Petrology and Age of the Yamaat Uul Mafic Complex, Khangai Mountains, Western Mongolia
Abstract
:1. Introduction
2. Geological Setting and Geological Occurrence
- (1)
- (2)
3. Sampling and Analytical Methods
3.1. Petrography
3.2. Mineral Chemistry
3.3. Zircon Separation and Analysis
3.4. Whole-Rock Major and Trace Elements
3.5. Whole-Rock Sm-Nd, Rb-Sr and S Isotopic Analyses
4. Results
4.1. U-Pb Zircon Dating
4.2. Mineral Compositions
4.3. Whole-Rock Geochemistry
Intrusion 1 | ||||||||||||
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Part | NW | NW | NW | NW | NW | NW | NW | NW | NW | NW | ||
Sample | SH100-14 | SH102-14 | SH103-14 | SH105-14 | SH220-14/2 | SH220-14/10 | SH225-14 | SH227-14 | SH228-14 | SH229-14 | ||
SiO2 | 44.69 | 44.01 | 45.50 | 43.48 | 47.14 | 46.00 | 43.22 | 44.72 | 44.23 | 46.16 | ||
TiO2 | 0.54 | 0.57 | 0.25 | 0.45 | 0.17 | 0.30 | 1.14 | 0.36 | 0.53 | 0.41 | ||
Al2O3 | 24.81 | 18.16 | 17.50 | 16.18 | 29.61 | 29.94 | 19.14 | 30.19 | 26.83 | 24.54 | ||
Fe2O3 | 7.37 | 12.12 | 10.85 | 13.33 | 2.96 | 4.29 | 10.91 | 3.27 | 5.40 | 4.24 | ||
MnO | 0.09 | 0.16 | 0.18 | 0.17 | 0.02 | 0.03 | 0.12 | 0.06 | 0.08 | 0.09 | ||
MgO | 5.53 | 12.53 | 13.20 | 15.21 | 0.51 | 0.84 | 6.41 | 1.59 | 2.91 | 4.44 | ||
CaO | 13.70 | 9.87 | 8.49 | 7.90 | 14.83 | 14.67 | 16.02 | 15.53 | 13.64 | 16.69 | ||
Na2O | 1.57 | 1.80 | 2.08 | 1.72 | 2.31 | 2.29 | 1.14 | 2.24 | 2.40 | 1.66 | ||
K2O | 0.28 | 0.33 | 0.29 | 0.46 | 0.40 | 0.28 | 0.28 | 0.33 | 0.31 | 0.23 | ||
P2O5 | 0.06 | 0.10 | 0.07 | 0.18 | 0.07 | 0.09 | 0.06 | 0.10 | 0.17 | 0.09 | ||
LOI | 1.07 | 0.65 | 1.36 | 0.86 | 1.32 | 1.09 | 1.05 | 1.45 | 2.13 | 1.54 | ||
Total | 99.91 | 100.59 | 100.02 | 100.43 | 99.55 | 100.05 | 99.84 | 100.05 | 99.11 | 100.38 | ||
Rb | 3.04 | 5.38 | 4.44 | 8.47 | 6.18 | 5.26 | 2.93 | 5.65 | 4.72 | 4.03 | ||
Cs | 0.18 | 1.00 | 0.47 | 0.36 | 0.32 | 0.25 | 0.29 | 0.29 | 0.36 | 0.25 | ||
Ba | 138.06 | 210.14 | 228.01 | 267.42 | 270.44 | 199.34 | 134.94 | 424.08 | 406.26 | 259.02 | ||
Sr | 1178.36 | 1181.03 | 1235.58 | 955.03 | 1699.40 | 1831.18 | 1060.63 | 1863.81 | 1810.73 | 1620.54 | ||
Th | 0.62 | 0.64 | 0.38 | 0.78 | 1.34 | 1.02 | 0.30 | 0.78 | 1.24 | 1.61 | ||
U | 0.11 | 0.16 | 0.11 | 0.24 | 0.39 | 0.35 | 0.08 | 0.24 | 0.40 | 0.48 | ||
La | 4.26 | 6.55 | 4.98 | 8.61 | 6.46 | 5.75 | 4.09 | 7.67 | 9.95 | 8.98 | ||
Ce | 9.32 | 13.04 | 9.77 | 17.76 | 12.42 | 10.46 | 9.76 | 15.01 | 20.20 | 17.74 | ||
Pr | 1.45 | 1.93 | 1.37 | 2.23 | 1.40 | 1.42 | 1.61 | 1.87 | 2.72 | 2.31 | ||
Nd | 6.72 | 7.81 | 5.41 | 9.04 | 5.31 | 4.95 | 7.85 | 7.76 | 11.48 | 9.46 | ||
Sm | 1.47 | 1.58 | 0.94 | 1.88 | 0.91 | 0.89 | 2.07 | 1.81 | 2.46 | 2.18 | ||
Eu | 0.67 | 0.71 | 0.63 | 0.67 | 0.48 | 0.51 | 0.81 | 0.68 | 0.90 | 0.82 | ||
Gd | 1.41 | 1.34 | 0.83 | 1.53 | 0.79 | 0.74 | 2.02 | 1.24 | 1.99 | 1.81 | ||
Tb | 0.21 | 0.21 | 0.13 | 0.21 | 0.09 | 0.11 | 0.30 | 0.18 | 0.25 | 0.26 | ||
Dy | 1.23 | 1.10 | 0.78 | 1.04 | 0.57 | 0.62 | 1.77 | 1.00 | 1.53 | 1.49 | ||
Ho | 0.22 | 0.21 | 0.16 | 0.21 | 0.11 | 0.13 | 0.32 | 0.18 | 0.32 | 0.30 | ||
Er | 0.59 | 0.54 | 0.40 | 0.56 | 0.34 | 0.35 | 0.78 | 0.40 | 0.76 | 0.79 | ||
Tm | 0.08 | 0.08 | 0.06 | 0.09 | 0.05 | 0.05 | 0.11 | 0.06 | 0.11 | 0.11 | ||
Yb | 0.46 | 0.54 | 0.38 | 0.48 | 0.34 | 0.28 | 0.67 | 0.34 | 0.65 | 0.71 | ||
Lu | 0.07 | 0.08 | 0.06 | 0.07 | 0.05 | 0.04 | 0.10 | 0.05 | 0.10 | 0.11 | ||
Zr | 17.32 | 20.69 | 12.72 | 35.99 | 27.48 | 18.18 | 17.18 | 23.01 | 37.16 | 21.96 | ||
Hf | 0.67 | 0.72 | 0.42 | 0.87 | 0.77 | 0.62 | 0.81 | 0.67 | 0.99 | 0.81 | ||
Nb | 0.57 | 0.82 | 0.50 | 1.23 | 0.83 | 0.79 | 0.47 | 1.25 | 1.19 | 0.64 | ||
Ta | <0.05 | 0.06 | <0.05 | 0.08 | 0.05 | 0.06 | <0.05 | 0.05 | 0.08 | <0.05 | ||
Y | 5.79 | 5.54 | 3.95 | 6.15 | 3.19 | 3.22 | 8.18 | 4.93 | 7.43 | 7.77 | ||
Intrusion 1 | ||||||||||||
№ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
Part | Central | Central | Central | Central | Central | Central | Central | Central | Central | Central | SE | SE |
Sample | SH11-15 | SH12-15 | SH15-15 | SH16-15/1 | SH79-16 | SH81-16 | SH94-16/6 | SH97-16 | SH98-16/1 | SH235-17 | SH2-17 | SH5-17 |
SiO2 | 43.67 | 41.50 | 48.07 | 43.80 | 47.49 | 46.90 | 41.80 | 42.66 | 43.79 | 46.83 | 47.88 | 40.20 |
TiO2 | 0.67 | 0.59 | 0.63 | 1.44 | 0.87 | 1.15 | 0.64 | 1.72 | 0.83 | 1.30 | 0.49 | 1.69 |
Al2O3 | 13.33 | 8.67 | 22.98 | 19.34 | 19.92 | 19.29 | 24.19 | 18.22 | 17.55 | 16.72 | 25.45 | 17.36 |
Fe2O3 | 14.50 | 15.46 | 5.95 | 14.54 | 8.71 | 10.44 | 10.69 | 15.60 | 12.43 | 12.88 | 6.06 | 17.74 |
MnO | 0.18 | 0.20 | 0.07 | 0.19 | 0.12 | 0.12 | 0.13 | 0.14 | 0.16 | 0.15 | 0.07 | 0.16 |
MgO | 16.39 | 24.63 | 4.80 | 4.45 | 5.87 | 5.94 | 7.44 | 5.85 | 10.40 | 7.32 | 1.78 | 6.94 |
CaO | 7.10 | 4.29 | 10.64 | 9.52 | 10.59 | 10.24 | 11.52 | 11.65 | 10.87 | 9.65 | 13.39 | 12.84 |
Na2O | 1.77 | 1.24 | 3.35 | 3.56 | 2.86 | 2.83 | 1.61 | 2.00 | 2.21 | 2.41 | 2.50 | 1.44 |
K2O | 0.66 | 0.71 | 0.92 | 0.84 | 0.97 | 1.15 | 0.39 | 0.71 | 0.26 | 1.25 | 0.78 | 0.49 |
P2O5 | 0.17 | 0.18 | 0.26 | - | 0.26 | 0.27 | 0.06 | 0.16 | - | 0.17 | 0.07 | 0.11 |
LOI | 0.76 | 1.82 | 1.69 | 0.56 | 1.26 | 0.99 | 1.03 | 1.09 | 0.61 | 0.54 | 0.52 | 0.48 |
Total | 99.48 | 99.64 | 99.47 | 99.50 | 99.05 | 99.46 | 99.59 | 99.96 | 99.79 | 99.42 | 99.08 | 99.64 |
Rb | 12.59 | 16.26 | 17.86 | 14.58 | 20.70 | 27.90 | 16.20 | 15.90 | 4.10 | 46.90 | 16.00 | 11.00 |
Cs | 0.22 | 1.57 | 0.67 | 0.48 | 1.00 | 1.80 | 6.40 | 1.20 | 0.30 | 7.70 | 0.90 | 1.00 |
Ba | 295.34 | 263.56 | 327.25 | 673.34 | 470.00 | 550.00 | 210.00 | 310.00 | 220.00 | 410.00 | 360.00 | 200.00 |
Sr | 751.59 | 484.82 | 490.26 | 1807.09 | 1170.00 | 1300.00 | 1520.00 | 1100.00 | 1320.00 | 800.00 | 1800.00 | 1120.00 |
Th | 0.95 | 1.04 | 1.73 | 0.95 | 1.40 | 1.80 | 10.40 | 1.20 | 0.30 | 5.40 | 3.00 | 4.10 |
U | 0.30 | 0.30 | 0.39 | 0.30 | 0.35 | 0.42 | 0.10 | 0.38 | 0.14 | 1.15 | 0.60 | 0.46 |
La | 9.40 | 8.02 | 9.92 | 30.95 | 14.80 | 14.20 | 4.50 | 9.10 | 7.50 | 14.00 | 9.00 | 6.30 |
Ce | 19.66 | 17.06 | 18.72 | 69.11 | 30.60 | 28.90 | 8.20 | 18.70 | 16.90 | 28.90 | 19.00 | 13.70 |
Pr | 2.58 | 2.41 | 2.35 | 10.18 | 4.10 | 3.91 | 1.01 | 2.59 | 2.52 | 3.98 | 1.90 | 2.00 |
Nd | 10.26 | 9.84 | 8.79 | 44.10 | 17.30 | 17.20 | 4.20 | 11.40 | 11.70 | 15.60 | 7.00 | 8.90 |
Sm | 1.82 | 1.94 | 1.52 | 8.66 | 3.70 | 3.40 | 0.80 | 2.80 | 2.80 | 3.80 | 1.20 | 2.30 |
Eu | 0.59 | 0.56 | 0.47 | 2.38 | 1.19 | 1.26 | 0.62 | 1.01 | 1.14 | 1.12 | 0.60 | 0.88 |
Gd | 1.78 | 1.88 | 1.27 | 7.64 | 3.32 | 3.38 | 0.68 | 2.46 | 2.84 | 3.45 | 1.00 | 2.25 |
Tb | 0.27 | 0.27 | 0.18 | 1.13 | 0.47 | 0.46 | 0.08 | 0.42 | 0.36 | 0.53 | 0.12 | 0.31 |
Dy | 1.34 | 1.40 | 1.10 | 5.45 | 2.51 | 2.49 | 0.44 | 2.08 | 1.83 | 2.80 | 0.70 | 1.61 |
Ho | 0.24 | 0.27 | 0.21 | 0.95 | 0.47 | 0.45 | 0.06 | 0.37 | 0.35 | 0.48 | 0.14 | 0.30 |
Er | 0.63 | 0.69 | 0.56 | 2.60 | 1.39 | 1.10 | 0.28 | 0.97 | 0.77 | 1.35 | 0.39 | 0.73 |
Tm | 0.09 | 0.10 | 0.09 | 0.36 | 0.16 | 0.16 | 0.05 | 0.13 | 0.12 | 0.20 | 0.05 | 0.10 |
Yb | 0.57 | 0.63 | 0.54 | 2.26 | 1.00 | 1.00 | 0.20 | 0.80 | 0.70 | 1.30 | 0.40 | 0.60 |
Lu | 0.09 | 0.09 | 0.08 | 0.33 | 0.15 | 0.21 | 0.12 | 0.13 | 0.10 | 0.18 | 0.05 | 0.14 |
Zr | 50.73 | 36.49 | 44.32 | 37.95 | 73.00 | 84.00 | 85.00 | 96.00 | 93.00 | 98.00 | 15.00 | 117.00 |
Hf | 1.15 | 0.87 | 1.07 | 1.33 | 2.00 | 1.00 | 5.00 | <1 | <1 | 2.00 | 0.50 | 2.00 |
Nb | 1.86 | 1.36 | 1.50 | 3.04 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 3.00 | 1.70 | 1.00 |
Ta | 0.10 | 0.08 | 0.09 | 0.15 | <0.5 | <0.5 | 1.80 | <0.5 | <0.5 | <0.5 | 0.60 | <0.5 |
Y | 7.62 | 8.27 | 6.27 | 28.31 | 12.20 | 11.90 | 2.20 | 10.00 | 8.80 | 12.80 | 4.00 | 7.20 |
Intrusion 1 | Intrusion 2 | Felsic and Intermediate Rocks | ||||||||||
№ | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
Part | SE | SE | SE | SE | NW | NW | ||||||
Sample | SH7-17 | SH14-17 | SH231-17 | SH232-17 | SH234-14 | SH235-14 | SH10-15 | SH16-17 | SH17-17 | PM30-16 | SH80-16 | SH17-15 |
SiO2 | 43.45 | 43.96 | 40.91 | 44.19 | 51.70 | 51.50 | 58.76 | 60.31 | 59.95 | 65.85 | 69.89 | 61.45 |
TiO2 | 1.15 | 1.51 | 0.81 | 0.82 | 1.08 | 1.18 | 0.97 | 0.79 | 0.81 | 0.49 | 0.33 | 0.76 |
Al2O3 | 20.21 | 14.66 | 18.73 | 21.17 | 18.14 | 17.77 | 16.76 | 16.65 | 16.75 | 16.44 | 14.84 | 17.53 |
Fe2O3 | 11.60 | 15.07 | 15.81 | 9.83 | 9.41 | 9.96 | 6.57 | 6.17 | 5.87 | 3.47 | 2.57 | 4.79 |
MnO | 0.12 | 0.21 | 0.16 | 0.11 | 0.14 | 0.15 | 0.11 | 0.10 | 0.09 | 0.06 | 0.05 | 0.10 |
MgO | 6.04 | 7.36 | 12.19 | 5.92 | 5.09 | 4.98 | 2.44 | 2.38 | 2.46 | 1.02 | 0.64 | 1.68 |
CaO | 14.20 | 13.73 | 8.62 | 12.80 | 7.92 | 7.82 | 4.39 | 4.23 | 4.26 | 2.58 | 1.66 | 3.31 |
Na2O | 1.56 | 1.74 | 1.51 | 1.60 | 3.75 | 3.73 | 3.99 | 3.91 | 4.02 | 4.45 | 4.01 | 4.80 |
K2O | 0.57 | 0.65 | 0.60 | 0.86 | 1.80 | 1.87 | 4.23 | 4.39 | 4.44 | 4.18 | 4.69 | 4.37 |
P2O5 | 0.07 | 0.13 | 0.14 | 0.09 | 0.38 | 0.43 | 0.31 | 0.33 | 0.33 | 0.16 | 0.10 | 0.30 |
LOI | 0.41 | 0.36 | 0.07 | 1.65 | 0.00 | -0.25 | 0.44 | 0.26 | 0.23 | 0.51 | 0.52 | 0.19 |
Total | 99.55 | 99.59 | 99.77 | 99.30 | 99.63 | 99.32 | 99.16 | 99.68 | 99.35 | 99.42 | 99.47 | 99.52 |
Rb | 16.00 | 19.60 | 14.60 | 33.80 | 69.61 | 41.05 | 127.14 | 198.00 | 226.00 | - | - | 105.88 |
Cs | 0.80 | 0.90 | 1.10 | 3.50 | 3.27 | 1.31 | 2.58 | 8.60 | 9.90 | - | - | 2.43 |
Ba | 220.00 | 240.00 | 270.00 | 290.00 | 1283.86 | 898.84 | 1231.56 | 840.00 | 820.00 | - | - | 1497.41 |
Sr | 1140.00 | 750.00 | 1260.00 | 1360.00 | 1023.55 | 1047.67 | 697.31 | 680.00 | 670.00 | - | - | 579.05 |
Th | 3.00 | 1.80 | 1.20 | 0.80 | 5.98 | 5.65 | 13.74 | 25.90 | 32.00 | - | - | 13.34 |
U | 0.45 | 0.89 | 0.26 | 0.32 | 1.37 | 1.33 | 1.40 | 3.85 | 4.05 | - | - | 2.39 |
La | 7.40 | 12.20 | 7.90 | 8.80 | 27.90 | 30.62 | 37.00 | 39.30 | 43.30 | - | - | 41.64 |
Ce | 16.20 | 26.20 | 14.90 | 18.20 | 55.61 | 62.54 | 71.89 | 74.60 | 84.40 | - | - | 79.83 |
Pr | 2.36 | 3.57 | 1.78 | 2.38 | 7.62 | 8.72 | 8.99 | 9.26 | 10.10 | - | - | 9.78 |
Nd | 10.00 | 15.40 | 7.10 | 10.00 | 27.85 | 33.27 | 32.28 | 33.60 | 36.60 | - | - | 35.56 |
Sm | 2.50 | 3.90 | 1.30 | 2.30 | 4.96 | 6.27 | 5.41 | 6.60 | 6.70 | - | - | 5.95 |
Eu | 0.76 | 1.22 | 0.51 | 0.82 | 1.57 | 1.59 | 1.20 | 1.41 | 1.50 | - | - | 1.55 |
Gd | 2.28 | 3.63 | 0.99 | 1.92 | 4.24 | 5.46 | 4.85 | 5.23 | 5.44 | - | - | 5.03 |
Tb | 0.29 | 0.53 | 0.13 | 0.30 | 0.70 | 0.77 | 0.72 | 0.73 | 0.81 | - | - | 0.75 |
Dy | 1.71 | 2.71 | 0.63 | 1.37 | 3.69 | 4.03 | 3.97 | 3.68 | 3.99 | - | - | 4.10 |
Ho | 0.34 | 0.53 | 0.11 | 0.26 | 0.75 | 0.79 | 0.72 | 0.69 | 0.74 | - | - | 0.74 |
Er | 0.84 | 1.51 | 0.30 | 0.67 | 1.99 | 2.10 | 2.09 | 2.02 | 2.06 | - | - | 2.27 |
Tm | 0.13 | 0.19 | 0.05 | 0.11 | 0.32 | 0.30 | 0.33 | 0.30 | 0.35 | - | - | 0.36 |
Yb | 0.70 | 1.20 | 0.40 | 0.60 | 2.02 | 1.90 | 1.94 | 2.10 | 2.30 | - | - | 2.15 |
Lu | 0.12 | 1.19 | 0.07 | 0.10 | 0.31 | 0.28 | 0.29 | 0.34 | 0.36 | - | - | 0.33 |
Zr | 70.00 | 97.00 | 94.00 | 60.00 | 138.36 | 152.81 | 213.71 | 62.00 | 57.00 | - | - | 319.27 |
Hf | 1.00 | 2.00 | <1 | <1 | 4.28 | 4.03 | 4.90 | 8.00 | 8.00 | - | - | 7.68 |
Nb | 1.00 | 1.00 | 1.00 | 1.00 | 5.85 | 4.98 | 8.82 | 10.00 | 13.00 | - | - | 7.93 |
Ta | <0.5 | <0.5 | <0.5 | <0.5 | 0.48 | 0.28 | 0.55 | <0.5 | 0.70 | - | - | 0.51 |
Y | 8.40 | 13.00 | 2.90 | 6.00 | 20.31 | 21.32 | 23.84 | 19.80 | 20.40 | - | - | 22.74 |
4.4. Whole-Rock Nd, Sr and S Isotopes
5. Discussion
5.1. Age of Rock Formation
5.2. Source Mantle Characteristics and Crustal Contamination
5.3. PGE Depletion in Parental Magma
6. Conclusions
- (1)
- Zircon U-Pb dating (SHRIMP II) of the anorthosite and Bt-Am-Ol gabbronorite of the Yamaat Uul mafic complex in the Khangai Mountains has a revealed age of 255.8 ± 2.9 Ma and 262.6 ± 3.1 Ma, respectively. Thus, the mafic rocks of the complex were formed in the Late Permian and, together with other mafic–ultramafic intrusions of the Khangai Mountains, are early phases of the Khangai batholith.
- (2)
- The Yamaat Uul mafic complex consists of two intrusions; Intrusion 1 is represented by plagioclase cumulates and olivine–pyroxene cumulates and Intrusion 2 is composed of monzogabbro. All of the rocks of the complex are derived from a unified parental melt due to different amounts of trapped melts in plagioclase and olivine–pyroxene cumulates.
- (3)
- Magmatic zircons, Sm-Nd, Rb-Sr isotope data and sulphur isotopes indicate that crustal contamination did not affect the formation of the Yamaat Uul mafic complex.
- (4)
- The Yamaat Uul mafic complex together with other mafic–ultramafic intrusions of the Khangai Mountains are related to the Khangai LIP and can be considered as potential for the PGE-Cu-Ni. These intrusions have a low degree of evolution of the sulphide melt.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, R. Large Igneous Provinces, 1st ed.; Cambridge University Press: Cambridge, UK, 2014; p. 666. [Google Scholar]
- Mekhonoshin, A.S.; Kolotilina, T.B. Petrological-geochemical features of ultrabasites from the southern framing of the Siberian craton and exploration criteria for Ni sulfide ores. Ores Met. 2006, 6, 26–30. [Google Scholar]
- Tolstykh, N.D.; Orsoev, D.A.; Krivenko, A.P.; Izokh, A.E. Precious Metal Mineralization in Layered Ultramafic-Mafic Massifs in the South of the Siberian Platform, 1st ed.; Parallel: Novosibirsk, Russia, 2008; p. 194. [Google Scholar]
- Polyakov, G.V.; Izokh, A.E.; Borisenko, A.S. Permian ultramafic-mafic magmatism and accompanying Cu-Ni mineralization in the Gobi-Tien Shan belt as a result of the Tarim plume activity. Russ. Geol. Geophys. 2008, 49, 455–467. [Google Scholar] [CrossRef]
- Polyakov, G.V.; Tolstykh, N.D.; Mekhonoshin, A.S.; Izokh, A.E.; Podlipskii, M.Y.; Orsoev, D.A.; Kolotilina, T.B. Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): Age, composition, origin and ore potential. Russ. Geol. Geophys. 2013, 54, 1319–1331. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wei, B.; Zhou, M.-F.; Minh, D.H.; Qi, L. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ∼260 Ma Emeishan large igneous province, SW China and northern Vietnam. J. Asian Earth Sci. 2018, 154, 162–186. [Google Scholar] [CrossRef]
- Hoa, T.T.; Izokh, A.E.; Polyakov, G.V.; Borisenko, A.S.; Anh, T.T.; Balykin, P.A.; Phuong, N.T.; Rudnev, S.N.; Van, V.V.; Nien, B.A. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russ. Geol. Geophys. 2008, 49, 480–491. [Google Scholar] [CrossRef]
- Svetlitskaya, T.V.; Nevolko, P.A.; Ngo, T.P.; Tran, T.H.; Izokh, A.E.; Shelepaev, R.A.; Bui, A.N.; Vu, H.L. Small-intrusion-hosted Ni-Cu-PGE sulfide deposits in northeastern Vietnam: Perspectives for regional mineral potential. Ore Geol. Rev. 2017, 86, 615–623. [Google Scholar] [CrossRef]
- Svetlitskaya, T.V.; Ngo, T.H.; Nevolko, P.A.; Tran, T.A.; Izokh, A.E.; Shelepaev, R.A.; Tran, T.H.; Ngo, T.P.; Fominykh, P.A.; Pham, N.C. Zircon U-Pb ages of Permian-Triassic igneous rocks in the Song Hien structure, NE Vietnam: The Emeishan mantle plume or the Indosinian orogeny? J. Asian Earth Sci. 2022, 224, 105033. [Google Scholar] [CrossRef]
- Tao, Y.; Li, C.; Song, X.; Ripley, E.M. Mineralogical, petrological and geochemical studies of the Limahe mafic–ultramatic intrusion and the associated Ni–Cu sulfide ores, SW China. Miner. Deposit. 2008, 43, 849–872. [Google Scholar] [CrossRef]
- Zhou, M.F.; Arndt, N.T.; Malpas, J.; Wang, C.Y.; Kennedy, A.K. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos 2008, 103, 352–368. [Google Scholar] [CrossRef]
- Tang, D.M.; Qin, K.Z.; Li, C.S.; Qi, L.S.; Su, B.X.; Qu, W.J. Zircon dating, Hf–Sr–Nd–Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China. Lithos 2011, 126, 84–98. [Google Scholar] [CrossRef]
- Luo, W.; Zhanga, Z.; Santosha, M.; Houa, T.; Huanga, H.; Zhua, J.; Wanga, X.; Fua, X. Petrology and geochemistry of Permian mafic–ultramafic intrusions in the Emeishan large igneous province, SW China. Ore Geol. Rev. 2014, 56, 258–275. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Han, B.-F.; Feng, L.-X.; Liu, B. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China. J. Asian Earth Sci. 2015, 97, 337–351. [Google Scholar] [CrossRef]
- Izokh, A.E.; Vishnevskii, A.V.; Polyakov, G.V.; Shelepaev, R.A. Age of picrate and picrodolerite magmatism in Western Mongolia. Russ. Geol. Geophys. 2011, 52, 7–23. [Google Scholar] [CrossRef]
- Mao, Y.J.; Dash, B.; Qin, K.Z.; Bujinlkham, B.; Tang, D.M. Comparisons among the Oortsog, Dulaan, and Nomgon mafic-ultramafic intrusions in central Mongolia and Ni-Cu deposits in NW China: Implications for economic Ni-Cu-PGE ore exploration in central Mongolia. Russ. Geol. Geophys. 2018, 59, 1–18. [Google Scholar] [CrossRef]
- Shapovalova, M.O.; Tolstykh, N.D.; Shelepaev, R.A.; Tsibizov, L.V. The Oortsog Peridotite-Troctolite-Gabbro Intrusion, Western Mongolia: New Petrological and Geochronological Constraints. Russ. Geol. Geophys. 2019, 60, 845–861. [Google Scholar] [CrossRef]
- Borisenko, A.S.; Sotnokov, V.I.; Izokh, A.E.; Polyakov, G.V.; Obolensky, A.A. Permo-triassic mineralization in Asia and ist relation with plume magmatism. Russ. Geol. Geophys. 2006, 47, 170–186. [Google Scholar]
- Zhang, C.L.; Li, Z.X.; Li, X.H.; Xu, Y.G.; Zhou, G.; Ye, H.M. A Permian large igneous province in Tarim and Central Asia norogenic belt, NW China: Results of aca. Ma mantle plume? Geol. Soc. Am. Bull. 2010, 122, 2020–2040. [Google Scholar] [CrossRef]
- Xu, Y.-G.; Wei, X.; Luo, Z.-Y.; Liu, H.; Cao, J. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos 2014, 204, 20–35. [Google Scholar] [CrossRef]
- Dobretsov, N.L. 250 Ma large igneous provinces of Asia: Siberian and Emeishan traps (plateau basalts) and associated granitoids. Russ. Geol. Geophys. 2005, 46, 870–890. [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I. Deep geodynamics and mantle plumes: Their role in the formation of the Central Asian orogenic belt. Petrology 2003, 11, 504–531. [Google Scholar]
- Bryan, S.E.; Ernst, R.E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 2008, 86, 175–202. [Google Scholar] [CrossRef] [Green Version]
- Yarmolyuk, V.V.; Kozlovsky, A.M.; Kuzmin, M.I. Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area). Russ. Geol. Geophys. 2016, 57, 357–370. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kozlovsky, A.M.; Sal’nikova, E.B.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G. Age of the Khangai batholith and challenge of polychronic batholith formation in Central Asia. Dokl. Earth Sci. 2013, 452, 1001–1007. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kozlovsky, A.M.; Travin, A.V.; Kirnozova, T.I.; Fugzan, M.M.; Kozakov, I.K.; Plotkina, Y.V.; Eenzhin, G.; Oyuunchimeg, T.; Sviridova, O.E. Duration of formation and geodynamic nature of the giant batholiths of Central Asia: Data from geological and geochronological studies of the Khangai batholith. Stratigr. Geol. Correl. 2019, 27, 79–102. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: Geological and isotopic evidence. J. Asian Earth Sci. 2004, 23, 605–627. [Google Scholar] [CrossRef]
- Savatenkov, V.M.; Smirnova, Z.B.; Yarmolyuk, V.V.; Kozlovsky, A.M.; Sviridova, O.E. Nd and Pb isotopic composition of granitoids in the Khangai batholith as an indicator of crust-forming processes in the terranes of the Central Asian orogenic belt. Petrology 2018, 26, 351–367. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kozlovsky, A.M.; Savatenkov, V.M.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Enzhin, G. Composition, sources and geodynamic nature of giant batholiths of Central Asia: According to geochemical and Nd isotopic studies of granitoids of the Khangai zoned magmatic area. Petrology 2016, 24, 468–498. [Google Scholar] [CrossRef]
- Izokh, A.E.; Polyakov, G.V.; Gibsher, A.S.; Balykin, P.A.; Zhuravlev, D.Z.; Parkhomenko, V.A. Hich-alumina stratified gabroids of the Central-Asian fold belt: Geochemistry, Sm-Nd isotopic AGE, and geodynamic conditions of formation. Russ. Geol. Geophys. 1998, 39, 1565–1577. [Google Scholar]
- Sal’nikova, E.B.; Yakovleva, S.Z.; Kotov, A.B.; Tolmacheva, E.V.; Plotkina, Y.V.; Fedoseenko, A.M.; Kozlovskii, A.M.; Yarmolyuk, V.V. Crystallogenesis of zircon in alkaline granites and specifics of zircon U-Pb dating: A case study of the Khangai magmatic area. Petrology 2014, 22, 450–461. [Google Scholar] [CrossRef]
- Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Kalugin, V. PGE-Cu-Ni Mineralization of Mafic-Ultramafic Massifs of the Khangai Upland, Western Mongolia. Minerals 2020, 10, 942. [Google Scholar] [CrossRef]
- Kuzmin, M.I.; Yarmolyuk, V.V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 2014, 55, 120–143. [Google Scholar] [CrossRef]
- Sengor, A.M.C.; Natalin, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Kruk, N.N.; Rudnev, S.N.; Vladimirov, A.G.; Shokalsky, S.P.; Kovach, V.P.; Serov, P.A.; Volkova, N.I. Early-Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42, 928–948. [Google Scholar] [CrossRef]
- Safonova, I.; Seltmann, R.; Kroner, A.; Gladkochub, D.; Schulmann, K.; Xiao, W.J.; Kim, J.; Komiya, T.; Sun, M. A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes 2011, 34, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Kozakov, I.K.; Kotov, A.B.; Kovach, V.P.; Sal’nikova, E.B. Crust-forming processes in the geological development of the Baidarik block of Central Mongolia: Sm-Nd isotope data. Petrology 1997, 5, 240–248. [Google Scholar]
- Badarch, G.; Cunningham, W.D.; Brian, F.W. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of central Mongolia. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Tomurtogoo, O. Tectonics of Mongolia. In Tectonics of Northern, Central and Eastern Asia, Explanatory Note to the Tectonic Map of Northern Central Eastern Asia and Adjacent Areas at Scale 1:2500000; VSEGEI Printing House: Saint Petersburg, Russia, 2014; pp. 110–126. [Google Scholar]
- Hamilton, W.B. Form of the Sudbury lopolith. Can. Miner. 1960, 6, 437–447. [Google Scholar]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004; p. 730. [Google Scholar]
- Williams, I.S. U-Th-Pb Geochronology by Ion Microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar]
- Vermeesch, P. Dissimilarity measures in detrital geochronology. Earth Sci. Rev. 2018, 178, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Karmanova, N.G.; Karmanov, N.S. Universal Method of X-ray Fluorescence Silicate Analysis of Rocks on the ARL-9900XP Spectrometer. In Proceedings of the All-Russian Conference on X-ray Spectral Analysis, Novosibirsk, Russia, 19–23 September 2011; p. 126. [Google Scholar]
- Nikolaeva, I.V.; Palesskiy, S.V.; Kozmenko, O.A.; Anoshin, G.N. Determination of rare-earth and highly charged elements in standard geological samples by inductively coupled plasma mass spectrometry (ICP-MS). Geochemistry 2008, 10, 1085–1091. [Google Scholar]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: New York, NY, USA, 1984; pp. 63–114. [Google Scholar]
- McDonough, W.F.; Sun, S.S.; Ringwood, A.E.; Jagoutz, E.; Hofmann, A.W. Potassium, Rubidium and Cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 1992, 56, 1001–1012. [Google Scholar] [CrossRef]
- Tanaka, T.; Amakawa, H.; Togashi, S.; Kamioka, H. JNdi-1: A neodymium isotopic reference in consistency with La Jolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; Jong, J.D.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS Geochem. Geophys. Geosyst. 2006, 7, 1525–2027. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Tanweer, A.; Szaran, J.; Halas, S. A modified technique for the preparation of SO2 from sulphates and sulphides for sulfur isotope analyses. Isot. Environ. Health Stud. 2002, 38, 177–183. [Google Scholar] [CrossRef]
- Heaman, L.M.; Bowins, R.; Crocket, J. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochim. Cosmochim. Acta 1990, 54, 1597–1607. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 25–104. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Can. Miner. 1989, 27, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Leake, B.E.; Woolley, A.R.; Birch, W.D.; Burke, E.A.J.; Ferraris, G.; Grice, J.D.; Hawthorne, F.C.; Kisch, H.J.; Krivovichev, V.G.; Schumacher, J.C.; et al. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Can. Miner. 2003, 41, 1355–1370. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.-P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, C.; Zhao, X.; Yang, Y.; Ke, J.; Zu, B. Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China. J. Asian Earth Sci. 2016, 126, 1–13. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Liu, C.-Z.; Ge, W.-C.; Wu, F.-Y.; Chu, Z.-Y. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): Implications for crust-mantle decoupling. Lithos 2011, 126, 233–247. [Google Scholar] [CrossRef]
- Khosbayar, P.; Byamba, B.; Binderya, T.; Gansukh, Z.; Enkhtuvshin, K.; Bataa, C.; Gaechimeg, Y.; Erdenechimeg, J. Geological Map, Ugiinuur Region L–48–I, II, Scale: 1:200000. Central Geological Expedition of MG and GRP MPR; Mineral Resources Authority of Mongolia—Geological Office: Ulaanbaatar, Mongolia, 1987.
- Izokh, A.E.; Polyakov, G.V.; Krivenko, A.P.; Bognibov, V.I.; Bayarbileg, L. The Gabbro Formation of Western Mongolia, 1st ed.; Nauka: Novosibirsk, Russia, 1990; p. 269. [Google Scholar]
- Izokh, A.E.; Mayorova, O.N.; Lavrentiev, Y.G. Minerals of the platinum metals in the Nomgon troctolite–anorthozite–gabbro intrusive massif (Mongolia). Russ. Geol. Geophys. 1992, 33, 104–110. [Google Scholar]
- Gavrilova, S.P.; Luchitskaya, A.I.; Frikh-Khar, D.I.; Orolmaa, D.; Badamgarav, J. Volcano-Plutonic Associations of Central Mongolia, 1st ed.; Nauka: Moscow, Russia, 1991; p. 229. [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Kozakov, I.K.; Sal’nikova, E.B.; Bibikova, E.V.; Kovach, V.P.; Kozlovsky, A.M.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G.; et al. The age of the Khangai batholith and the problem of batholith formation in Central Asia. Dokl. Earth Sci. 2008, 423, 1223–1228. [Google Scholar] [CrossRef]
- Izokh, A.E.; Vishnevskii, A.V.; Polyakov, G.V.; Kalugin, V.M.; Shelepaev, R.A.; Egorova, V.V.; Oyunchimeg, T. The ureg nuur Pt-bearing volcanoplutonc picrate-basalt association in the Mongolian Altay as evidence for a cambrian-ordovician Large Igneous province. Russ. Geol. Geopys. 2010, 51, 521–533. [Google Scholar] [CrossRef]
- Wager, L.R.; Brown, G.M. Layered Igneous Rocks; W.H. Freeman: San Francisco, CA, USA, 1967; p. 588. [Google Scholar]
- Kislov, E.V. The Ioko-Dovyren Layered Massif, 2nd ed.; RAS SD Buryat Scientific Centre Publishing House: Ulan-Ude, Russia, 1998; p. 264. [Google Scholar]
- Izokh, A.E.; Polyakov, G.V.; Hoa, T.T.; Balykin, P.A.; Phuong, N.T. Permian-triassic ultramafic-mafic magmatism of Northern Vietnam and Southern China as expression of plume magmatism. Russ. Geol. Geophys. 2005, 46, 922–932. [Google Scholar]
- Kuz’min, V.K.; Tuganova, E.V. New data on the isotope composition of sulfur in thecopper-nickel sulfide ores of the northwestern part of the Siberian Platform. Sov. Geol. Geophys. 1977, 18, 98–100. [Google Scholar]
- Malitch, K.; Latypov, R.; Badanina, I.; Sluzhenikin, S. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’skProvince (Russia): Evidence from copper and sulfur isotopes. Lithos 2014, 204, 172–187. [Google Scholar] [CrossRef]
- Arndt, N.T.; Czamanske, G.K.; Walker, R.J.; Chauvel, C.; Fedorenko, V.A. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol. 2003, 98, 495–515. [Google Scholar] [CrossRef]
- Li, C.; Ripley, E.M.; Naldrett, A.J. Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: Implications for ore forming processes in dynamic magma conduits. Econ. Geol. 2003, 98, 69–86. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoric and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Gao, J.F.; Zhou, M.F.; Lightfoot, P.C.; Wang, C.Y.; Qi, L. Origin of PGE−poor and Cu−rich magmatic sulfides from the Kalatongke deposit, Xinjiang, Northwest China. Econ. Geol. 2012, 107, 481–506. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Lightfoot, P. Formation of Magmatic Nickel-Sulfide Deposits and Processes Affecting Their Copper and Platinum-Group Element Contents. In Economic Geology; Hedenquist, J., Thompson, J., Goldfarb, R., Richards, J., Eds.; Society of Economic Geology: Littleton, MA, USA, 2005; pp. 179–213. [Google Scholar]
- Barnes, S.J.; Maier, W.D. The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids. Geosci. Canada 1999, 13, 69–106. [Google Scholar]
- Song, X.Y.; Wang, Y.S.; Chen, L.M. Magmatic Ni−Cu−(PGE) deposits in magma plumbing systems: Features, formation and exploration. Geosci Front. 2011, 2, 375–384. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Part of the Complex | Name of Rock | Latitude (N) | Longitude (E) | |
---|---|---|---|---|---|
Intrusion 1 | |||||
1 | SH100-14 | Northwestern | Bt-Am-Ol gabbronorite | 46.728381 | 97.447151 |
2 | SH102-14 | Northwestern | Bt-Am-Ol gabbronorite | 46.727738 | 97.447997 |
3 | SH103-14 | Northwestern | Bt-Am-Ol gabbronorite | 46.727333 | 97.448625 |
4 | SH105-14 | Northwestern | Bt-Am-Ol gabbronorite | 46.726724 | 97.449163 |
5 | SH220-14/2 | Northwestern | Anorthosite | 46.729082 | 97.445146 |
6 | SH220-14/10 | Northwestern | Leucogabbro | 46.729274 | 97.444686 |
7 | SH225-14 | Northwestern | Leucogabbro | 46.729533 | 97.444943 |
8 | SH227-14 | Northwestern | Anorthosite | 46.729367 | 97.444792 |
9 | SH228-14 | Northwestern | Am gabbro | 46.729347 | 97.444766 |
10 | SH229-14 | Northwestern | Bt leucogabbro | 46.729296 | 97.444747 |
11 | SH11-15 | Central | Bt-Am-Ol melagabbronorite | 46.70177 | 97.50741 |
12 | SH12-15 | Central | Bt-Am-Ol melagabbronorite | 46.7058 | 97.52436 |
13 | SH15-15 | Central | Bt-Am gabbro | 46.71023 | 97.52673 |
14 | SH16-15/1 | Central | Bt-Am gabbro | 46.71004 | 97.5284 |
15 | SH79-16 | Central | Bt-Am gabbro | 46.70414 | 97.54219 |
16 | SH81-16 | Central | Bt-Am gabbro | 46.69661 | 97.55044 |
17 | SH94-16/6 | Central | Bt-Am gabbronorite | 46.68693 | 97.48623 |
18 | SH97-16 | Central | Bt-Am-Ol gabbronorite | 46.69443 | 97.49313 |
19 | SH98-16/1 | Central | Bt-Am-Ol gabbro | 46.68999 | 97.49137 |
20 | SH235-17 | Central | Bt-Am gabbro | 46.679603 | 97.471888 |
21 | SH2-17 | Southeastern | Bt-Am leucogabbro | 46.688659 | 97.605492 |
22 | SH5-17 | Southeastern | Bt-Am leucogabbro | 46.687670 | 97.602768 |
23 | SH7-17 | Southeastern | Bt-Am leucogabbro | 46.687253 | 97.599314 |
24 | SH14-17 | Southeastern | Bt-Am leucogabbro | 46.688338 | 97.596355 |
25 | SH231-17 | Southeastern | Bt-Am-Ol gabbronorite | 46.686665 | 97.607608 |
26 | SH232-17 | Southeastern | Bt-Am gabbro | 46.686665 | 97.607608 |
Intrusion 2 | |||||
27 | SH234-14 | Northwestern | Bt-Am-Ol monzogabbro | 46.723678 | 97.451858 |
28 | SH235-14 | Northwestern | Bt-Am-Ol monzogabbro | 46.728046 | 97.453226 |
Felsic and intermediate rocks | |||||
29 | SH10-15 | Q monzodiorite | 46.71689 | 97.47012 | |
30 | SH16-17 | Q monzodiorite | 46.671505 | 97.625913 | |
31 | SH17-17 | Q monzonite | 46.683439 | 97.456712 | |
32 | PM30-16 | granodiorite | 46.716230 | 97.478799 | |
33 | SH80-16 | Bt monzonite | 46.6971 | 97.5668 | |
34 | SH17-15 | Bt-Cpx-Am syenite | 46.72047 | 97.54023 |
Spot | U | Th | 232Th 238U | 206Pbt, % | 206Pb*, ppm | Isotope Parameters | Rho | Age, Ma | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | 207Pb* 206Pb* | ±% | 207Pb* 235U | ±% | 206Pb* 238U | ±% | 206Pb 238U | 207Pb 206Pb | ||||||||
Anorthosite (SH220-14/2) | ||||||||||||||||
1.1 | 314 | 411 | 1.35 | 0.28 | 11.20 | 0.0518 | 4.8 | 0.295 | 5.1 | 0.04141 | 1.8 | 0.352 | 261.5 | ±4.6 | 274 | ±110 |
2.1 | 139 | 149 | 1.11 | 0.00 | 4.92 | 0.0516 | 6.1 | 0.293 | 6.5 | 0.04121 | 2.1 | 0.330 | 260.3 | ±5.5 | 269 | ±140 |
3.1 | 419 | 604 | 1.49 | 0.35 | 14.40 | 0.0507 | 4.9 | 0.278 | 5.2 | 0.03978 | 1.7 | 0.337 | 251.5 | ±4.3 | 226 | ±110 |
4.1 | 273 | 318 | 1.20 | 0.00 | 9.28 | 0.0523 | 4.3 | 0.286 | 4.8 | 0.03964 | 2.0 | 0.419 | 250.6 | ±4.9 | 300 | ± 99 |
5.1 | 211 | 264 | 1.29 | 0.00 | 7.42 | 0.0506 | 5.0 | 0.285 | 5.4 | 0.0409 | 1.9 | 0.360 | 258.4 | ±4.9 | 221 | ±120 |
6.1 | 253 | 374 | 1.53 | 0.00 | 8.87 | 0.0535 | 4.4 | 0.301 | 4.8 | 0.0408 | 1.9 | 0.393 | 257.8 | ±4.7 | 352 | ± 99 |
7.1 | 424 | 592 | 1.44 | 0.21 | 14.60 | 0.0523 | 4.0 | 0.288 | 4.4 | 0.03994 | 1.7 | 0.396 | 252.4 | ±4.3 | 298 | ± 91 |
8.1 | 258 | 314 | 1.26 | 0.58 | 8.93 | 0.0501 | 7.4 | 0.277 | 7.6 | 0.04008 | 1.9 | 0.250 | 253.3 | ±4.7 | 198 | ±170 |
9.1 | 577 | 606 | 1.09 | 0.00 | 20.20 | 0.0522 | 2.9 | 0.293 | 3.3 | 0.04077 | 1.7 | 0.497 | 257.6 | ±4.2 | 294 | ± 66 |
10.1 | 615 | 887 | 1.49 | 0.29 | 21.50 | 0.0508 | 3.9 | 0.284 | 4.2 | 0.04059 | 1.7 | 0.395 | 256.5 | ±4.2 | 230 | ± 89 |
Bt-Am-Ol gabbronorite (SH105-14) | ||||||||||||||||
1.1 | 233 | 274 | 1.21 | 0.00 | 8.36 | 0.0500 | 3.4 | 0.288 | 3.9 | 0.04167 | 2.0 | 0.511 | 263.6 | ±5.2 | 197 | ± 78 |
2.1 | 356 | 689 | 2.00 | 0.00 | 12.50 | 0.0518 | 2.7 | 0.293 | 3.3 | 0.041 | 1.8 | 0.560 | 258.9 | ±4.7 | 278 | ± 63 |
3.1 | 404 | 670 | 1.72 | 0.00 | 14.70 | 0.0517 | 2.6 | 0.301 | 3.2 | 0.04225 | 1.8 | 0.581 | 266.7 | ±4.8 | 272 | ± 59 |
4.1 | 699 | 2082 | 3.07 | 0.25 | 24.80 | 0.0510 | 3.0 | 0.290 | 3.5 | 0.04119 | 1.8 | 0.507 | 260.4 | ±4.6 | 240 | ± 70 |
5.1 | 352 | 241 | 0.71 | 0.00 | 12.70 | 0.0511 | 2.8 | 0.296 | 3.4 | 0.04202 | 1.9 | 0.548 | 265.5 | ±4.9 | 246 | ± 65 |
6.1 | 393 | 456 | 1.20 | 0.30 | 14.10 | 0.0494 | 4.0 | 0.284 | 4.4 | 0.0417 | 1.9 | 0.422 | 264.1 | ±4.8 | 164 | ± 93 |
7.1 | 269 | 357 | 1.37 | 0.00 | 9.77 | 0.0525 | 3.2 | 0.305 | 3.8 | 0.04222 | 2.0 | 0.531 | 266.3 | ±5.3 | 306 | ± 73 |
8.1 | 482 | 483 | 1.04 | 0.24 | 17.10 | 0.0511 | 3.3 | 0.290 | 3.8 | 0.04108 | 1.8 | 0.482 | 259.6 | ±4.7 | 246 | ± 77 |
9.1 | 220 | 358 | 1.68 | 0.00 | 7.76 | 0.0503 | 4.2 | 0.285 | 4.6 | 0.04111 | 1.9 | 0.424 | 260.1 | ±5.0 | 208 | ± 97 |
10.1 | 209 | 359 | 1.77 | 0.30 | 7.57 | 0.0501 | 4.7 | 0.290 | 5.1 | 0.04196 | 2.0 | 0.386 | 265.4 | ±5.2 | 197 | ±110 |
Sample № | 87Rb/86Sr | 87Sr/86Sr | ±2σ | ISr | 147Sm/144Nd | 143Nd/144Nd | ±2σ | εNd(0) | εNd(t) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | SH220-14/10 | 0.00794 | 0.704690 | 0.00002 | 0.70466 | 0.10872 | 0.512550 | 0.0003 | −1.71 | 1.21 |
2 | SH105-14 | 0.02233 | 0.704660 | 0.00004 | 0.70458 | 0.11756 | 0.512595 | 0.0003 | −0.84 | 1.79 |
3 | SH225-14 | 0.00771 | 0.704650 | 0.00002 | 0.70462 | 0.16622 | 0.512660 | 0.0005 | 0.42 | 1.43 |
4 | SH12-15 | 0.09682 | 0.705170 | 0.00004 | 0.70481 | 0.12964 | 0.512563 | 0.0003 | −1.46 | 0.76 |
5 | SH2-17 | 0.04698 | 0.705191 | 0.00002 | 0.70502 | 0.11153 | 0.512505 | 0.0003 | −2.59 | 0.24 |
6 | SH7-17 | 0.05247 | 0.705196 | 0.00001 | 0.70500 | 0.14538 | 0.512606 | 0.0004 | −0.62 | 1.08 |
7 | SH231-17 | 0.03658 | 0.705136 | 0.00001 | 0.70500 | 0.10104 | 0.512473 | 0.0003 | −3.22 | -0.05 |
8 | SH235-14 | 0.10768 | 0.705370 | 0.00003 | 0.70497 | 0.11845 | 0.512520 | 0.0003 | −2.30 | 0.30 |
9 | SH10-15 | 0.61153 | 0.707030 | 0.00002 | 0.70477 | 0.11150 | 0.512514 | 0.0003 | −2.42 | 0.41 |
10 | SH16-17 | 0.87250 | 0.708195 | 0.00001 | 0.70497 | 0.10834 | 0.512781 | 0.0003 | 2.78 | 5.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelepaev, R.; Shapovalova, M.; Egorova, V.; Shelepov, Y.; Oyunchimeg, T.-U.; Tolstykh, N. Petrology and Age of the Yamaat Uul Mafic Complex, Khangai Mountains, Western Mongolia. Minerals 2023, 13, 833. https://doi.org/10.3390/min13060833
Shelepaev R, Shapovalova M, Egorova V, Shelepov Y, Oyunchimeg T-U, Tolstykh N. Petrology and Age of the Yamaat Uul Mafic Complex, Khangai Mountains, Western Mongolia. Minerals. 2023; 13(6):833. https://doi.org/10.3390/min13060833
Chicago/Turabian StyleShelepaev, Roman, Maria Shapovalova, Vera Egorova, Yaroslav Shelepov, Tumen-Ulzii Oyunchimeg, and Nadezhda Tolstykh. 2023. "Petrology and Age of the Yamaat Uul Mafic Complex, Khangai Mountains, Western Mongolia" Minerals 13, no. 6: 833. https://doi.org/10.3390/min13060833
APA StyleShelepaev, R., Shapovalova, M., Egorova, V., Shelepov, Y., Oyunchimeg, T. -U., & Tolstykh, N. (2023). Petrology and Age of the Yamaat Uul Mafic Complex, Khangai Mountains, Western Mongolia. Minerals, 13(6), 833. https://doi.org/10.3390/min13060833