Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Fluvial Geomorphology
2.3. Sediment Sampling
2.4. Sediment Geochemical Analysis
2.5. Zinc and Lead Water Concentrations, Loads, and Suspended Sediments
3. Results and Discussion
3.1. Fluvial Geomorphological Zones along the Stream
3.1.1. Erosion from the Mining Heaps (0–180 m Stream Segment)
3.1.2. Sediment Transport (1110–2620 m Stream Segment)
3.1.3. Middle Stream Length Depositional Area (3000–4070 m Stream Segment)
3.1.4. Floodplain Area (5800–6740 m Stream Segment)
3.2. Sediment Geochemistry and Mineralogy
3.3. Zinc and Lead Water Concentrations, Loads, and Suspended Sediments
3.4. Fluvial Geomorphological Controls on Zinc and Lead Geochemistry
3.5. Implications for Sediment Quality Management
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Clement, A.J.H.; Nováková, T.; Hudson-Edwards, K.A.; Fuller, I.C.; Macklin, M.G.; Fox, E.G.; Zapico, I. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand. Geomorphology 2017, 295, 159–175. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine Wastes: Past, Present, Future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Elznicová, J.; Matys Grygar, T.; Popelka, J.; Sikora, M.; Novák, P.; Hošek, M. Threat of Pollution Hotspots Reworking in River Systems: Case Study of the Ploučnice River (Czech Republic). ISPRS Int. J. Geo-Inf. 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Lewin, J.; Macklin, M.G. Metal mining and floodplain sedimentation in Britain. In International Geography; Gardiner, V., Ed.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 1987. [Google Scholar]
- Miller, J.R. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J. Geochem. Explor. 1997, 58, 101–118. [Google Scholar] [CrossRef]
- Dennis, I.A.; Coulthard, T.J.; Brewer, P.; Macklin, M.G. The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surf. Process. Landf. 2009, 34, 453–466. [Google Scholar] [CrossRef]
- Fornasaro, S.; Morelli, G.; Rimondi, V.; Fagotti, C.; Friani, R.; Lattanzi, P.; Costagliola, P. A GIS-based map of the Hg-impacted area in the Paglia River basin (Monte Amiata Mining District—Italy): An operational instrument for environmental management. J. Geochem. Explor. 2022, 242, 107074. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Curtis, C.D.; Vaughan, D.J. Processes of Formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing Minerals in the Tyne Basin, Northeast England: Implication for Metal-Contaminated River Systems. Environ. Sci. Technol. 1996, 30, 72–80. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Miller, J.R.; Lechler, P.J. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. J. Geochem. Explor. 2001, 72, 229–250. [Google Scholar] [CrossRef]
- Kincey, M.; Warburton, J.; Brewer, P.A. Contaminated sediment flux from eroding abandoned historical metal mines: Spatial and temporal variability in geomorphological drivers. Geomorphology 2018, 319, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Foulds, S.A.; Brewer, P.A.; Macklin, M.G.; Haresign, W.; Betson, R.E.; Rassner, S.M. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Sci. Total Environ. 2014, 476, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Lynch, S.; Batty, L.; Byrne, P. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones. Minerals 2014, 4, 52–73. [Google Scholar] [CrossRef] [Green Version]
- Palumbo-Roe, B.; Wragg, J.; Banks, V.J. Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream: Contribution to diffuse pollution. J. Soils Sediments 2012, 12, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A.; Lechler, P.J.; Miller, J.R.; Turner, J.N. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 2006, 79, 423–447. [Google Scholar] [CrossRef]
- Sracek, O.; Kříbek, B.; Mihaljevič, M.; Majer, V.; Veselovský, F.; Vencelides, Z.; Nyambe, I. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 2012, 112, 174–188. [Google Scholar] [CrossRef]
- Andrew Marcus, W. Copper dispersion in ephemeral stream sediments. Earth Surf. Process. Landf. 1987, 12, 217–228. [Google Scholar] [CrossRef]
- Obiora, S.C.; Chukwu, A.; Chibuike, G.; Nwegbu, A.N. Potentially harmful elements and their health implications in cultivable soils and food crops around lead-zinc mines in Ishiagu, Southeastern Nigeria. J. Geochem. Explor. 2019, 204, 289–296. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M. Effect of feed availability on susceptibility of Nile tilapia, Oreochromis niloticus (L.) to environmental zinc toxicity: Growth performance, biochemical response, and zinc bioaccumulation. Aquaculture 2016, 464, 309–315. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ye, B. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess 2012, 184, 2261–2273. [Google Scholar] [CrossRef]
- Smith, K.M.; Abrahams, P.W.; Dagleish, M.P.; Steigmajer, J. The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil-metal partitioning and potential availability to pasture herbage and livestock. Sci. Total Environ. 2009, 407, 3731–3739. [Google Scholar] [CrossRef]
- Aghili, S.; Vaezihir, A.; Hosseinzadeh, M. Distribution and modeling of heavy metal pollution in the sediment and water mediums of Pakhir River, at the downstream of Sungun mine tailing dump, Iran. Environ. Earth Sci. 2018, 77, 128. [Google Scholar] [CrossRef]
- Cook, N.; Ehrig, K.; Rollog, M.; Ciobanu, C.; Lane, D.; Schmandt, D.; Owen, N.; Hamilton, T.; Grano, S. 210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals 2018, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- De Giudici, G.; Medas, D.; Cidu, R.; Lattanzi, P.; Podda, F.; Frau, F.; Rigonat, N.; Pusceddu, C.; Da Pelo, S.; Onnis, P.; et al. Application of hydrologic-tracer techniques to the Casargiu adit and Rio Irvi (SW-Sardinia, Italy): Using enhanced natural attenuation to reduce extreme metal loads. Appl. Geochem. 2018, 96, 42–54. [Google Scholar] [CrossRef]
- Elmayel, I.; Esbri, J.M.; Efren, G.O.; Garcia-Noguero, E.M.; Elouear, Z.; Jalel, B.; Farieri, A.; Roqueni, N.; Cienfuegos, P.; Higueras, P. Evolution of the Speciation and Mobility of Pb, Zn and Cd in Relation to Transport Processes in a Mining Environment. Int. J. Environ. Res. Public Health 2020, 17, 4912. [Google Scholar] [CrossRef]
- Pavlowsky, R.T.; Lecce, S.A.; Owen, M.R.; Martin, D.J. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA. Geomorphology 2017, 299, 54–75. [Google Scholar] [CrossRef]
- Jarvis, A.P.; Davis, J.E.; Orme, P.H.A.; Potter, H.A.B.; Gandy, C.J. Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance Approach. Environ. Sci Technol 2019, 53, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Bigham, J.M.; Faurea, G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District. Appl. Geochem. 2002, 17, 569–581. [Google Scholar] [CrossRef]
- Smith, K.S.; DeGraff, J.V. Strategies to predict metal mobility in surficial mining environments. In Understanding and Responding to Hazardous Substances at Mine Sites in the Western United States; Geological Society of America: Boulder, CL, USA, 2007; Volume 17. [Google Scholar]
- Lynch, S.F.L.; Batty, L.C.; Byrne, P. Environmental risk of severely Pb-contaminated riverbank sediment as a consequence of hydrometeorological perturbation. Sci. Total Environ. 2018, 636, 1428–1441. [Google Scholar] [CrossRef]
- Natural Resource of Wales. Abandoned Mine Case Study, Wemyss Lead and Zinc Mine. 2016. Available online: https://naturalresources.wales/media/679806/wemyss-mine-case-study_2016_06.pdf (accessed on 27 January 2023).
- Dyfed, A.T. Metal Mines Remediation Project Part 3: Wemyss Archaeological Assessment; Report No 2016/05–Part 3; DAT Archaeological Services: Llandeilo, UK, 2016; pp. 1–51. [Google Scholar]
- Sheppard, T.H. The Geology of the Area around Lampeter, Llangybi and Llanfair Clydogau; Integrated Geoscience Surveys South Programme, Internal Report IR/04/064; British Geological Survey: Nottingham, UK, 2004; Available online: http://nora.nerc.ac.uk/id/eprint/509306/1/IR04064.pdf (accessed on 27 January 2023).
- Palumbo-Roe, B.; Dearden, R. The hyporheic zone composition of a mining-impacted stream: Evidence by multilevel sampling and DGT measurements. Appl. Geochem. 2013, 33, 330–345. [Google Scholar] [CrossRef] [Green Version]
- Watts, G.; Battarbee, R.W.; Bloomfield, J.P.; Crossman, J.; Daccache, A.; Durance, I.; Elliott, J.A.; Garner, G.; Hannaford, J.; Hannah, D.M.; et al. Climate change and water in the UK—Past changes and future prospects. Prog. Phys. Geogr. Earth Environ. 2015, 39, 6–28. [Google Scholar] [CrossRef]
- Zhu, Y.-M.; Lu, X.X.; Zhou, Y. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 2007, 84, 111–125. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Radu, T.; Diamond, D. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J. Hazard. Mater. 2009, 171, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
- Onnis, P.; Byrne, P.; Hudson-Edwards, K.A.; Frau, I.; Stott, T.; Williams, T.; Edwards, P.; Hunt, C.O. Source apportionment of mine contamination across streamflows. Appl. Geochem. 2023, 151, 105623. [Google Scholar] [CrossRef]
- INCA Energy Applications Training Notes; Oxford Instrument: Abingdon-on-Thames, UK, 2008.
- Davis, A.; Drexler, J.W.; Ruby, M.V.; Nicholson, A. Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environ. Sci. Technol. 1993, 27, 1415–1425. [Google Scholar] [CrossRef]
- Richardson, M.; Moore, R.D.; Zimmermann, A. Variability of tracer breakthrough curves in mountain streams: Implications for streamflow measurement by slug injection. Can. Water Resour. J. Rev. Can. Des. Ressour. Hydr. 2017, 42, 21–37. [Google Scholar] [CrossRef]
- Mayes, W.M.; Gozzard, E.; Potter, H.A.; Jarvis, A.P. Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment. Environ. Pollut. 2008, 151, 165–175. [Google Scholar] [CrossRef]
- Environment Agency. Assessment of Metal Mining-Contaminated River Sediments in England and Wales; Environment Agency: Bristol, UK, 2008.
- Byrne, P.; Reid, I.; Wood, P.J. Sediment geochemistry of streams draining abandoned lead/zinc mines in central Wales: The Afon Twymyn. J. Soils Sediments 2010, 10, 683–697. [Google Scholar] [CrossRef] [Green Version]
- Ciszewski, D.; Grygar, T.M. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems. Water Air Soil Pollut. 2016, 227, 239. [Google Scholar] [CrossRef] [Green Version]
- Hudson-Edwards, K.A. Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineral. Mag. 2003, 67, 205–217. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Curtis, C.D.; Vaughan, D.J. Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surf. Process. Landf. 1998, 23, 671–684. [Google Scholar] [CrossRef]
- Harvey, J.W.; Fuller, C.C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour. Res. 1998, 34, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.C.; Harvey, J.W. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environ. Sci. Technol. 2000, 34, 1150–1155. [Google Scholar] [CrossRef]
- Forray, F.L.; Smith, A.M.L.; Drouet, C.; Navrotsky, A.; Wright, K.; Hudson-Edwards, K.A.; Dubbin, W.E. Synthesis, characterization and thermochemistry of a Pb-jarosite. Geochim. Cosmochim. Acta 2010, 74, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Y.; Liu, Y.; Lin, A.; Kong, X.; Liu, D.; Li, X.; Zhang, Y.; Gao, Y.; Wang, D. Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: A case study in the Le’an River floodplain, China. Int. J. Environ. Res. Public Health 2012, 9, 1874–1886. [Google Scholar] [CrossRef]
- Wilkin, R.T. Contaminant Attenuation Processes at Mine Sites. Mine Water Environ. 2008, 27, 251–258. [Google Scholar] [CrossRef]
River Area | Transect Distance | Transect | Pb | Zn | pH | Metal-Bearing Mineral Suite |
---|---|---|---|---|---|---|
m | g/kg | g/kg | ||||
Up/s Mines | ||||||
T0 | 0 | T0 M | 7.4 | 1.3 | 4.7 | Fe-hydroxide; pyromorphite; anglesite; rutile |
Mining Areas | ||||||
CW | 160 | CW J | 24.7 | 1.5 | 4.4 | Monazite; galena; Fe-oxide |
WM | 171 | WM K | 23.8 | 4.6 | 4.6 | Anglesite; galena; Fe-oxide; pyromorphite |
GG | 1650 | GG L | 4.5 | 1.0 | 4.7 | Pb, Mn-oxide; Fe, Mn-oxide; pyromorphite; anglesite |
Middle length | ||||||
DC | 3000 | DC D | 5.3 | 0.9 | 4.8 | Anglesite; sphalerite; galena; Pb- and Zn-Fe-oxide; plumbojarosite; pyromorphite; Pb, Mn-oxide |
3400 | DC E | 3.8 | 0.8 | 4.7 | ||
3600 | DC F | 20.3 | 1.5 | 4.5 | ||
3800 | DC G | 11.3 | 1.1 | 4.6 | ||
4070 | DC H | 11.1 | 0.9 | 4.8 | ||
Floodplain | ||||||
RB up/s | 5800 | RB B | 2.6 | 1.3 | 5 | Pb- and Zn-bearing phyllosilicate (illite and chlorite); Pb-Fe oxide |
5900 | RB C | 11.0 | 2.7 | 5 | ||
RB DEP C | 2.2 | 2.0 | 5 | |||
6000 | RB D | 7.4 | 1.4 | 5 | ||
RB d/s | 6600 | RB I | 8.3 | 1.5 | 4.7 | |
RB DEP B | 1.7 | 1.6 | 5 | |||
6700 | RB DEP A | 2.2 | 1.6 | 5 | ||
RB A | 0 | 0.3 | 4.9 | |||
Tot. min. | 0 | 0.3 | 4.4 | |||
Tot. max. | 24.7 | 4.6 | 5.0 | |||
Tot. average | 8.7 | 1.5 | 4.8 | |||
TEL | 0.035 | 0.123 | ||||
PEL | 0.091 | 0.315 |
Sample | Date | Distance | Q | Zn | Zn | Pb | Pb | Zn | Pb |
---|---|---|---|---|---|---|---|---|---|
Area | m | L/s | mg/L | mg/L | μg/L | μg/L | mg/s | mg/s | |
F | UF | F | UF | Suspended Sediment | |||||
High streamflow | |||||||||
WM | 15 June 2016 | 171 | 210 | 1.4 | 1.4 | 390 | 430 | 0 | 8 |
d/s FA | 16 June 2016 | 880 | 430 | 3.0 | 3.0 | 120 | 160 | 20 | 19 |
GG | 16 June 2016 | 1645 | 600 | 2.3 | 2.3 | 50 | 90 | 0 | 27 |
DC | 17 June 2016 | 3210 | 950 | 1.4 | 1.4 | 20 | 30 | 39 | 3 |
RB up/s | 17 June 2016 | 5930 | 1500 | 1.0 | 1.0 | 10 | 30 | 36 | 21 |
RB d/s | 15 June 2016 | 6780 | 880 | 0.9 | 0.9 | 10 | 50 | 50 | 36 |
Low streamflow | |||||||||
WM | 29 July 2017 | 171 | 40 | 1.1 | 1.3 | 130 | 180 | 7 | 2 |
d/s FA | 29 July 2017 | 880 | 130 | 1.8 | 2.0 | 80 | 140 | 26 | 8 |
GG | 28 July 2017 | 1645 | 160 | 0.9 | 1.3 | 50 | 250 | 52 | 32 |
DC | 28 July 2017 | 3210 | 130 | 1.3 | 1.6 | 30 | 70 | 36 | 5 |
RB up/s | 30 July 2017 | 5930 | 320 | 0.8 | 0.9 | 20 | 30 | 36 | 2 |
RB d/s | 30 July 2017 | 6780 | 310 | 0.8 | 1.0 | 20 | 30 | 50 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onnis, P.; Byrne, P.; Hudson-Edwards, K.A.; Stott, T.; Hunt, C.O. Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale. Minerals 2023, 13, 790. https://doi.org/10.3390/min13060790
Onnis P, Byrne P, Hudson-Edwards KA, Stott T, Hunt CO. Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale. Minerals. 2023; 13(6):790. https://doi.org/10.3390/min13060790
Chicago/Turabian StyleOnnis, Patrizia, Patrick Byrne, Karen A. Hudson-Edwards, Tim Stott, and Chris O. Hunt. 2023. "Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale" Minerals 13, no. 6: 790. https://doi.org/10.3390/min13060790
APA StyleOnnis, P., Byrne, P., Hudson-Edwards, K. A., Stott, T., & Hunt, C. O. (2023). Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale. Minerals, 13(6), 790. https://doi.org/10.3390/min13060790