Calculation of Shear Layer Thickness of Ionic Rare Earth Particles in Mixture Electrolytes during In-Situ Leaching Process
Abstract
:1. Introduction
2. Construction of Theoretical Model
3. Materials and Methods
- (1)
- EDTA volumetric titration analysis. EDTA titration test solution was configured to test the leaching solution of rare earth collected every hour. An amount of 5 mL of rare earth leaching solution was added to the acid burette and titrated with EDTA solution until the test solution in the burette turned bright yellow. The amount of EDTA test solution was recorded.
- (2)
- Zeta potential test. Three groups of MgSO4 solution with different concentrations (2.5%, 3.0%, and 3.5%) were prepared for column leaching. The leaching solutions were collected every hour, and the Zeta potentials were tested at room temperature using a Zeta potential analyzer produced by Colloidal Dynamics, Ponte Vedra Beach, FL, USA.
4. Results and Discussion
4.1. Rare Earth Ion Leaching Analysis
4.2. Comparative Analysis of Zeta Potential and Surface Potential Values
4.3. Analysis of the Shear Layer Thickness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Y.F.; Feng, M.; Liu, Z.X.; Wu, Y.F.; Li, Y.L.; Wu, W.Y. Numerical simulation of double electric layer-thermal field coupling in bottom cathode rare earth electrolytic cell. Chin. Rare Earths 2019, 40, 88–94. [Google Scholar]
- Wang, X.J.; Wang, H.; Sui, C.; Zhou, L.B.; Feng, X.; Huang, C.G.; Zhao, K.; Zhong, W.; Hu, K.J. Permeability and adsorption–desorption behavior of rare earth in laboratory leaching tests. Minerals 2020, 10, 889. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117, 71–78. [Google Scholar] [CrossRef]
- Wang, D.; Wu, F.W.; Rao, Y.Z.; Xu, W.; Han, M.; Shi, L. Simulation of an ionic rare earth leaching process based on the darcy law-chemical reaction engineering-transfer of dilute substance coupling. Minerals 2022, 12, 1500. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Rao, Y.Z.; Shi, L.; Xiang, R.; Yang, Z.H. Effect of magnesium sulfate solution on pore structure of ionic rare earth ore during leaching process. Minerals 2023, 13, 294. [Google Scholar] [CrossRef]
- Zhao, W.J.; Wang, M.L.; Yang, B.; Feng, Q.C.; Liu, D.W. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species. Miner. Eng. 2022, 187, 107796. [Google Scholar] [CrossRef]
- Feng, Q.C.; Yang, W.H.; Wen, S.M.; Wang, H.; Zhao, W.J.; Han, G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
- Zhou, H.P.; Yang, Z.Z.; Zhang, Y.B.; Han, H.S.; He, K.Z.; Luo, X.P. Enhanced flotation of hemimorphite: Adjusting mineral surface potential with sodium thiocyanate as activator. Miner. Eng. 2021, 171, 107088. [Google Scholar] [CrossRef]
- Helmholtz, H. Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern, mit anwendung auf die thierisch-elektrischen versuche. Ann. Phys. 1853, 165, 353–377. [Google Scholar] [CrossRef]
- Van, O. Introduction to Clay Colloid Chemistry; Agricultural Press: Beijing, China, 1982. [Google Scholar]
- Yang, T.S.; Xiong, X.Z.; Zhan, X.L.; Yang, M.Q. The Study on slipping water layers of cohesive sediment particles. Shuili Xuebao 2002, 5, 20–25. [Google Scholar]
- Ding, W.Q.; Zhu, Q.H.; Wang, L.; Luo, Y.X.; Li, Q.; Zhu, H.L.; Hu, F.N.; Zhu, L.H.; Li, H. Calculation of thickness of shear plane in diffuse double layer of constant charge soll colloid in single electrolyte system. Acta Pedol. Sin. 2015, 52, 859–868. [Google Scholar]
- Mahanta, K.K.; Mahanta, G.C.; Mishra, M.L. Estimation of electric double layer thickness from linearized and nonlinear solutions of Poisson–Boltzman equation for single type of ions. Appl. Clay Sci. 2012, 59, 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.H.; Li, F.C.; Guo, Z.Y.; Chu, Z.; Pai, K.H. Research progress of the theory of electric double layer on electrode/ionic liquids for supercapacitors. Guangdong Chem. Ind. 2021, 48, 120–122. [Google Scholar]
- Gu, P.; Yang, S.; Liu, X.T.; Yang, G. Development of a simple, molecular dynamics-based method to estimate the thickness of electrical double layers. Soil. Sci. Soc. Am. J. 2020, 84, 494–501. [Google Scholar] [CrossRef]
- Shang, F.; Yang, C.S.; Zhang, L.H.; Zhou, C.L.; Han, D.W.; Shi, Y.J. Analysis of influencing factors of clay particle diffusion in electric double layer. J. Glaciol. Geocryol. 2022, 44, 495–505. [Google Scholar]
- Chang, F.; Sposito, G. The electrical double layer of a disk-shaped clay mineral particle: Effect of particle size. J. Colloid Interface Sci. 1994, 163, 19–27. [Google Scholar] [CrossRef]
- Nishiyama, N.; Yokoyama, T. Water film thickness in unsaturated porous media: Effect of pore size, pore solution chemistry, and mineral type. Water Resour. Res. 2021, 57, e2020WR029257. [Google Scholar] [CrossRef]
- Shakila, B. Surface potential and shear plane thickness for a treated concrete particulate. J. Colloid. Interface Sci. 2003, 261, 399–401. [Google Scholar]
- M’pandou, A.; Siffert, B. Polyethyleneglycol adsorption at the TiO2 H2O interface: Distortion of ionic structure and shear plane position. Colloids Surf. 1987, 24, 159–172. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.S.; Hong, B.G. Effects of concentration of pore solution on stability of ion-absorbed rare earth ore aggregate. Adv. Civ. Eng. 2021, 2021, 8846605. [Google Scholar] [CrossRef]
- Aniban, X.; Hartwig, B.; Wuttke, A.; Mata, R.A. Dispersion forces in chirality recognition-a density functional and wave function theory study of diols. Phys. Chem. Chem. Phys. 2021, 23, 12093–12104. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Sun, L.J.; Liu, C.Y.; Wang, C.; Xu, B.C. The ion specific effect on the aggregation behaviors of surfactants. China Clean. Ind. 2022, 8, 60–69. [Google Scholar]
- Fu, S.; Yu, Y.X.; Wang, X.L. Theoretical investigation on the separation characteristics of electrolyte solutions with the nanofiltration membranes (II): Mixed electrolyte solutions. Acta Chim. Sin. 2007, 10, 923–929. [Google Scholar]
- Liu, X.M.; Li, H.; Li, R.; Tian, R. Analytical solutions of the nonlinear Poisson–Boltzmann equation in mixture of electrolytes. Surf. Sci. 2013, 607, 197–202. [Google Scholar] [CrossRef]
- Ding, W.Q.; Liu, X.M.; Song, L.; Li, Q.; Zhu, Q.H.; Zhu, H.L.; Hu, F.N.; Luo, Y.X.; Zhu, L.H.; Li, H. An approach to estimate the position of the shear plane for colloidal particles in an electrophoresis experiment. Surf. Sci. 2015, 632, 50–59. [Google Scholar] [CrossRef]
- Tan, S.J.; Rao, Y.Z.; Zhang, M.D.; Wang, D.; Zhang, S.J.; Wu, F.Y. Study on seepage evolution law of ionic rare earth ore leached by magnesiµmsulfatee. Nonferrous Met. Sci. Eng. 2023, 1–10. [Google Scholar]
- Torkzaban, S.; Bradford, S.A.; Vanderzalm, J.L.; Patterson, B.M.; Harris, B.; Prommer, H. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. J. Contam. Hydrol. 2015, 181, 161–171. [Google Scholar] [CrossRef]
- Deng, Q.J.; Zhu, W.Y.; Wang, X.F.; Sui, X.G.; Wang, X.J. Seepage model considering micro forces in porous media. Chin. J. Eng. 2014, 36, 415–423. [Google Scholar]
- Thanh, L.D.; Jougno, D.; Phan, V.D.; Nguyen, X.C.; Nguyen, T.H. A physically based model for the streaming potential coupling coefficient in partially saturated porous media. Water 2020, 12, 1588. [Google Scholar] [CrossRef]
- Zhang, X.M.; Gao, Z.Q.; Rao, Y.Z.; Shi, L.; Xu, W. Evolutionary law of pore structure of ion-adsorbed rare earth ore leaching process. Minerals 2023, 13, 322. [Google Scholar] [CrossRef]
- Aksoy, Y.Y.; Kaya, A. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environ. Earth Sci. 2011, 62, 697–705. [Google Scholar] [CrossRef]
- Li, H.L.; Min, F.F.; Peng, C.L. Zeta potential simulation of Kaolinite particle surface in different Ca2+ concentration and pH value suspension. J. China Univ. Min. Technol. 2013, 42, 631–637. [Google Scholar]
- Hu, Y.X. Surface zeta potential and surface absorption-a theoretical explanation of the rule of coagulation. Chin. J. Struct. Chem. 1992, 11, 447. [Google Scholar]
- Charlton, I.D.; Doherty, A.P. Locating the micellar shear plane and its relationship with the debye screening length. J. Phys. Chem. B 1999, 103, 5081–5083. [Google Scholar] [CrossRef]
- Adamson, A.W.; Klerer, J. Physical chemistry of surfaces. J. Electrochem. Soc. 1977, 124, 192C. [Google Scholar] [CrossRef]
- Li, H.; Qing, C.L.; Wei, S.Q.; Jiang, X.J. An approach to the method for determination of surface potential on solid/liquid interface: Theory. J. Colloid. Interface Sci. 2004, 275, 172–176. [Google Scholar] [CrossRef]
- Li, H.P.; Hu, Y.H.; Wang, D.Z.; Xu, J. Mechanism of interaction between cationic surfactant and kaolinite. J. Cent. South Univ. (Sci. Technol.) 2004, 2, 228–233. [Google Scholar]
- Zhang, Z.J.; Liu, J.T.; Feng, L.; Zhou, W.J. A prediction model based on langmuir theory for equilibrium adsorption amount. J. Northeast. Univ. (Nat. Sci.) 2011, 32, 749–751+756. [Google Scholar]
- Yang, K.L.; Yiacoumi, S.; Tsouris, C. Monte carlo simulations of electrical double-layer formation in nanopores. J. Chem. Phys. 2002, 117, 8499–8507. [Google Scholar] [CrossRef]
- Zhao, X.C. Influences of stern potential and electric concentration on foam stability. Chem. Eng. Des. Commun. 2019, 45, 190–192. [Google Scholar]
- Li, H.; Hou, J.; Liu, X.M.; Li, R.; Zhu, H.L.; Wu, L.S. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment. Soil Sci. Soc. Am. J. 2011, 75, 2128–2135. [Google Scholar] [CrossRef]
- Zhu, H.L.; Li, B.; Xiong, H.L.; Li, H.; Jia, M.Y. Dynamic light scattering study on the aggregation kinetics of soil colloidal particles in different electrolyte systems. Acta Phys. Chim. Sin. 2009, 25, 1225–1231. [Google Scholar]
Compound Formula | O | Na | Mg | Al | Si | S | Cl | K | Ca | Ti | Mn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration | 55.251 | 0.112 | 0.079 | 18.761 | 21.733 | 0.011 | 0.006 | 1.408 | 0.064 | 0.020 | 0.056 | |
Compound formula | Fe | Ni | Zn | Ga | Rb | Y | Zr | Nd | Yb | W | Pb | Th |
Concentration | 1.263 | 0.003 | 0.014 | 0.006 | 0.034 | 0.068 | 0.019 | 0.024 | 0.011 | 0.005 | 0.034 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Rao, Y.; Zhang, X.; Xu, W.; Yang, Z.; Xiang, R. Calculation of Shear Layer Thickness of Ionic Rare Earth Particles in Mixture Electrolytes during In-Situ Leaching Process. Minerals 2023, 13, 733. https://doi.org/10.3390/min13060733
Gao Z, Rao Y, Zhang X, Xu W, Yang Z, Xiang R. Calculation of Shear Layer Thickness of Ionic Rare Earth Particles in Mixture Electrolytes during In-Situ Leaching Process. Minerals. 2023; 13(6):733. https://doi.org/10.3390/min13060733
Chicago/Turabian StyleGao, Zhongquan, Yunzhang Rao, Xiaoming Zhang, Wei Xu, Zhihua Yang, and Run Xiang. 2023. "Calculation of Shear Layer Thickness of Ionic Rare Earth Particles in Mixture Electrolytes during In-Situ Leaching Process" Minerals 13, no. 6: 733. https://doi.org/10.3390/min13060733
APA StyleGao, Z., Rao, Y., Zhang, X., Xu, W., Yang, Z., & Xiang, R. (2023). Calculation of Shear Layer Thickness of Ionic Rare Earth Particles in Mixture Electrolytes during In-Situ Leaching Process. Minerals, 13(6), 733. https://doi.org/10.3390/min13060733