89.58 | 13.53 | 1.03 |
S3 | 97.2 | 9.50 | 35.84 | 9.64 | 1.95 |
S4 | 149.7 | bdl 1 | 67.68 | 16.62 | 0.60 |
S5 | 88.2 | 35.71 | 79.96 | 5.06 | 2.48 |
S6 | 136.6 | 20.23 | 38.02 | 11.01 | 1.80 |
S7 | 187.5 | 75.53 | 88.13 | 18.73 | 4.22 |
S8 | 110.6 | 7.94 | 40.97 | 8.12 | 2.63 |
S9 | 108.5 | bdl | 21.88 | 11.81 | 1.91 |
S10 | 157.4 | 8.73 | 16.52 | 18.64 | 0.53 |
S11 | 94.1 | 7.88 | 27.69 | 15.12 | 1.34 |
HS1 | 99.1 | 9.20 | 73.61 | 10.48 | 1.42 |
HS2 | 162.2 | 18.87 | 42.17 | 20.13 | 5.15 |
S0 | 114.4 | 15.71 | 26.30 | 13.65 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, C.; Wang, C.; Shen, X.; Yin, K.; Chen, T.; Shen, A.H.; Algeo, T.J.; Hong, H. The Covariation of Color and Orange Fluorescence Instabilities in Yellow Sapphires. Minerals 2023, 13, 663. https://doi.org/10.3390/min13050663
Yang Y, Wang C, Wang C, Shen X, Yin K, Chen T, Shen AH, Algeo TJ, Hong H. The Covariation of Color and Orange Fluorescence Instabilities in Yellow Sapphires. Minerals. 2023; 13(5):663. https://doi.org/10.3390/min13050663
Chicago/Turabian StyleYang, Yunqi, Chaowen Wang, Chengsi Wang, Xibing Shen, Ke Yin, Tao Chen, Andy Hsitien Shen, Thomas J. Algeo, and Hanlie Hong. 2023. "The Covariation of Color and Orange Fluorescence Instabilities in Yellow Sapphires" Minerals 13, no. 5: 663. https://doi.org/10.3390/min13050663
APA StyleYang, Y., Wang, C., Wang, C., Shen, X., Yin, K., Chen, T., Shen, A. H., Algeo, T. J., & Hong, H. (2023). The Covariation of Color and Orange Fluorescence Instabilities in Yellow Sapphires. Minerals, 13(5), 663. https://doi.org/10.3390/min13050663