The Sulfur Isotopic Characteristics of Evaporites in the Yarkand Basin of Xinjiang Province in the Paleocene and Its Paleoenvironmental Evolution
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
5. Discussion
5.1. Characteristics of Sulfur Isotopic Composition
5.2. Sulfur Isotopic Curve of the Paleocene
5.3. Paleocene Evaporite Sedimentary Environment in the Yarkand Basin
- Low δ34S value of sulfate from the provenance: The source material itself may have had a low δ34S value, resulting in low δ34S values in the sedimentary sulfate;
- Constant supply of source material and high oxidation degree of water: The constant supply of source material, combined with high oxidation conditions in the water, can make it difficult for anaerobic bacteria to survive. As a result, there is almost no biological fractionation, and the δ34S value of sulfate remains low.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boschetti, T.; Cortecci, G.; Toscani, L.; Iacumin, P. Sulfur and Oxygen Isotope Compositions of Upper Triassic Sulfates from Northerm Apennines (Italy): Palaeogeographic and Hidrogeochemical Implications. Geol. Acta Int. Earth Sci. J. 2011, 9, 129–147. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, L.; Dong, H. Evaporite Sedimentary Characteristics and Environment: A review. Acta Sedimentol. Sin. 2022, 40, 1188–1214. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Z.; Zhuo, Q.; Ni, P. Direct Geolocal Records of Ancient Environments in the Evaporite Basin: Evidences from Fluid Inclusions in Halite. Bull. Mineral. Petrol. Geochem. 2018, 37, 451–460. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, F.; Zhou, S.; Li, X. Paleoenvironment during Paleocene in Hongze Depression, North Jiangsu Basin: Evidence from Evaporites. J. Salt Lake Res. 2021, 29, 22–29. [Google Scholar]
- Newton, R.; Bottrell, S. Stable Isotopes of Carbon and Sulphur as Indicators of Environmental Change: Past and Present. J. Geol. Soc. 2007, 164, 691–708. [Google Scholar] [CrossRef]
- Fei, J.; Shen, L.; Guan, X.; Sun, Z. S and Sr Isotope Compositions and Trace Element Compositions of the Middle Jurassic Evaporites in Eastern Tibet: Provenance and Palaeogeographic Implications. Minerals 2022, 12, 1039. [Google Scholar] [CrossRef]
- Güngör Yeşilova, P.; Baran, O. Origin and Paleoenvironmental Conditions of the Köprüağzı Evaporites (Eastern Anatolia, Turkey): Sedimentological, Mineralogical and Geochemical Constraints. Minerals 2023, 13, 282. [Google Scholar] [CrossRef]
- Karakaya, M.Ç.; Bozdağ, A.; Ercan, H.Ü.; Karakaya, N. The Origin of Miocene Evaporites in the Tuz Gölü Basin (Central Anatolia, Turkey): Implications from Strontium, Sulfur and Oxygen Isotopic Compositions of the Ca-Sulfate Minerals. Appl. Geochem. 2020, 120, 104682. [Google Scholar] [CrossRef]
- Shen, L.; Wang, L.; Liu, C.; Zhao, Y. Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals 2021, 11, 96. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Strauss, H. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 97–118. [Google Scholar] [CrossRef]
- Kampschulte, A.; Strauss, H. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Sulfur Isotopic Composition of Cenozoic Seawater Sulfate. Science 1998, 282, 1459–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, W.; Paytan, A.; Wortmann, U.G. Large-Scale Ocean Deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 2018, 361, 804–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paytan, A.; Yao, W.; Faul, K.L.; Gray, E.T. Sulfur Isotope Stratigraphy. In Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–278. [Google Scholar]
- Yuan, J.; Huo, C.; Cai, K. The high mountain-deep basin saline environment-a new genetic model of salt deposits. Geol. Rev. 1983, 29, 159–165. [Google Scholar]
- Warren, J.K. Evaporites through Time: Tectonic, Climatic and Eustatic Controls in Marine and Nonmarine Deposits. Earth-Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Yang, H.; Gu, Q.; Jiao, P.; Lu, Y. Identification and correlation of the Paleogene and Neogene evaporite sedimentary cycle in the Kuqa Basin. J. Palaeogeogr. 2010, 12, 31–41. [Google Scholar]
- Cao, Y. Marine Transgressive–Regressive Cycles and Evolution on Ancient Salt Lake in the Northwestern Tarim Basin in the Paleocene, Xinjiang Province, China. Carbonates Evaporites 2022, 37, 21. [Google Scholar] [CrossRef]
- Cao, Y.; Zeng, C.; Zhang, L.; Zhu, L. A rapid marine regression in the southwestern Tarim Basin in the latest Cretaceous: Comparison of two different evaporitic sequences in the Yarkand Basin, Xinjiang Province, China. Acta Geol. Sin.-Engl. 2021, 95, 1714–1724. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.; Liu, X.; He, X. Report on Potassium Deposits Exploration and Field Survey in the Yarkand Basin. No8 Geol. Team Xinjiang Geol. Bur. 1977, 1–105. [Google Scholar]
- Liu, C.; Wang, L.; Yan, M.; Zhao, Y.; Cao, Y.; Fang, X.; Shen, L.; Wu, C.; Lv, F.; Ding, T. The Mesozoic-Cenozoic Tectonic Settings, Paleogeography and Evaporitic Sedimentation of Tethyan Blocks within China: Implications for Potash Formation. Ore Geol. Rev. 2018, 102, 406–425. [Google Scholar] [CrossRef]
- Zhang, L.; Han, E.; Zhu, L.; Zeng, C.; Fan, Q.; Wu, K.; Cao, Y.; Jiao, P. Characteristics of evaporites sedimentary cycles and its controlling factors of Paleocene Aertashi formation in the southwestern Tarim depression. Acta Geol. Sina 2015, 89, 2161–2170, (In Chinese with English abstract). [Google Scholar]
- Cao, Y.; Liu, C.; Jiao, P.; Bo, Y.; Zhang, H.; Yao, F. Discovery of abnormal value of potassium enrichment and prediction of favorable areas for potassium exploration in the Yarkand basin, Xingjiang. Acta Geol. Sina 2021, 95, 2099–2108. [Google Scholar]
- Cao, Y.; Liu, C.; Jiao, P.; Zhang, H.; Wu, K.; Sun, H.; Lu, F.; Su, Y. Evaporite deposition and potassium enrichment prospect from Upper Cretaceous to Paleogene in Yarkand Basin, Xinjiang. Miner. Depos. 2016, 35, 300–314. [Google Scholar] [CrossRef]
- Sang, H.; Cao, Y.; Zhu, L.; Zhang, H.; Zhang, L.; Yao, F. Preliminary study on Mesozoic Cenozoic evaporite deposition in southwest depression of Tarim Basin. J. Palaeogeogr. 2014, 16, 473–482. [Google Scholar]
- Chen, L. Geological characteristics of the tertiary salt-bearing sequences in Tarim basin. Geol. Chem. Miner. 1996, 18, 276–283. [Google Scholar]
- Yong, T. Lithofacies and paleogeography of the late Cretaceous-Paleogene of the Tarim platform. Exp. Explor. Petrol. Geol. 1984, 6, 9–17. [Google Scholar]
- Yong, T.; Shan, J. The development and formation in the Tarim Basin in Cretaceous-Paleogene ages. Acta Sedimentol. Sin. 1896, 4, 67–75. [Google Scholar]
- Ma, H.; Yang, Z. Evolution of the Cenozoic in southwestern Tarim Basin. Xinjiang Geol. 2003, 21, 92–95. [Google Scholar]
- Cao, Y.; Zeng, C.; Li, Q.; Zhu, L.C.; Fu, J.; Zhang, L.; Xiong, Z.; Zhang, H. Preliminary study on evolution of sedimentary environment in Early Paleocene in the Yarkand basin, Xinjiang. Acta Geol. Sina 2021, 96, 1369–1379. [Google Scholar]
- Wang, J.; Cao, Y. Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater. Minerals 2022, 12, 1031. [Google Scholar] [CrossRef]
- Zhang, Y. Uplift of Tibet Plateau and formation and evolution of the southwestern in Tarim Basin. Xinjiang Petrol. Geol. 1999, 20, 6–10. [Google Scholar]
- Hu, W.; Chen, Y.; Xiao, A. Tectonic evolution and the petroleum-bearing system in southwestern Tarim Basin. Pet. Explor. Dev. 1997, 24, 14–17, (In Chinese with English abstract). [Google Scholar]
- Zhang, D.; Hu, J.; Meng, Y.; Zheng, M.; Fu, M. Characteristics of Qimugen thrust nappe structure in the southwestern Tarim Basin Xinjiang, China, and its relationship with hydrocarbon. Geol. Bull. China 2007, 26, 266–274. [Google Scholar]
- Fang, A.; Ma, J.; Wang, S.; Zhao, Y.; Hu, J. Sedimentary tectonic evolution of the southwestern of Tarim Basin and west Kunlun orogen since Late Paleozoic. Acta Petrol. Sina 2009, 25, 3396–3406. [Google Scholar]
- Wang, Y.; Fu, D. The sedimentary-tectonic evolution of the southwest Tarim Basin from Cretaceous to Paleogene. Acta Geol. Sina 1996, 17, 32–40. [Google Scholar]
- Qu, G.; Li, Y.; Li, Y. Structural segmentation and its factor in the southwestern Tarim Basin. Sci. China Ser. D 2005, 35, 193–202. [Google Scholar]
- Ding, D.; Luo, Y. Collision structures in Pamir region and reformation of Tarim Basin. Oil Gas Geol. 2005, 26, 57–63, 77. [Google Scholar]
- Xu, Y.; Cao, Y.; Liu, C.; Zhang, H.; Nie, X. The History of Transgressions during the Late Paleocene-Early Eocene in the Kuqa Depression, Tarim Basin: Constraints from C-O-S-Sr Isotopic Geochemistry. Minerals 2020, 10, 834. [Google Scholar] [CrossRef]
- Jia, J. Sedimentary characteristics and palaeogeography of the early Cretaceous in Tarim Basin. J. Palaeogeogr. 2009, 11, 167–176. [Google Scholar]
- Zhuang, H.; Guo, F.; Zhou, X. Evolution of sedimentary environment in late Cretaceous, Kunlun Mountain front, Tarim Basin. J. Xi’an Univ. Sci. Technol. 2013, 33, 39–45. [Google Scholar]
- Shao, L.; He, Z.; Gu, J.; Luo, W.; Jia, J.; Liu, Y.; Zhang, L. Lithofacies Palaeogeography of the Paleogene in Tarim Basin. J. Palaeogeogr. 2006, 8, 353–364. [Google Scholar]
- Zhang, H.; Liu, C.; Jiao, P.; Cao, Y.; Han, E. Sedimentary Condition and Genetic Mode of Paleocene Evaporites in the Southwestern Depression of the Tarim Basin. Acta Geol. Sina 2015, 89, 2028–2035. [Google Scholar]
- Holser, W.T.; Kaplan, I.R. Isotope Geochemistry of Sedimentary Sulfates. Chem. Geol. 1966, 1, 93–135. [Google Scholar] [CrossRef]
- Goldberg, T.; Poulton, S.W.; Strauss, H. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Res. 2005, 137, 223–241. [Google Scholar] [CrossRef]
- Guo, H.; Du, Y.; Kah, L.C.; Hu, C.; Huang, J.; Huang, H.; Yu, W.; Song, H. Sulfur Isotope Composition of Carbonate-Associated Sulfate from the Mesoproterozoic Jixian Group, North China: Implications for the Marine Sulfur Cycle. Precambrian Res. 2015, 266, 319–336. [Google Scholar] [CrossRef]
- Bottrell, S.H.; Newton, R.J. Reconstruction of Changes in Global Sulfur Cycling from Marine Sulfate Isotopes. Earth-Sci. Rev. 2006, 75, 59–83. [Google Scholar] [CrossRef]
- Crockford, P.W.; Kunzmann, M.; Bekker, A.; Hayles, J.; Bao, H.; Halverson, G.P.; Peng, Y.; Bui, T.H.; Cox, G.M.; Gibson, T.M.; et al. Claypool Continued: Extending the Isotopic Record of Sedimentary Sulfate. Chem. Geol. 2019, 513, 200–225. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Yan, H.; Jiao, C.; Zhang, H.; Lv, F.; Ding, T. Preliminary study on the Mesozoic and Cenozoic evaporite deposits in Tarim and Central Asia Salt Lake chains and their controlling factor. Miner. Depos. 2016, 35, 591–604. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Yang, H.; Jiao, P.; Gu, Q. Discussion on Paleogene-Neogene environmental change of salt lakes in Kuqa foreland basin and its potash-forming effect. Acta Geol. Sina 2013, 34, 547–558. [Google Scholar]
- Zhang, H.; Liu, C.; Cao, Y.; Sun, H.; Wang, L. A Tentative Discussion on the Time and the Way of Marine Regression from Tarim Bay during the Cenozoic. Acta Geosci. Sina 2013, 34, 577–584. [Google Scholar]
- Wang, L.; Liu, C.; Fei, M.; Shen, L.; Zhang, H. Sulfur isotopic composition of sulfate and its geological significance of the Yunlong formation in the Lanping Basin, Yunnan Province. China Min. Mag. 2014, 23, 57–65. [Google Scholar]
- Wang, F.; Song, Z.; Wu, S. Atlas on Paleogeography and Zoology of Xinjiang Uygur Autonomous Region; China Cartographic Publishing House: Beijing, China, 2006; Volume 186. [Google Scholar]
- Warren, J.K. Evaporite Deposits. In Encyclopedia of Geology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 945–977. [Google Scholar]
- Sakai, H. Isotopic Properties of Sulfur Compounds in Hydrothermal Processes. Geochem. J. 1968, 2, 29–49. [Google Scholar] [CrossRef]
- Boschetti, T.; Toscani, L.; Shouakar-Stash, O.; Iacumin, P.; Venturelli, G.; Mucchino, C.; Frape, S.K. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquat. Geochem. 2011, 17, 71–108. [Google Scholar] [CrossRef]
- Van Driessche, A.E.S.; Canals, A.; Ossorio, M.; Reyes, R.C.; García-Ruiz, J.M. Unraveling the Sulfate Sources of (Giant) Gypsum Crystals Using Gypsum Isotope Fractionation Factors. J. Geol. 2016, 124, 235–245. [Google Scholar] [CrossRef]
- Taberner, C.; Marshall, J.D.; Hendry, J.P.; Pierre, C.; Thirlwall, M.F. Celestite Formation, Bacterial Sulphate Reduction and Carbonate Cementation of Eocene Reefs and Basinal Sediments (Igualada, NE Spain). Sedimentology 2002, 49, 171–190. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Wang, L.; Fang, X. Characteristics of Evaporites Sulfur Isotope from Potash Deposit in Thakhek Basin, Laos, and Its Implication for Potash Formation. Geol. Rev. 2014, 60, 851–857. [Google Scholar] [CrossRef]
- Li, Q.; Fan, Q.; Shan, F.; Qin, Z.; Li, J.; Yuan, Q. Changes of sulfur isotope values and geochemical applications in Marine and continental evaporites. J. Salt Lake Res. 2018, 26, 73–80. [Google Scholar]
- El Tabakh, M.; Utha-Aroon, C.; Schreiber, B.C. Sedimentology of the Cretaceous Maha Sarakham Evaporites in the Khorat Plateau of Northeastern Thailand. Sediment. Geol. 1999, 123, 31–62. [Google Scholar] [CrossRef]
Samples | Depth (m) | δ34S/‰ (CDT) | Samples | Depth (m) | δ34S/‰ (CDT) | Samples | Depth (m) | δ34S/‰ (CDT) |
---|---|---|---|---|---|---|---|---|
S1-1 | 664 | 6.69 | Kd101-1 | 2756 | 13.41 | Wx1-20 | 3625 | 19.13 |
S1-2 | 666 | 15.11 | Kd101-2 | 2763 | 14.11 | Wx1-21 | 3630 | 19.83 |
S1-3 | 668 | 16.09 | Kd101-3 | 2768 | 14.23 | Wx1-22 | 3644 | 19.40 |
S1-4 | 670 | 17.50 | Kd101-4 | 2771 | 19.66 | Ak2-1 | 3902 | 18.17 |
S1-5 | 672 | 15.07 | Kd101-5 | 2775 | 25.92 | Ak2-2 | 3903 | 18.52 |
S1-6 | 674 | 14.80 | Kd101-6 | 2777 | 25.40 | Ak2-3 | 3904 | 18.63 |
S1-7 | 690 | 16.64 | Kd101-7 | 2782 | 17.30 | Ak2-4 | 3905 | 18.75 |
S1-8 | 694 | 16.13 | Kd101-8 | 2783 | 18.34 | Ak2-5 | 3906 | 18.76 |
S1-9 | 700 | 15.75 | Kd101-9 | 2786 | 18.27 | Ak2-6 | 3907 | 18.36 |
S1-10 | 708 | 14.79 | Kd101-10 | 2789 | 18.76 | Ak2-7 | 3908 | 18.42 |
S1-11 | 710 | 14.89 | Kd101-11 | 2793 | 19.14 | Ak2-8 | 3909 | 18.57 |
S1-12 | 712 | 15.43 | Kd101-12 | 2796 | 18.95 | Ak2-9 | 3910 | 18.67 |
S1-13 | 714 | 15.26 | Kd101-13 | 2799 | 18.07 | Ak2-10 | 3911 | 18.57 |
S1-14 | 716 | 16.27 | Kd101-14 | 2803 | 18.48 | Ak2-11 | 3912 | 18.81 |
S1-15 | 718 | 19.09 | Kd101-15 | 2806 | 18.38 | Ak2-12 | 3913 | 18.80 |
S1-16 | 720 | 15.93 | Kd101-16 | 2807 | 18.09 | Ak2-13 | 3914 | 18.47 |
S1-17 | 842 | 18.37 | Kd101-17 | 2808 | 18.75 | Ak2-14 | 3915 | 18.28 |
S1-18 | 844 | 18.55 | Kd101-18 | 2809 | 18.85 | Ak2-15 | 3916 | 18.60 |
S1-19 | 846 | 18.85 | Kd101-19 | 2810 | 18.85 | Ak2-16 | 3917 | 18.40 |
S1-20 | 848 | 18.57 | Kd101-20 | 2812 | 19.00 | Ak2-17 | 3918 | 18.11 |
S1-21 | 850 | 18.77 | Kd101-21 | 2813 | 18.44 | Ak2-18 | 3919 | 18.53 |
S1-22 | 852 | 18.54 | Kd101-22 | 2814 | 18.39 | Ak2-19 | 3920 | 18.96 |
S1-23 | 854 | 19.09 | Kd101-23 | 2819 | 18.13 | Ak2-20 | 3921 | 18.53 |
S1-24 | 856 | 18.56 | Kd101-24 | 2823 | 18.15 | Ak2-21 | 3922 | 18.22 |
S1-25 | 858 | 18.77 | Kd101-25 | 2826 | 18.61 | Ak2-22 | 3923 | 18.30 |
S1-26 | 860 | 18.82 | Kd101-26 | 2829 | 19.03 | Ak2-23 | 3924 | 18.27 |
S1-27 | 862 | 19.41 | Kd101-27 | 2832 | 19.06 | Ak2-24 | 3925 | 18.30 |
S1-28 | 864 | 18.61 | Kd101-28 | 2833 | 18.55 | Ak2-25 | 3926 | 18.01 |
S1-29 | 868 | 19.08 | Kd101-29 | 2834 | 18.69 | Ak2-26 | 3927 | 18.14 |
S1-30 | 870 | 19.10 | Kd101-30 | 2836 | 18.61 | Ak2-27 | 3928 | 18.15 |
S1-31 | 872 | 19.48 | Kd101-31 | 2838 | 18.60 | Ak2-28 | 3929 | 18.33 |
S1-32 | 874 | 19.46 | Kd101-32 | 2839 | 19.50 | Ak2-29 | 3930 | 18.16 |
S1-33 | 876 | 19.41 | Kd101-33 | 2840 | 19.00 | Ak2-30 | 3984 | 18.96 |
S1-34 | 878 | 18.78 | Kd101-34 | 2841 | 18.51 | Ak2-31 | 3987 | 19.15 |
S1-35 | 880 | 18.95 | Kd101-35 | 2842 | 19.83 | Ak2-32 | 4001 | 18.84 |
S1-36 | 882 | 19.36 | Kd101-36 | 2848 | 19.15 | Ak2-33 | 4007 | 18.59 |
S1-37 | 884 | 18.92 | Kd101-37 | 2852 | 19.61 | Ak2-34 | 4027 | 18.59 |
S1-38 | 886 | 19.11 | Kd101-38 | 2853 | 19.61 | Tc2-1 | 4394 | 18.87 |
S1-39 | 888 | 18.78 | Kd101-39 | 2858 | 19.28 | Tc2-2 | 4398 | 19.10 |
S1-40 | 890 | 18.85 | Kd101-40 | 2859 | 19.41 | Tc2-3 | 4399 | 19.20 |
S1-41 | 892 | 19.41 | Kd101-41 | 2860 | 19.58 | Tc2-4 | 4401 | 18.78 |
S1-42 | 894 | 19.25 | Kd101-42 | 2864 | 19.60 | Tc2-5 | 4402 | 19.19 |
S1-43 | 896 | 19.27 | Kd101-43 | 2865 | 19.11 | Tc2-6 | 4403 | 18.92 |
S1-44 | 898 | 19.23 | Kd101-44 | 2870 | 20.14 | Tc2-7 | 4404 | 19.09 |
S1-45 | 900 | 19.28 | Wx1-1 | 3488 | 19.23 | Tc2-8 | 4405 | 18.90 |
S1-46 | 902 | 18.95 | Wx1-2 | 3521 | 19.02 | Tc2-9 | 4409 | 18.86 |
S1-47 | 904 | 18.97 | Wx1-3 | 3524 | 19.41 | Tc2-10 | 4410 | 19.20 |
S1-48 | 908 | 18.24 | Wx1-4 | 3530 | 18.59 | Tc2-11 | 4411 | 19.18 |
S1-49 | 910 | 19.17 | Wx1-5 | 3532 | 18.91 | Tc2-12 | 4412 | 18.89 |
S1-50 | 912 | 18.55 | Wx1-6 | 3538 | 19.19 | Tc2-13 | 4413 | 19.12 |
S1-51 | 914 | 18.75 | Wx1-7 | 3542 | 19.30 | Tc2-14 | 4414 | 19.17 |
S1-52 | 916 | 18.46 | Wx1-8 | 3548 | 19.02 | Tc2-15 | 4415 | 18.87 |
S1-53 | 918 | 19.21 | Wx1-9 | 3550 | 18.83 | Tc2-16 | 4416 | 18.97 |
S1-54 | 920 | 18.74 | Wx1-10 | 3567 | 20.33 | Qun6-1 | 4581 | 18.85 |
S1-55 | 922 | 18.96 | Wx1-11 | 3571 | 19.66 | Qun6-2 | 4582 | 18.88 |
S1-56 | 926 | 19.02 | Wx1-12 | 3575 | 19.23 | Qun6-3 | 4585 | 18.96 |
S1-57 | 932 | 19.87 | Wx1-13 | 3580 | 18.99 | Qun6-4 | 4589 | 18.71 |
S1-58 | 934 | 19.35 | Wx1-14 | 3584 | 18.95 | Qun6-5 | 4594 | 19.06 |
S1-59 | 940 | 20.77 | Wx1-15 | 3604 | 19.18 | Qun6-6 | 4599 | 18.64 |
S1-60 | 942 | 21.34 | Wx1-16 | 3610 | 19.24 | Qun6-7 | 4602 | 18.64 |
S1-61 | 948 | 21.77 | Wx1-17 | 3611 | 19.46 | Qun6-8 | 4609 | 17.84 |
S1-62 | 950 | 22.17 | Wx1-18 | 3615 | 19.92 | |||
S1-63 | 956 | 22.04 | Wx1-19 | 3620 | 19.45 |
Borehole/m | Gypsum δ34S (‰) | |||
---|---|---|---|---|
Min–Max | Mean | Rangeability | Count of Samples | |
Wx1 3488-3644 | 18.59–20.33 | 19.29 | 1.74 | 22 |
Ak2 3902-4027 | 18.01–19.15 | 18.50 | 1.14 | 34 |
Kd101 2756-2870 | 13.41–25.92 | 18.83 | 12.51 | 44 |
Qun6 4581-4609 | 17.84–19.06 | 18.70 | 1.22 | 8 |
Tc2 4394-4416 | 18.78–19.20 | 19.02 | 0.42 | 16 |
Shan1 664-956 | 6.69–22.17 | 18.26 | 15.48 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zeng, A.; Chen, W.; Cao, Y. The Sulfur Isotopic Characteristics of Evaporites in the Yarkand Basin of Xinjiang Province in the Paleocene and Its Paleoenvironmental Evolution. Minerals 2023, 13, 816. https://doi.org/10.3390/min13060816
Liu Y, Zeng A, Chen W, Cao Y. The Sulfur Isotopic Characteristics of Evaporites in the Yarkand Basin of Xinjiang Province in the Paleocene and Its Paleoenvironmental Evolution. Minerals. 2023; 13(6):816. https://doi.org/10.3390/min13060816
Chicago/Turabian StyleLiu, Yidong, Aihua Zeng, Wenjun Chen, and Yangtong Cao. 2023. "The Sulfur Isotopic Characteristics of Evaporites in the Yarkand Basin of Xinjiang Province in the Paleocene and Its Paleoenvironmental Evolution" Minerals 13, no. 6: 816. https://doi.org/10.3390/min13060816
APA StyleLiu, Y., Zeng, A., Chen, W., & Cao, Y. (2023). The Sulfur Isotopic Characteristics of Evaporites in the Yarkand Basin of Xinjiang Province in the Paleocene and Its Paleoenvironmental Evolution. Minerals, 13(6), 816. https://doi.org/10.3390/min13060816