Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Methods
3. Results
3.1. Chemical Composition
3.2. Infrared Spectroscopy
3.3. Raman Spectroscopy
3.4. Absorption Spectroscopy in the NIR/Vis/UV Ranges
3.5. ESR Spectroscopy
3.6. Luminescence Spectroscopy
3.7. Crystal Structure
4. Discussion
4.1. Crystal-Chemical Features of Sulfide-Bearing Balliranoite
4.2. Indicatory Significance of Extra-Framework Species in Balliranoite
4.3. Radiation-Induced Transformations of Sulfide-Bearing Balliranoite
4.4. Thermal Transformations of Sulfide-Bearing Balliranoite
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballirano, P.; Maras, A.; Buseck, P.R. Crystal chemistry and IR spectroscopy of Cl- and SO4-bearing cancrinite-like minerals. Am. Mineral. 1996, 81, 1003–1012. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S. Modular microporous minerals: Cancrinite-davyne group and C-S-H phases. Rev. Mineral. Geochem. 2005, 57, 241–290. [Google Scholar] [CrossRef]
- Merlino, S. Feldspathoids: Their average and real structures. In Feldspars Feldspathoids; NATO ASI Series; Brown, W.L., Ed.; Springer: Dordrecht, The Netherlands, 1984; Volume 137, pp. 435–470. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Aksenov, S.M.; Rastsvetaeva, R.K. Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: A review. Micropor. Mesopor. Mater. 2021, 323, 111098. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Sapozhnikov, A.N.; Shendrik, R.Y.; Vigasina, M.F.; Steudel, R. Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits. Minerals 2020, 10, 1042. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Tauson, V.L.; Lipko, S.V.; Shendrik, R.Y.; Levitskii, V.I.; Suvorova, L.F.; Chukanov, N.V.; Vigasina, M.F. On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)−nH2O. Am. Mineral. 2021, 106, 226–234. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Zubkova, N.V.; Pekov, I.V.; Shendrik, R.Y.; Varlamov, D.A.; Vigasina, M.F.; Belakovskiy, D.I.; Britvin, S.N.; Yapaskurt, V.O.; Pushcharovsky, D.Y. Sapozhnikovite, Na8(Al6Si6O24)(HS)2, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula. Mineral. Mag. 2022, 86, 49–59. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F.; Zubkova, N.V.; Pekov, I.V.; Schäfer, C.; Kasatkin, A.V.; Yapaskurt, V.O.; Pushcharovsky, D.Y. Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Chukanov, N.V.; Zubkova, N.V.; Varlamov, D.A.; Pekov, I.V.; Belakovskiy, D.I.; Britvin, S.N.; Van, K.V.; Ermolaeva, V.N.; Vozchikova, S.A.; Pushcharovsky, D.Y. Steudelite, (Na3□)[(K,Na)17Ca7]Ca4(Al24Si24O96)(SO3)6F6·4H2O, a new cancrinite-group mineral with afghanite-type framework topology. Phys. Chem. Miner. 2022, 49. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Olysych, L.V.; Massa, W.; Zadov, A.E.; Rastsvetaeva, R.K.; Vigasina, M.F. Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola peninsula. Geol. Ore Depos. 2010, 52, 778–790. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Olysych, L.V.; Zubkova, N.V.; Vigasina, M.F. Crystal chemistry of cancrinite-group minerals with AB-type frameworks. II. IR spectroscopy and its crystal chemical implications: Review and new data. Can. Mineral. 2011, 49, 1151–1164. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F.; Shendrik, R.Y.; Varlamov, D.A.; Pekov, I.V.; Zubkova, N.V. Nature and isomorphism of extra-framework components in cancrinite- and sodalite-related minerals: New data. Minerals 2022, 12, 729. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Zubkova, N.V.; Pekov, I.V.; Giester, G.; Pushcharovsky, D.Y. Sulfite analogue of alloriite from Sacrofano, Latium, Italy: Crystal chemistry and specific features of genesis. Geol. Ore Depos. 2021, 63, 793–804. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Shchipalkina, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Tauson, V.L.; Lipko, S.V.; Varlamov, D.A.; Shcherbakov, V.D.; Sapozhnikov, A.N.; Kasatkin, A.V.; et al. Isomorphism and mutual transformations of S-bearing components in feldspathoids with microporous structures. Minerals 2022, 12, 1456. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Pekov, I.V.; Sapozhnikov, A.N.; Shcherbakov, V.D.; Varlamov, D.A. Crystal chemistry, isomorphism, and thermal conversions of extra-framework components in sodalite-group minerals. Minerals 2022, 12, 887. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Angelici, D.; Re, A.; Gariani, G.; Borghi, A.; Calusi, S.; Giuntini, L.; Massi, M.; Castelli, L.; Taccetti, F.; et al. Protocol for lapis lazuli provenance determination: Evidence for an Afghan origin of the stones used for ancient carved artefacts kept at the Egyptian Museum of Florence (Italy). Archaeol. Anthropol. Sci. 2017, 9, 637–651. [Google Scholar] [CrossRef]
- Tauson, V.L.; Sapozhnikov, A.N.; Shinkareva, S.N.; Lustenberg, E.E. Indicative properties of lazurite as a member of clathrasil mineral family. Dokl. Earth Sci. 2011, 441, 1732–1737. [Google Scholar] [CrossRef]
- Rejmak, P. Computational refinement of the puzzling red tetrasulfur chromophore in ultramarine pigments. Phys. Chem. Chem. Phys. 2020, 22, 22684–22698. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Zubkova, N.V.; Pekov, I.V.; Olysych, L.V.; Bonaccorsi, E.; Pushcharovsky, D.Y. Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma—Vesuvio volcanic complex, Italy. Eur. J. Mineral. 2010, 22, 113–119. [Google Scholar] [CrossRef]
- Ballirano, P.; Bonaccorsi, E.; Merlino, S.; Maras, A. Carbonate groups in davyne: Structural and crystal-chemical considerations. Can. Mineral. 1998, 36, 1285–1292. [Google Scholar]
- Sapozhnikov, A.N.; Chukanov, N.V.; Suvorova, L.F.; Feoktistova, L.P.; Bogdanova, L.A. Davyne from the Tultui lazurite deposit, Baikal Lake area. Zap. Vserossiiskogo Miner. Obs. (Proc. Russ. Mineral. Soc.) 2006, 135, 77–84. (In Russian) [Google Scholar]
- Bonaccorsi, E.; Merlino, S.; Pasero, M. Davyne: Its structural relationships with cancrinite and vishnevite. Neues Jahrb. Mineral. Monatsh. 1990, 3, 97–112. [Google Scholar]
- Della Ventura, G.; Bellatreccia, F.; Parodi, G.C.; Cámara, F.; Piccinini, M. Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2][Si6Al6O24]. Am. Mineral. 2007, 92, 713–721. [Google Scholar] [CrossRef]
- Pekov, I.V.; Olysych, L.V.; Chukanov, N.V.; Zubkova, N.V.; Pushcharovsky, D.Y.; Van, K.V.; Giester, G.; Tillmanns, E. Crystal chemistry of cancrinite-group minerals with AB-type frameworks. I. Chemical and structural variations: Review and new data. Can. Mineral. 2011, 49, 1129–1150. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Zubkova, N.V.; Kazheva, O.N.; Varlamov, D.A.; Pekov, I.V.; Belakovskiy, D.I.; Ternes, B.; Schüller, W.; Britvin, S.N.; Pushcharovsky, D.Y. Betzite, Na6Ca2(Al6Si6O24)Cl4, a new cancrinite-group mineral from the Eifel paleovolcanic region, Germany. Can. J. Mineral. Petrol. 2023, 61, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Bokiy, G.B.; Borutskiy, B.E. (Eds.) Minerals. Vol. V(2): Framework Silicates; Nauka: Moscow, Russia, 2003; 379p. (In Russian) [Google Scholar]
- Leoni, L.; Mellini, M.; Merlino, S.; Orlandi, P. Cancrinite-like minerals: New data and crystal chemical considerations. Rend. Della Soc. Ital. Mineral. Petrol. 1979, 35, 713–719. [Google Scholar]
- Hassan, I.; Buseck, P.R. The origin of the superstructure and modulations in cancrinite. Can. Mineral. 1992, 30, 49–59. [Google Scholar]
- Rozenberg, K.A.; Rastsvetaeva, R.K.; Chukanov, N.V. Crystal structures of oxalate-bearing cancrinite with an unusual arrangement of CO3 groups and sulfate-rich davyne. Crystallogr. Rep. 2009, 54, 793–799. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S.; Pasero, M. Davyne from Zabargad (St. John’s) Island: Peculiar chemival and structural features. Acta Vulcanol. 1991, 2, 55–63. [Google Scholar]
- Eckert, B.; Steudel, F. Molecular spectra of sulfur molecules and solid sulfur allotropes. Top. Curr. Chem. 2003, 231, 31–97. [Google Scholar] [CrossRef]
- Steudel, R. Inorganic polysulfides Sn2− and radical anions Sn●−. In Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry; Steudel, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 231. [Google Scholar]
- Steudel, R.; Chivers, T. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 2019, 48, 3279–3319. [Google Scholar] [CrossRef]
- Wong, M.W.; Steudel, R. Structure and spectra of tetrasulfur S4—An ab initio MO study. Chem. Phys. Lett. 2003, 379, 162–169. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.39.46; Rigaku: Austin, TX, USA, 2018. [Google Scholar]
- Finch, A.A.; Friis, H.; Maghrabi, M. Defects in sodalite-group minerals determined from X-ray-induced luminescence. Phys. Chem. Miner. 2016, 43, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Radomskaya, T.A.; Kaneva, E.V.; Shendrik, R.Y.; Suvorova, L.F.; Vladykin, N.V. Sulfur-bearing sodalite, hackmanite, in alkaline pegmatites of the Inagli massif (Aldan Shield): Crystal chemistry, photochromism, and luminescence. Geol. Ore Depos. 2021, 63, 696–704. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Pokrovski, G.S.; Dubrovinsky, L.S. The S3− ion is stable in geological fluids at elevated temperatures and pressures. Science 2011, 331, 1052–1054. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Dubessy, J. Stability and abundance of the trisulfur radical ion S3− in hydrothermal fluids. Earth Planet. Sci. Lett. 2015, 411, 298–309. [Google Scholar] [CrossRef]
- Chivers, T.; Elder, P.J.W. Ubiquitous trisulfur radical anion: Fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. Chem. Soc. Rev. 2013, 42, 5996–6005. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Sapozhnikov, A.N.; Kaneva, E.V.; Varlamov, D.A.; Vigasina, M.F. Bystrite, Na7Ca(Al6Si6O24)S52−Cl−: Formula redefinition and relationships with other four-layer cancrinite-group minerals. Mineral. Mag. 2023, 1–29. [Google Scholar] [CrossRef]
- Jacquemet, N.; Guillaume, D.; Zwick, A.; Pokrovski, G.S. In situ Raman spectroscopy identiication of the S3− ion in S-rich hydrothermal luids from synthetic luid inclusions. Am. Mineral. 2014, 99, 1109–1118. [Google Scholar] [CrossRef]
- Waldner, P.; Pelton, A.D. Thermodynamic Modeling of the Fe-S System. J. Phase Equilib. Diff. 2005, 26, 23–28. [Google Scholar] [CrossRef]
- Shishin, D.; Jak, E.; Decterov, A.A. Critical assessment and thermodynamic modeling of the Fe-O-S system. J. Phase Equilibr. Diffus. 2015, 36, 224–240. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.G.; Sapozhnikov, A.N. Lazurites of the USSR; Nauka: Novosibirsk, Russia, 1985; 172p. (In Russian) [Google Scholar]
- Drüppel, K.; Wagner, T.; Boyce, A.I. Evolution of sulfide mineralization in ferrocarbonatite Swartbooisdrif, Northwestern Namibia: Constrains from mineral compositions and sulfur isotopes. Can. Mineral. 2006, 44, 877–894. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Ivanov, V.G.; Levitsky, V.I.; Piskunova, L.F. Structural-mineralogical peculiarities of lazurite from SW Pamirs. Zap. Vsesoyuznogo Mineral. Obs. (Proc. Mineral. Soc. USSR) 1993, 122, 108–115. (In Russian) [Google Scholar]
- Sapozhnikov, A.N.; Kaneva, E.V.; Cherepanov, D.I.; Suvorova, L.F.; Levitsky, V.I.; Ivanova, L.A.; Reznitsky, L.Z. Vladimirivanovite, Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2·H2O, a new mineral of sodalite group. Geol. Ore Depos. 2012, 54, 557–564. [Google Scholar] [CrossRef]
- Kaneva, E.; Radomskaya, T.; Shendrik, R. Fluorcarletonite—A new blue gem material. J. Gemmol. 2022, 38, 376–785. [Google Scholar] [CrossRef]
- Kaneva, E.; Bogdanov, A.; Radomskaya, T.; Belozerova, O.; Shendrik, R. Crystal-chemical characterization and spectroscopy of fluorcarletonite and carletonite. Mineral. Mag. 2023, 1–13. [Google Scholar] [CrossRef]
- Shendrik, R.; Kaneva, E.; Radomskaya, T.; Sharygin, I.; Marfin, A. Relationships between the structural, vibrational, and optical properties of microporous cancrinite. Crystals 2021, 11, 280. [Google Scholar] [CrossRef]
- Kaneva, E.; Shendrik, R. Radiation defects and intrinsic luminescence of cancrinite. J. Lumin. 2022, 243, 118628. [Google Scholar] [CrossRef]
- Henshaw, T.L.; Ongstad, A.P.; Lawconnell, R.I. Photodissociation of S4N4. I. 248 nm. J. Chem. Phys. 1992, 96, 53–66. [Google Scholar] [CrossRef]
- Ogorodova, L.P.; Mel’chakova, L.V.; Vigasina, M.F.; Olysych, L.V.; Pekov, I.V. Cancrinite and cancrisilite in the Khibina-Lovozero alkaline complex: Thermochemical and thermal data. Geochem. Int. 2009, 47, 260–267. [Google Scholar] [CrossRef]
Component | Spot Analysis No. | Mean | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Na2O | 15.00 | 15.09 | 14.90 | 14.79 | 14.95 | 14.95 |
K2O | 0.78 | 0.51 | 0.51 | 0.37 | 0.59 | 0.55 |
CaO | 12.81 | 12.84 | 12.86 | 13.91 | 13.47 | 13.17 |
Al2O3 | 27.17 | 28.04 | 27.87 | 28.00 | 27.65 | 27.75 |
SiO2 | 33.11 | 32.55 | 32.54 | 32.82 | 32.65 | 32.73 |
SO3 | 8.32 | 8.83 | 8.86 | 7.34 | 7.78 | 8.23 |
Cl | 6.65 | 6.73 | 6.75 | 6.57 | 6.94 | 6.73 |
–O≡Cl | −1.50 | −1.52 | −1.52 | −1.48 | −1.57 | −1.52 |
CO2 | - | - | - | - | - | 2.75 |
H2O | - | - | - | - | - | 0.27 |
Total | 102.34 | 103.07 | 102.77 | 102.32 | 102.46 | 105.61 |
Sample 1 | Sample 2 | Assignment |
---|---|---|
Wavenumber (cm−1) | ||
202 | Lattice mode involving libration vibrations of extra-framework components | |
209s | trans-S4 bending mode (overlapping with S52− bending band) and mixed lattice modes | |
263 | S3●− bending mode (ν2) and/or S52− bending band | |
293 | cis-S4●− bending or Na–O stretching vibrations | |
343w | cis-S4 mixed mode | |
439s, 454s | 425s, 457s | SO42− [E(ν2) mode] (overlapping with S52− stretching bands for Sample 1) |
497 | trans-S4 symmetric stretching mode | |
544s | S3●− symmetric stretching (ν1) (possibly, overlapping with the antisymmetric stretching band of gauche- or trans-S4) | |
565 | S5●− stretching or S3●− antisymmetric stretching (ν3) mode | |
596 | S2●− stretching mode | |
671 | 622, 668 | SO4 bending (ν4–F2) mode |
717w | 719w | CO32− in-plane bending vibrations |
775w | Framework mixed band | |
830 (broad) | S3●− combination mode (ν1 + ν2) overlapping with framework mixed and overtone of S52− stretching bands | |
986s | 987s | SO42− symmetric stretching (ν1–A1) mode |
1012 | 1022 | Framework and/or SO32− stretching vibrations |
1056s | 1056s | CO32− symmetric stretching vibrations |
1087 | CO32− symmetric stretching vibrations [possibly, overlapping with SO4●− stretching band (ν3–F2)] | |
1130sh | 1105w, 1140w | SO42− asymmetric (ν3–F2) mode [possibly, overlapping with S2●− overtone (2 × ν1)] |
1640w | S3●− overtone (3 × ν1) | |
2564w | HS− stretching mode |
Irradiated (Sample 1) | Heated (Phase 1) | Assignment |
---|---|---|
Wavenumber (cm−1) | ||
209 | 166s, 206 | Low-frequency lattice modes |
257 | 262 | S3●− bending mode (ν2) and/or S52− stretching mode |
280w | 289w | Lattice modes involving Na+ cations |
421 | S52− stretching mode 1 or framework bending vibrations | |
461 | 451 | SO42− [E(ν2) mode] overlapping with S52− stretching bands |
542s | 535s | S3●− symmetric stretching (ν1) and/or AlF6 stretching mode |
578 | S3●− antisymmetric stretching (ν3), possibly, overlapping with the stretching band of S2●− | |
815w | 787 | S3●− combination mode (ν1 + ν2) |
983 | 988 | SO42− symmetric stretching vibrations [A1(ν1) mode] |
1061, 1083s | 1069s | CO32− symmetric stretching vibrations |
1363w | 1340w | S3●− combination mode (2ν1 + ν2) |
1629 | 1604 | S3●− overtone (3 × ν1) |
1860w | 1858w | S3●− combination mode (3 × ν2 + ν1) |
2165 | 2133 | S3●− overtone (4 × ν1) |
2369w | S3●− combination mode (4 × ν2 + ν1) | |
2563w | 2560w | HS− stretching mode |
2712w | 2668w | S3●− overtone (5 × ν1) |
2979 | 2933w | S3●− combination mode (5 × ν1 + ν2) |
3140w | S3●− overtone (6 × ν1) |
Mineral | g-Factor Components | Absorption Maximum (eV) |
---|---|---|
Kyanoxalite | 2.050, 2.038, 2.002 [12] | 2.09 [12] |
Afgranite | 2.057–2.060, 2.038, 2.002 [12] | 2.09 [12] |
Haüyne | 2.056, 2.041, 2.008 [15] | 2,05 [15] |
Haüyne | 2.046, 2.031, 2.010 [5] | 2.06 [5] |
Nosean | 2.041, 2.031, 2.004 [12] | 2.07 [14] |
Lazurite | 2.030, 2.030, 2.030 [6] | 2.07 [5] |
Vladimirivanovite | 2.034, 2.004 [14] | 2.00 [14] |
Marinellite | 2.039, 2.008 [14] | 2.10 [14] |
Biachellaite | 2.058, 2.036, 2.002 [14] | No data |
Balliranoite | 2.053, 2.040, 2.001 (this work) | 2.1 [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukanov, N.V.; Sapozhnikov, A.N.; Shendrik, R.Y.; Zubkova, N.V.; Vigasina, M.F.; Potekhina, N.V.; Ksenofontov, D.A.; Pekov, I.V. Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite. Minerals 2023, 13, 822. https://doi.org/10.3390/min13060822
Chukanov NV, Sapozhnikov AN, Shendrik RY, Zubkova NV, Vigasina MF, Potekhina NV, Ksenofontov DA, Pekov IV. Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite. Minerals. 2023; 13(6):822. https://doi.org/10.3390/min13060822
Chicago/Turabian StyleChukanov, Nikita V., Anatoly N. Sapozhnikov, Roman Yu. Shendrik, Natalia V. Zubkova, Marina F. Vigasina, Nadezhda V. Potekhina, Dmitry A. Ksenofontov, and Igor V. Pekov. 2023. "Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite" Minerals 13, no. 6: 822. https://doi.org/10.3390/min13060822
APA StyleChukanov, N. V., Sapozhnikov, A. N., Shendrik, R. Y., Zubkova, N. V., Vigasina, M. F., Potekhina, N. V., Ksenofontov, D. A., & Pekov, I. V. (2023). Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite. Minerals, 13(6), 822. https://doi.org/10.3390/min13060822