Control Model of Organic Shale Enrichment by Terrigenous Weathering in Wufeng Formation–Longmaxi Formation, Southeast Sichuan, China
Abstract
:1. Introduction
2. Geological Background
3. Methodology
3.1. Organic Carbon Analysis
3.2. Oxide Content Test
3.3. Trace Elements Analysis
4. Results
4.1. Rock Type and Sedimentary System
- SS1 corresponds to the Wufeng Formation, dominated by black carbonaceous shale (Figure 2a), with well-developed bedding and abundant brachiopods, sulfides, and pyrite particles at the bottom of the core [15]. The number of brachiopods decreases upwards, and high carbon content is observed at 2179.7–2179.5 m, with few fossils in the upper part. In the development of the transgressive systems tract (TST) of the marine system, the natural gamma curve shows a large amplitude, with increasing natural gamma values from bottom to top, and a bell-shaped morphology, reflecting a gradual increase in mud content from bottom to top (Figure 2). The natural potential has a relatively small range of variation. Overall, the SS1 transgressive systems tract reflects a process of rising sea level, increasing accommodation space, and increasing mud content upwards.
- SS2 corresponds to the bottom of the Longmaxi Formation, dominated by black siliceous shale with well-developed bedding and vertical fractures filled with calcite (Figure 2b). Brachiopods and sulfides are visible, the color is lighter than the underlying layer, and sliding surfaces are present. Pyrite and sandy materials increase upwards. Both the TST and highstand systems tract (HST) are relatively symmetrical. The TST has a slightly increasing trend in natural gamma-ray upwards, reflecting a rising sea level, increasing accommodation space, and increasing mud content. The HST mainly consists of deep gray sandy shale, with an upward increase in sand content and grain size (Figure 2). The natural gamma-ray value decreases from bottom to top, reflecting a sedimentary process of falling sea level, increasing accommodation space, and decreasing mud content.
- SS3 corresponds to the middle part of the Longmaxi Formation, which consists of black siltstone (Figure 2c) and light-colored mudstone (Figure 2d) with horizontal bedding and vertical fissures filled with calcite (approximately 0.3–1.5 m wide and 2.5 m long). The cross-section shows crinoids, and the color is lighter than the previous layer, with visible detachment surfaces. A small amount of pyrite is developed, and the content of fine sand increases upward, mainly distributed in a concentrated manner in laminae. At a depth of 2168 m, there is a conglomeration of calcite, while at 2169.5 m, there are layering fractures, and at 2169.4 m, a calcite vein can be observed, showing signs of flexure with visible scratch marks on the surface (Figure 2). The TST and HST are asymmetric. The TST is mainly composed of black and gray muddy sandstone, with a small variation range in natural gamma-ray and an increasing trend in GR from bottom to top, reflecting an increase in mud content and accommodation space. The natural potential has a very small range of variation. The HST mainly consists of light gray muddy sandstone or sandy mudstone, with a natural gamma-ray of 143.84–223.17 API, indicating an upward increase in sand content and grain size.
- SS4 corresponds to the upper part of the Longmaxi Formation, mainly composed of light gray mud shale with horizontal bedding (Figure 2e) and visible brachiopods on the section. Layer-parallel calcite veins and vertical fractures filled with calcite are also present. At 2157.25 m, there is a band of pyrite, and the sand content gradually increases upwards (Figure 2). The natural gamma-ray value is relatively stable, and the sand content and grain size are lower than those in the lower layers. The HST is well developed, mainly consisting of gray-green sandy shale or sandstone. The natural gamma-ray curve shows a slight increase upwards, reflecting an increase in mud content and accommodation space and the sea level lowering process.
4.2. Oxidants and TOC Content Characteristics
4.3. Trace Elements Characteristics
4.4. Rare Earth Elements Characteristics
5. Discussion
5.1. Input of Terrestrial Debris and Degree of Weathering
5.2. Paleoclimate and Chemical Weathering Degree
5.3. Redox Conditions and Degree of Weathering
5.3.1. V/Cr Ratio
5.3.2. Ni/Co Ratio
5.3.3. The Degree of Water Retention in Basins
5.4. Paleoproductivity and Weathering Degree
5.5. Organic-Rich Shale Sedimentary Model
6. Conclusions
- Based on lithology and single-well logging curves, the sequence stratigraphy, and depositional systems of the Wufeng Formation–Longmaxi Formation in the southeastern Sichuan Basin were analyzed. Four third-order sequences (SS1, SS2, SS3, and SS4) were identified, with the lower part of the Wufeng Formation–Longmaxi Formation consisting of a transgressive systems tract. In the Guanyinqiao Member, the sedimentation of mudstone is thin, and the highstand system tract cannot be identified by logging, while the upper part of the Longmaxi Formation consists of both transgressive and highstand system tracts. The transgressive systems tract was formed in a deep-water muddy shelf, a shallow-water sandy shelf, and a shallow-water muddy shelf with sufficient sediment supply, while the highstand systems tract mainly formed in a shallow-water mixed shelf and a shallow-water sandy shelf with insufficient sediment supply. Overall, the Longmaxi Formation is a sea retreat from the bottom to the top. Based on sequence stratigraphy analysis, two sedimentary facies and several sedimentary microfacies were identified. Combined with La/Yb-∑REE diagrams and REE distribution curves, it was shown that the matter mainly comes from the sedimentary rocks, granite, and alkaline basalt from the upper crust.
- The positive correlation between weathering indices (CIA, CIW, CIA-error) and terrigenous input (Al2O3/TiO2-CIA, Al2O3/TiO2), redox indicators (V/Cr, Ni/Co), and primary productivity (P/Ti, Mo, Zn, Cu) indicates that the degree of weathering at the bottom of the Wufeng Formation–Longmaxi Formation, plays a controlling role in primary productivity and redox conditions. Sufficient terrigenous input testifying for higher weathering rates and input promotes the supply of nutrients, leading to a reducing environment that favors the enrichment of organic matter. In contrast, as the water becomes shallower and the degree of weathering decreases in the upper part of the Longmaxi Formation, primary productivity decreases, and the reducing environment shifts to a suboxic–oxic environment, resulting in poor production and preservation of organic matter.
- By studying the sedimentary facies, primary productivity, redox conditions, weathering degree, climate, and sea level changes in the Wufeng Formation–Longmaxi Formation, in Well Youc-2, two organic-rich accumulation modes were established. One mode was characterized by frequent environmental changes in the bottom of the Wufeng Formation–Longmaxi Formation, where the redox conditions changed from oxic to anoxic and back to oxic, weathering degree and climate changed from humid to arid and back to humid, primary productivity and sea level changed in a pattern of enhancement-rise, weakening-fall, enhancement-rise, and enhancement-rise. This mode created a favorable sediment environment for organic matter enrichment. The other mode was characterized by a suboxic to oxic water environment in the upper part of the Longmaxi Formation (i.e., the dark gray siltstone shale and light gray mud shale units), where a weakening weathering degree and increasing aridity, decreasing primary productivity and sea level, and worsening conditions for organic matter production and preservation lead to a poor environment for organic matter enrichment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Samples | TOC (%) | P (ppm) | Al2O3 | FeO | Fe2O3 | Na2O | MgO | SiO2 | TiO2 | K2O | CaO | MnO | P2O5 | TFe2O3 | Al2O3/TiO2 | CIA | CIW | ICV | CIA-Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CQyc02-17 | 1.120 | 454.000 | 8.730 | 3.690 | 2.490 | 0.680 | 3.150 | 53.290 | 0.800 | 5.900 | 0.940 | 0.380 | 0.010 | 6.180 | 10.913 | 54.894 | 87.271 | 1.643 | 55.585 |
CQyc02-16 | 1.970 | 517.000 | 7.050 | 2.130 | 4.000 | 0.920 | 2.860 | 57.300 | 0.690 | 4.550 | 1.220 | 0.830 | 0.012 | 6.130 | 10.217 | 52.822 | 80.144 | 2.138 | 53.604 |
CQyc02-15 | 1.520 | 528.000 | 5.480 | 3.830 | 2.530 | 0.890 | 3.300 | 60.810 | 0.730 | 5.170 | 0.570 | 0.670 | 0.012 | 6.360 | 7.507 | 46.811 | 83.835 | 2.529 | 48.044 |
CQyc02-14 | 1.870 | 542.000 | 6.620 | 3.130 | 3.250 | 0.880 | 3.100 | 57.820 | 0.710 | 4.620 | 3.210 | 0.740 | 0.012 | 6.380 | 9.324 | 50.923 | 78.998 | 2.494 | 55.190 |
CQyc02-13 | 1.760 | 616.000 | 4.640 | 2.490 | 2.850 | 1.410 | 2.590 | 57.980 | 0.700 | 4.060 | 3.540 | 0.730 | 0.014 | 5.340 | 6.629 | 40.278 | 62.198 | 3.422 | 43.698 |
CQyc02-12 | 1.110 | 696.000 | 4.220 | 1.910 | 1.080 | 1.610 | 1.980 | 63.870 | 0.640 | 2.630 | 5.130 | 0.470 | 0.016 | 2.990 | 6.594 | 41.907 | 56.720 | 3.209 | 45.744 |
CQyc02-11 | 0.810 | 786.000 | 4.180 | 1.400 | 1.330 | 1.910 | 1.570 | 66.300 | 0.700 | 2.480 | 4.740 | 0.790 | 0.018 | 2.730 | 5.971 | 39.885 | 52.250 | 3.234 | 42.514 |
CQyc02-10 | 1.360 | 728.000 | 4.270 | 2.220 | 1.390 | 1.720 | 1.840 | 65.760 | 0.680 | 3.070 | 4.180 | 0.750 | 0.017 | 3.610 | 6.279 | 39.610 | 55.383 | 3.192 | 42.541 |
CQyc02-9 | 1.430 | 687.000 | 4.530 | 2.280 | 2.120 | 1.370 | 2.350 | 62.490 | 0.740 | 3.780 | 3.210 | 0.210 | 0.016 | 4.400 | 6.122 | 40.995 | 62.311 | 3.042 | 44.038 |
CQyc02-8 | 2.590 | 522.000 | 4.690 | 2.100 | 1.680 | 1.780 | 2.010 | 63.540 | 0.630 | 3.150 | 4.050 | 0.680 | 0.012 | 3.780 | 7.444 | 41.140 | 56.848 | 2.981 | 43.749 |
CQyc02-7 | 2.860 | 534.000 | 5.110 | 2.080 | 2.190 | 1.730 | 2.110 | 60.620 | 0.640 | 3.240 | 3.720 | 0.390 | 0.012 | 4.270 | 7.984 | 43.268 | 59.627 | 2.744 | 45.627 |
CQyc02-6 | 2.720 | 566.000 | 5.280 | 2.510 | 1.780 | 1.720 | 2.190 | 61.510 | 0.640 | 3.300 | 3.480 | 0.470 | 0.013 | 4.290 | 8.250 | 43.927 | 60.550 | 2.572 | 46.050 |
CQyc02-5 | 1.110 | 546.000 | 6.360 | 2.450 | 1.610 | 1.520 | 2.040 | 62.450 | 0.630 | 3.280 | 3.430 | 0.530 | 0.013 | 4.060 | 10.095 | 50.158 | 67.660 | 2.050 | 52.449 |
CQyc02-4 | 2.980 | 535.000 | 7.210 | 2.960 | 1.210 | 1.550 | 2.190 | 60.150 | 0.640 | 3.470 | 3.130 | 0.690 | 0.012 | 4.170 | 11.266 | 52.322 | 69.932 | 1.786 | 54.134 |
Average | 1.801 | 589.786 | 5.598 | 2.513 | 2.108 | 1.406 | 2.377 | 60.992 | 0.684 | 3.764 | 3.182 | 0.595 | 0.014 | 4.621 | 7.908 | 45.983 | 66.564 | 2.522 | 48.603 |
Minimum | 0.810 | 454.000 | 4.180 | 1.400 | 1.080 | 0.680 | 1.570 | 53.290 | 0.630 | 2.480 | 0.570 | 0.210 | 0.01 | 2.730 | 5.971 | 39.610 | 52.250 | 1.643 | 42.514 |
Maximum | 2.980 | 786.000 | 8.730 | 3.690 | 4.000 | 1.910 | 3.300 | 66.300 | 0.800 | 5.900 | 5.130 | 0.830 | 0.018 | 6.380 | 11.266 | 54.894 | 87.271 | 3.422 | 55.585 |
CQyc02-3GB | 2.658 | 566.000 | 5.140 | 2.430 | 1.760 | 1.380 | 2.500 | 61.900 | 0.650 | 3.460 | 4.050 | 0.710 | 0.013 | 4.190 | 8.167 | 45.246 | 65.063 | 2.823 | 49.018 |
CQyc02-2 | 3.170 | 411.000 | 3.950 | 0.930 | 1.270 | 0.520 | 1.180 | 74.770 | 0.320 | 1.750 | 1.890 | 0.490 | 0.009 | 2.200 | 12.344 | 58.605 | 79.158 | 1.878 | 62.077 |
CQyc02-1 | 1.050 | 490.000 | 7.780 | 3.230 | 1.800 | 1.130 | 2.940 | 59.880 | 0.800 | 4.220 | 2.590 | 0.630 | 0.011 | 5.030 | 9.725 | 54.558 | 77.490 | 1.814 | 56.688 |
Average | 2.140 | 450.500 | 5.865 | 2.080 | 1.535 | 0.825 | 2.060 | 67.325 | 0.560 | 2.985 | 2.240 | 0.560 | 0.01 | 3.615 | 11.034 | 55.857 | 78.044 | 1.835 | 58.492 |
Minimum | 2.140 | 450.500 | 5.865 | 2.080 | 1.535 | 0.825 | 2.060 | 67.325 | 0.560 | 2.985 | 2.240 | 0.560 | 0.01 | 3.615 | 11.034 | 55.857 | 78.044 | 1.835 | 58.492 |
Maximum | 1.050 | 411.000 | 3.950 | 0.930 | 1.270 | 0.520 | 1.180 | 59.880 | 0.320 | 1.750 | 1.890 | 0.490 | 0.009 | 2.200 | 9.725 | 54.558 | 77.490 | 1.814 | 56.688 |
Sample No | TOC(%) | Ti | V | Cr | Co | Ni | Cu | Zn | Sr | Mo | Ba | U | B | V/Cr | Ni/Co | Mo/TOC | P/Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CQyc02-17 | 1.120 | 0.48 | 108.00 | 64.90 | 19.60 | 46.20 | 35.80 | 279.00 | 122.00 | 43.70 | 716.00 | 6.70 | 109.00 | 1.66 | 2.36 | 39.02 | 945.83 |
CQyc02-16 | 1.970 | 0.42 | 147.00 | 104.00 | 17.80 | 58.30 | 53.00 | 111.00 | 108.00 | 7.18 | 619.00 | 5.91 | 95.10 | 1.41 | 3.28 | 3.64 | 1230.95 |
CQyc02-15 | 1.520 | 0.44 | 167.00 | 132.00 | 17.40 | 52.10 | 40.80 | 97.70 | 93.00 | 2.68 | 623.00 | 4.99 | 82.50 | 1.27 | 2.99 | 1.76 | 1200.00 |
CQyc02-14 | 1.870 | 0.43 | 145.00 | 108.00 | 20.00 | 51.30 | 52.10 | 90.30 | 142.00 | 5.79 | 593.00 | 5.97 | 95.20 | 1.34 | 2.57 | 3.10 | 1260.47 |
CQyc02-13 | 1.760 | 0.42 | 158.00 | 142.00 | 18.30 | 62.10 | 46.50 | 91.80 | 155.00 | 6.36 | 572.00 | 7.99 | 73.70 | 1.11 | 3.39 | 3.61 | 1466.67 |
CQyc02-12 | 1.110 | 0.38 | 115.00 | 84.50 | 8.53 | 26.80 | 29.60 | 60.90 | 174.00 | 2.46 | 431.00 | 5.00 | 54.50 | 1.36 | 3.14 | 2.22 | 1831.58 |
CQyc02-11 | 0.810 | 0.42 | 81.50 | 67.50 | 8.32 | 25.40 | 23.60 | 52.80 | 189.00 | 1.86 | 421.00 | 5.25 | 49.40 | 1.21 | 3.05 | 2.30 | 1871.43 |
CQyc02-10 | 1.360 | 0.41 | 132.00 | 53.30 | 4.40 | 26.00 | 35.00 | 132.14 | 180.00 | 2.15 | 497.00 | 4.55 | 61.10 | 2.48 | 5.91 | 1.58 | 1775.61 |
CQyc02-9 | 1.430 | 0.44 | 151.00 | 66.10 | 7.50 | 40.00 | 37.80 | 135.60 | 147.00 | 2.13 | 559.00 | 4.81 | 66.60 | 2.28 | 5.33 | 1.49 | 1561.36 |
CQyc02-8 | 2.590 | 0.38 | 132.00 | 53.70 | 7.30 | 41.00 | 28.30 | 128.20 | 170.00 | 4.06 | 543.00 | 4.12 | 47.90 | 2.46 | 5.62 | 1.57 | 1373.68 |
CQyc02-7 | 2.860 | 0.38 | 145.00 | 58.10 | 9.70 | 50.20 | 35.50 | 121.40 | 179.00 | 4.66 | 566.00 | 4.79 | 37.20 | 2.50 | 5.18 | 1.63 | 1405.26 |
CQyc02-6 | 2.720 | 0.38 | 131.00 | 65.12 | 8.10 | 44.60 | 36.40 | 114.55 | 156.00 | 5.46 | 567.00 | 4.58 | 45.40 | 2.01 | 5.51 | 2.01 | 1489.47 |
CQyc02-5 | 1.110 | 0.38 | 144.00 | 67.20 | 5.50 | 36.80 | 36.60 | 112.14 | 203.00 | 5.71 | 574.00 | 4.80 | 42.00 | 2.14 | 6.69 | 5.14 | 1436.84 |
CQyc02-4 | 2.980 | 0.38 | 320.70 | 54.30 | 8.35 | 88.35 | 20.20 | 121.82 | 140.00 | 6.59 | 575.00 | 5.47 | 50.50 | 5.91 | 10.58 | 2.21 | 1407.89 |
Average | 1.801 | 0.41 | 148.37 | 80.05 | 12.05 | 43.29 | 36.51 | 117.81 | 154.14 | 7.20 | 561.14 | 5.35 | 65.01 | 1.85 | 3.59 | 5.09 | 1438.50 |
Minimum | 1.801 | 0.41 | 148.37 | 80.05 | 12.05 | 43.29 | 36.51 | 117.81 | 154.14 | 7.20 | 561.14 | 5.35 | 65.01 | 1.85 | 3.59 | 5.09 | 1438.50 |
Maximum | 0.810 | 0.38 | 81.50 | 53.30 | 4.40 | 25.40 | 20.20 | 52.80 | 93.00 | 2.13 | 421.00 | 4.12 | 37.20 | 1.11 | 2.36 | 1.49 | 945.83 |
CQyc02-3GB | 2.658 | 0.39 | 163.00 | 80.30 | 14.90 | 47.50 | 39.80 | 98.50 | 143.00 | 6.51 | 570.00 | 5.28 | 40.10 | 2.03 | 3.19 | 2.45 | 1451.28 |
CQyc02-2 | 3.170 | 0.19 | 444.00 | 45.30 | 8.40 | 87.90 | 62.30 | 321.24 | 79.40 | 34.00 | 445.00 | 12.80 | 33.60 | 9.80 | 10.46 | 10.73 | 2163.16 |
CQyc02-1 | 1.050 | 0.48 | 182.24 | 89.00 | 15.80 | 61.40 | 95.30 | 111.00 | 108.00 | 0.77 | 659.00 | 4.60 | 55.60 | 2.05 | 3.89 | 0.69 | 1020.83 |
Minimum | 1.050 | 0.19 | 182.24 | 45.30 | 8.40 | 61.40 | 62.30 | 111.00 | 79.40 | 0.77 | 445.00 | 4.60 | 33.60 | 2.05 | 3.89 | 0.69 | 1020.83 |
Maximum | 3.170 | 0.48 | 444.00 | 89.00 | 15.80 | 87.90 | 95.30 | 321.24 | 108.00 | 34.00 | 659.00 | 12.80 | 55.60 | 9.80 | 3.89 | 10.73 | 2163.16 |
Average | 2.140 | 0.34 | 287.00 | 67.15 | 12.10 | 74.65 | 78.80 | 132.50 | 93.70 | 17.39 | 552.00 | 8.70 | 44.60 | 4.27 | 6.17 | 5.71 | 1344.78 |
Cr | Co | Cu | Zn | |
---|---|---|---|---|
Al2O3 | 0.271 | 0.737 | 0.390 | 0.565 |
MgO | 0.486 | 0.862 | 0.304 | 0.349 |
TiO2 | 0.249 | 0.532 | 0.019 | 0.075 |
TFe2O3 | 0.482 | 0.926 | 0.249 | 0.362 |
Fm | Sample No | Ti | V | Cr | Co | Ni | Cu | Zn | Sr | Mo | Ba | U | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Longmaxi Fm | CQyc02-17 | 0.48 | 0.72 | 0.59 | 0.85 | 0.84 | 0.72 | 3.28 | 0.61 | 32.61 | 1.10 | 2.16 | 3.89 |
CQyc02-16 | 0.42 | 0.98 | 0.95 | 0.77 | 1.06 | 1.06 | 1.31 | 0.54 | 5.36 | 0.95 | 1.91 | 3.40 | |
CQyc02-15 | 0.44 | 1.11 | 1.20 | 0.76 | 0.95 | 0.82 | 1.15 | 0.47 | 2.00 | 0.96 | 1.61 | 2.95 | |
CQyc02-14 | 0.43 | 0.97 | 0.98 | 0.87 | 0.93 | 1.04 | 1.06 | 0.71 | 4.32 | 0.91 | 1.93 | 3.40 | |
CQyc02-13 | 0.42 | 1.05 | 1.29 | 0.80 | 1.13 | 0.93 | 1.08 | 0.78 | 4.75 | 0.88 | 2.58 | 2.63 | |
CQyc02-12 | 0.38 | 0.77 | 0.77 | 0.37 | 0.49 | 0.59 | 0.72 | 0.87 | 1.84 | 0.66 | 1.61 | 1.95 | |
CQyc02-11 | 0.42 | 0.54 | 0.61 | 0.36 | 0.46 | 0.47 | 0.62 | 0.95 | 1.39 | 0.65 | 1.69 | 1.76 | |
CQyc02-10 | 0.41 | 0.88 | 0.48 | 0.19 | 0.47 | 0.70 | 1.55 | 0.90 | 1.60 | 0.76 | 1.47 | 2.18 | |
CQyc02-9 | 0.44 | 1.01 | 0.60 | 0.33 | 0.73 | 0.76 | 1.60 | 0.74 | 1.59 | 0.86 | 1.55 | 2.38 | |
CQyc02-8 | 0.38 | 0.88 | 0.49 | 0.32 | 0.75 | 0.57 | 1.51 | 0.85 | 3.03 | 0.84 | 1.33 | 1.71 | |
CQyc02-7 | 0.38 | 0.97 | 0.53 | 0.42 | 0.91 | 0.71 | 1.43 | 0.90 | 3.48 | 0.87 | 1.55 | 1.33 | |
CQyc02-6 | 0.38 | 0.87 | 0.59 | 0.35 | 0.81 | 0.73 | 1.35 | 0.78 | 4.07 | 0.87 | 1.48 | 1.62 | |
CQyc02-5 | 0.38 | 0.96 | 0.61 | 0.24 | 0.67 | 0.73 | 1.32 | 1.02 | 4.26 | 0.88 | 1.55 | 1.50 | |
CQyc02-4 | 0.38 | 2.14 | 0.49 | 0.71 | 0.82 | 0.40 | 1.43 | 0.70 | 4.92 | 0.88 | 1.76 | 1.80 | |
Average | 0.41 | 0.99 | 0.73 | 0.52 | 0.79 | 0.73 | 1.39 | 0.77 | 5.37 | 0.86 | 1.73 | 2.32 | |
Minimum | 0.38 | 0.54 | 0.48 | 0.19 | 0.46 | 0.40 | 0.62 | 0.47 | 1.39 | 0.65 | 1.33 | 1.33 | |
Maximum | 0.48 | 2.14 | 1.29 | 0.87 | 1.13 | 1.06 | 3.28 | 1.02 | 32.61 | 1.10 | 2.58 | 3.89 | |
Guanyinqiao Member | CQyc02-3GB | 0.39 | 1.09 | 0.73 | 0.65 | 0.86 | 0.80 | 1.16 | 0.72 | 4.86 | 0.88 | 1.70 | 1.43 |
Wufeng F m | CQyc02-2 | 0.19 | 2.96 | 0.41 | 0.37 | 1.60 | 1.25 | 3.78 | 0.40 | 25.37 | 0.68 | 4.13 | 1.20 |
CQyc02-1 | 0.48 | 1.21 | 0.81 | 0.69 | 1.12 | 1.91 | 1.31 | 0.54 | 0.57 | 1.01 | 1.48 | 1.99 | |
Average | 0.34 | 2.09 | 0.61 | 0.53 | 1.36 | 1.58 | 2.54 | 0.47 | 12.97 | 0.85 | 2.81 | 1.59 | |
Minimum | 0.19 | 1.21 | 0.41 | 0.37 | 1.12 | 1.25 | 1.31 | 0.40 | 0.57 | 0.68 | 1.48 | 1.20 | |
Maximum | 0.48 | 2.96 | 0.81 | 0.69 | 1.60 | 1.91 | 3.78 | 0.54 | 25.37 | 1.01 | 4.13 | 1.99 |
Sample No | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | REE | LREE | HREE | LREE/HREE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CQyc02-17 | 116.8 | 150 | 16.9 | 67.6 | 13.8 | 2.28 | 9.96 | 1.48 | 8.13 | 1.62 | 4.83 | 0.79 | 4.99 | 0.74 | 38.3 | 399.92 | 367.38 | 32.54 | 11.29 |
CQyc02-16 | 65.3 | 114 | 13.1 | 47.9 | 8.57 | 1.54 | 7.25 | 1.14 | 6.36 | 1.27 | 3.67 | 0.59 | 3.69 | 0.58 | 31.4 | 274.96 | 250.41 | 24.55 | 10.2 |
CQyc02-15 | 58.5 | 103 | 11.8 | 43.2 | 7.9 | 1.4 | 6.65 | 1.01 | 5.37 | 1.06 | 3.05 | 0.49 | 3.08 | 0.49 | 25.9 | 247 | 225.8 | 21.2 | 10.65 |
CQyc02-14 | 53 | 94.1 | 10.8 | 40.9 | 7.21 | 1.33 | 6.11 | 0.93 | 4.9 | 0.96 | 2.75 | 0.44 | 2.81 | 0.44 | 23.2 | 226.68 | 207.34 | 19.34 | 10.72 |
CQyc02-13 | 54.9 | 96.2 | 11.2 | 42.2 | 7.7 | 1.36 | 6.41 | 1.04 | 5.59 | 1.09 | 3.11 | 0.5 | 3.14 | 0.49 | 26.7 | 234.93 | 213.56 | 21.37 | 9.99 |
CQyc02-12 | 55.2 | 95.3 | 11.1 | 42.1 | 8.04 | 1.3 | 7.24 | 1.12 | 6.13 | 1.21 | 3.51 | 0.58 | 3.73 | 0.6 | 29.8 | 237.16 | 213.04 | 24.12 | 8.83 |
CQyc02-11 | 56.5 | 103 | 12.4 | 48.5 | 9.66 | 1.47 | 8.01 | 1.34 | 7.5 | 1.48 | 4.19 | 0.67 | 4.15 | 0.65 | 35.7 | 259.52 | 231.53 | 27.99 | 8.27 |
CQyc02-10 | 50.1 | 92.4 | 11.3 | 44.6 | 8.97 | 1.51 | 7.49 | 1.21 | 6.73 | 1.33 | 3.78 | 0.59 | 3.73 | 0.57 | 32.3 | 234.31 | 208.88 | 25.43 | 8.21 |
CQyc02-9 | 56.8 | 103 | 12.2 | 45.9 | 8.52 | 1.39 | 7.23 | 1.1 | 6.05 | 1.19 | 3.37 | 0.54 | 3.42 | 0.53 | 28.7 | 251.24 | 227.81 | 23.43 | 9.72 |
CQyc02-8 | 42.9 | 75.3 | 9.12 | 35.2 | 6.9 | 1.25 | 5.76 | 0.94 | 5.2 | 1.03 | 2.95 | 0.46 | 2.95 | 0.45 | 24.9 | 190.41 | 170.67 | 19.74 | 8.65 |
CQyc02-7 | 44.4 | 77.6 | 9.5 | 37.3 | 7.41 | 1.39 | 6.19 | 1.01 | 5.56 | 1.08 | 3.04 | 0.48 | 3 | 0.46 | 26.2 | 198.42 | 177.6 | 20.82 | 8.53 |
CQyc02-6 | 44 | 77.4 | 9.33 | 36.3 | 7.05 | 1.3 | 6.1 | 0.98 | 5.33 | 1.04 | 2.94 | 0.46 | 2.9 | 0.45 | 25.1 | 195.58 | 175.38 | 20.2 | 8.68 |
CQyc02-5 | 42.3 | 74.6 | 9.03 | 35.2 | 7.17 | 1.37 | 6.15 | 1 | 5.44 | 1.05 | 3 | 0.48 | 2.92 | 0.46 | 25.8 | 190.17 | 169.67 | 20.5 | 8.28 |
CQyc02-4 | 45.5 | 81.4 | 9.65 | 37.4 | 7.3 | 1.32 | 6.25 | 0.99 | 5.3 | 1.05 | 2.98 | 0.47 | 2.94 | 0.46 | 25.5 | 203.01 | 182.57 | 20.44 | 8.93 |
CQyc02-3 | 45.7 | 80.4 | 9.61 | 37.8 | 7.45 | 1.31 | 6.29 | 1 | 5.44 | 1.08 | 3.05 | 0.49 | 3.13 | 0.49 | 26.1 | 203.24 | 182.27 | 20.97 | 8.69 |
CQyc02-2 | 26 | 27.7 | 5.3 | 21.3 | 4.42 | 0.8 | 4.13 | 0.68 | 3.91 | 0.8 | 2.3 | 0.38 | 2.4 | 0.4 | 21.1 | 100.52 | 85.52 | 15 | 5.7 |
CQyc02-1 | 58.8 | 117 | 12.5 | 48 | 9.34 | 1.62 | 8.19 | 1.32 | 7.21 | 1.41 | 4.05 | 0.66 | 4.23 | 0.68 | 34.2 | 275.01 | 247.26 | 27.75 | 8.91 |
Average | 187.77 | 166.39 | 21.38 | 7.31 |
References
- Chen, X.; Rong, J.; Mitchell, C.E.M.; David, A.T.H.; Fan, J.X.; Zhan, R.B.; Zhang, Y.D.; Li, R.G.; Wang, Y. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a global Correlation. Geol. Mag. 2000, 137, 623–650. [Google Scholar]
- Su, W.B.; Wang, Y.B.; Gong, S.Y. A New Ordovician-Silurian Boundary Sectionin Guizhou, South China. Geoscience 2006, 20, 409–412. [Google Scholar]
- Su, W.B.; Wang, Y.B.; Gong, S.Y. Ordovician-Silurian Wufeng Formation and the base of the Longmaxi Formation Porphyritic and high-resolution composite stratigraphy, South China. Chin. Sci. Ser. D 2002, 32, 207–209. (In Chinese) [Google Scholar]
- Yan, D.T.; Chen, D.Z.; Wang, Q.C.; Wang, J.G. Geochemistry of the vicinity of the Ordovician-Silurian Boundary in the Yangzi Region. Chin. Sci. Ser. D 2009, 3, 285–299. (In Chinese) [Google Scholar]
- Zhang, C.M.; Zhang, W.S.; Guo, Y.H. The depositional environment of the Longmaxi Formation in Southeast Sichuan-Qianbei and its influence on hydrocarbon source rocks. Geosci. Front. 2012, 19, 137–143. (In Chinese) [Google Scholar]
- Wang, Z.W.; Wang, J.; Fu, X.G.; Zhan, W.Z.; Yu, F.; Feng, X.L.; Song, C.Y.; Che, W.B.; Zeng, S.Q. Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: Controlled by the paleoclimate, paleoenvironment, and provenance. Mar. Petrol. Geol. 2017, 88, 440–457. [Google Scholar] [CrossRef]
- Lu, Y.B.; Ma, Y.Q.; Wang, Y.X.; Lu, Y.C. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formationin the UpperYangtzeArea. Earth Sci. 2017, 42, 1169–1184. (In Chinese) [Google Scholar]
- Jing, Z.G. The Main Controlling Factors and Depotional Model of Organic Matter Accumulation in the Wufeng Formation–Longmaxi Formation in the Sichuan Basin. Master’s Thesis, East China University of Technology, Nanchang, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Ma, Y.Q.; Fan, M.J.; Lu, Y.C.; Guo, X.S.; Hu, H.Y.; Chen, L.; Wang, C.; Liu, X.C. Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China: Implications for Depositional Controls on Organic Matter Accumulation. Mar. Petrol. Geol. 2016, 75, 291–309. [Google Scholar] [CrossRef]
- Yan, C.N.; Jin, Z.J.; Zhao, J.H.; Du, W.; Liu, Q.Y. Influence of Sedimentary Environment on Organic Matter Enrichment in Shale: A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China. Mar. Petrol. Geol. 2018, 92, 880–894. [Google Scholar] [CrossRef]
- Liang, D.G.; Guo, T.L.; Chen, J.P.; Bian, L.Z.; Zhao, Z. Distribution of Four Suits of Regional Marine Source Rocks. Mar. Origin Petrol. Geol. 2008, 13, 1–16. (In Chinese) [Google Scholar]
- Jin, Z.J.; Hu, Z.Q.; Gao, B.; Zhao, J.H. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng Formation–Longmaxi Formation, southeastern Sichuan Basin. Earth Sci. Front. 2016, 23, 1–10. (In Chinese) [Google Scholar]
- Wang, Q.C.; Yan, D.T.; Li, S.J. Tectonic-Environmental Model of the Lower Silurian High-Quality Hydrocarbon Source Rocks from South China. Acta Geol. Sin. 2008, 82, 289–297. (In Chinese) [Google Scholar]
- Wang, S.F.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L. Geochemical Characteristics the Sedimentation Environment of the Gas-enriched Shale in the Silurian Longmaxi Formation in the Sichuan Basin. Bull. Mineral. Petrol. Geochem. 2015, 6, 17. (In Chinese) [Google Scholar]
- Chen, C.; Mu, C.L.; Zhou, K.K.; Liang, W.; Ge, X.Y.; Wang, X.P.; Wang, Q.Y.; Zheng, B.S. The Geochemical Characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Mar. Petrol. Geol. 2016, 76, 159–175. [Google Scholar] [CrossRef]
- Teng, G.E.; Gao, C.L.; Hu, K.; Pan, W.L.; Zhang, C.J.; Fang, C.M.; Cao, Q.G. High-quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and their Hydrocarbon Generating Potential. Petrol. Geol. Exp. 2006, 28, 359–365. (In Chinese) [Google Scholar]
- Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Wang, S.F.; Guan, Q.Z.; Zhang, C.C.; Wang, H.Y.; Liu, H.L.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Petrol. Explor. Dev. 2015, 42, 689–701. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Geng, Y.K.; Wen, X.; Yan, C.N. Applying Sedimentary Geochemical proxies for Paleoenvironment Interpretation of Organic-rich Shale Deposition in the Sichuan Basin, China. Int. J. Coal Geol. 2016, 163, 52–71. [Google Scholar] [CrossRef]
- Ran, B.; Liu, S.G.; Jansa, L.; Sun, W.; Yang, D.; Ye, Y.H.; Wang, S.Y.; Luo, C.; Zhang, X.; Zhang, C.J. Origin of the Upper Ordovician—Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. J. Asian Earth Sci. 2015, 108, 1–17. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Zhong, N.N.; Dai, N.; Zhang, W. Graptolite-derived organic matter in the Wufeng Formation–Longmaxi Formation (Upper Ordovician–Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation. Int. J. Coal Geol. 2015, 153, 87–98. [Google Scholar] [CrossRef]
- Zhai, G. Petroleum Geology of China; Petroleum Industry Press: Beijing, China, 1987. (In Chinese) [Google Scholar]
- Mu, C.; Zhou, K.; Liang, W.; Ge, X. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration. Acta Geol. Sin. 2011, 85, 526–532. (In Chinese) [Google Scholar]
- Yan, D.T.; Wang, H.; Fu, Q.L.; Chen, Z.H.; He, J.; Gao, Z. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation. Mar. Pet. Geol. 2015, 65, 290–301. [Google Scholar] [CrossRef]
- Shen, J.; Schoepfer, S.D.; Feng, Q.L.; Zhou, L.; Yu, J.X.; Song, H.Y.; Wei, H.Y.; Algeo, T.J. Marine productivity changes during the end–Permian crisis and Early Triassic recovery. Earth Sci. Rev. 2015, 149, 136–162. [Google Scholar] [CrossRef]
- Fan, J.X.; Melchin, M.J.; Chen, X.; Wang, D.; Zhang, Y.D.; Chen, Q.; Chi, Z.L.; Chen, F. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China. Sci. China Earth Sci. 2011, 54, 1854–1863. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.W.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific: Oxford, UK; London, UK; Edinburgh, UK; Boston, MA, USA; Palo Alto, CA, USA; Melbourne, Australia, 1985; 312p. [Google Scholar]
- Lézin, C.; Andreu, B.; Pellenard, P.; Bouchez, J.L.; Emmanuel, L.; Fauré, P.; Landrein, P. Geochemical Disturbance and Paleoenvironmental Changes during the Early Toarcian in NW Europe. Chem. Geol. 2013, 341, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Zhu, Z.J.; Li, H.; Jiang, W.C.; Wang, W.F.; Xu, Y.; Li, L.R. Provenance and Salt Structures of Gypsum Formations in Pb-Zn Ore-bearing Lanping Basin, Southwest China. J. Cent. South Univ. 2020, 27, 1828–1845. [Google Scholar] [CrossRef]
- Qiu, Z.; Wei, H.Y.; Liu, H.L.; Shao, N.; Wang, Y.M.; Zhang, L.F.; Zhang, Q. Accumulation of sediments with extraordinary high Organic matter content: Insight gained through geochemical characterization of indicative elements. Oil Gas Geol. 2021, 42, 931–948. (In Chinese) [Google Scholar]
- Tada, R. Lithostratigraphy and Compositional Variation of Neogene hemipelagic Sediments in the Japan Sea. Proc. ODP Sci. Res. 1992, 127, 1229–1260. [Google Scholar]
- Murray, R.W. Chemical Criteria to identify the Depositional Environment of Chert: General Principles and Applications. Sediment. Geol. 1994, 90, 213–232. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Dev. Mar. Geol. 2007, 1, 567–644. [Google Scholar]
- Rachold, V.H.J.B. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: Palaeoenvironmental Constraints and Orbital Cycles. Palaeogeog. Palaeoclimatol. Palaeoecol. 2001, 174, 121–143. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, H.W. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J. Sediment. Res. 1998, 68, 448–455. [Google Scholar] [CrossRef]
- Chen, L.Q. Depositional Evolution of the Yongchong Basin during Late Cretaceous in Jiangxi Province, SE China; Geology Press: Beijing, China, 2018; pp. 1–118. (In Chinese) [Google Scholar]
- Wedepohl, K.H. Handbook of Geochemistry; Springer: Berlin/Heidelberg, Germany, 1969; pp. 59–60. [Google Scholar]
- Xu, X.T.; Shao, L.Y. Limiting factors in Utilization of Chemical index of alteration of Mudstones to Quantify the degree of Weathering in Provenance. J. Palaeogeog. 2018, 20, 515–522. (In Chinese) [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochim. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Breit, G.N.; Wanty, R.B. Vanadium accumulation in carbona-ceous rocks: A review of geochemical controls during deposition and diagenesis. Chem. Geol. 1991, 91, 83–97. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian Mississippian Black Shales, Central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G.W., III. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Zheng, Y.; Anderson, R.F.; Geen, A.; Kuwabara, J. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta 2000, 64, 4165–4178. [Google Scholar] [CrossRef]
- Morford, J.L.; Martin, W.R.; Carney, C.M. Uranium diagenesis in sediments underlying bottom waters with high oxygen content. Geochim. Cosmochim. Acta 2009, 73, 2920–2937. [Google Scholar] [CrossRef]
- Helz, G.R.; Miller, C.V.; Charnock, J.M.; Mosselmans, J.L.W.; Pattrick, R.A.D.; Garner, C.D.; Vaughan, D.J. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS Evidences. Geochim. Cosmochim. Acta 1996, 60, 3631–3642. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Geochemistry of recent Oxic and Anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Tribovillard, N.; Riboulleau, A.; Lyons, T.; Baudin, F. Enhanced Trapping of Molybdenum by Sulfurized Organic matter of Marine Origin as Recorded by Various Mesozoic formations. Chem. Geol. 2004, 213, 385–401. [Google Scholar] [CrossRef]
- Algeo, T.J.; Rowe, H. Paleoceanographic Applications of trace-metal concentration data. Chem. Geol. 2012, 324–325, 6–18. [Google Scholar] [CrossRef]
- Algeo, T.J.; Lyons, T.W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 2006, 21, 279–298. [Google Scholar] [CrossRef]
- Rowe, H.D.; Loucks, R.G.; Ruppel, S.C.R.; Susan, M.R. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction. Chem. Geol. 2008, 257, 16–25. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Baudin, F.; Riboulleau, A. Analysis of marine environmental conditions based onmolybdenum–Uranium covariation-Applications to Mesozoic paleoceanography. Chem. Geol. 2012, 324–325, 46–58. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Tan, X.; Hu, X.; Wang, G. Pyrite Characteristics and Its Environmental Significance in Marine Shale: A Case Study from the Upper Ordovician Wufeng–Lower Silurian Longmaxi Formation in the Southeast Sichuan Basin, SW China. Minerals 2022, 12, 830. [Google Scholar] [CrossRef]
- Polgári, M.; Hein, J.R.; Tóth, A.L.; Pál-Molnár, E.; Vigh, T.; Bíró, L.; Fintor, K. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years (Úrkút, Hungary). Geology 2012, 40, 903–906. [Google Scholar] [CrossRef]
- Deng, W.; Yang, T.; Fan, S.L.; Liu, Z.R.; Wan, X.H.; Xiao, J.Y.; Cao, T.T. Geochemical characteristics and sedimentary model of shales in Lower member of Zhongjiangou Formation in Wudun Sag, Dunhuang Basin. Coal Geol. Explor. 2022, 50, 114–130. [Google Scholar]
- Polgári, M.; Hein, J.R.; Vigh, T.; Szabó-Drubina, M.; Fórizs, I.; Bíró, L.; Müller, A.; Tóth, A.L. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol. Rev. 2012, 47, 87–109. [Google Scholar] [CrossRef]
- Algeo, T.J.; Li, C. Redox classification and calibration of redox thresholds in sedimentary systems. Geochim. Cosmochim. Acta 2020, 287, 8–26. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Pancost, R.D.; Nijenhuis, I.A.; Sinninghe Damsté, J.S. Enhanced productivity led to increased Organic Carbon burial in the euxinic North Atlantic basin during the late Cenomanian Oceanic Anoxic Event. Paleoceanography 2002, 17, 3-1–3-13. [Google Scholar] [CrossRef]
- Li, P.; Liu, Q.Y.; Bi, H.; Meng, Q.Q. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression. Acta Geol. Sin. 2021, 95, 632–642. (In Chinese) [Google Scholar]
- Hu, T.; Pang, X.Q.; Jiang, F.J.; Wang, Q.F.; Xu, T.W.; Wu, G.Y.; Yu, J.W. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of third member Shahejie Fm in Dongpu depression. Acta Sedimentol. Sin. 2021, 39, 140–152. (In Chinese) [Google Scholar]
- Zhang, R.; Jiang, T.; Tian, Y.; Xie, S.C.; Zhou, L.; Li, Q.; Jiao, N.Z. Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms. Geology 2017, 45, 679–682. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Guo, Y.; Zhao, D.; Zhang, J.; Zeng, C.; Li, Y. Control Model of Organic Shale Enrichment by Terrigenous Weathering in Wufeng Formation–Longmaxi Formation, Southeast Sichuan, China. Minerals 2023, 13, 761. https://doi.org/10.3390/min13060761
Zhang Z, Guo Y, Zhao D, Zhang J, Zeng C, Li Y. Control Model of Organic Shale Enrichment by Terrigenous Weathering in Wufeng Formation–Longmaxi Formation, Southeast Sichuan, China. Minerals. 2023; 13(6):761. https://doi.org/10.3390/min13060761
Chicago/Turabian StyleZhang, Zhibo, Yinghai Guo, Difei Zhao, Jiaming Zhang, Chunlin Zeng, and Yan Li. 2023. "Control Model of Organic Shale Enrichment by Terrigenous Weathering in Wufeng Formation–Longmaxi Formation, Southeast Sichuan, China" Minerals 13, no. 6: 761. https://doi.org/10.3390/min13060761
APA StyleZhang, Z., Guo, Y., Zhao, D., Zhang, J., Zeng, C., & Li, Y. (2023). Control Model of Organic Shale Enrichment by Terrigenous Weathering in Wufeng Formation–Longmaxi Formation, Southeast Sichuan, China. Minerals, 13(6), 761. https://doi.org/10.3390/min13060761