Geological Structures Controlling Au/Ba Mineralization from Aeromagnetic Data: Harrat ad Danun Area, Saudi Arabia
Abstract
:1. Introduction
2. Geological Setting
- Precambrian rocks: the Fayiadah Formation, which includes felsic volcaniclastic rocks, andesitic rhyolitic and basaltic lavas, as well as andesitic volcaniclastic rocks, is attributed to this group.
- Precambrian intrusive rocks: belong to the Hishash Complex (igd), which is composed of granodiorite, and the Shiwan Complex (Kwtn), which is composed of hornblende tonalite.
- Tertiary rocks: these rocks primarily come from the Haddat ash Sham (Tsh) and Hammah Basalt formations (Tmhb). Whereas the latter is made up of alkalic olivine basalt, the former is composed of pebbly sandstone and siltstone and is exposed in the study area’s north and south.
- Quaternary deposits: these make up a significant component of the study area and are mostly the result of weathering of the existing rocks. The alluvium’s thickness varies from place to place, rarely exceeding 4 m in the study area’s higher terrain while rising in the lower terrain and increasing to 29 m [37]. The Wadi Hishash soils are highly rich in quartz sand. In this region, the elevation decreases from 425 m to roughly 200 m. Pebbly sandstone and siltstone, which are composed of sand and gravel, surround the alluvial deposits.
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DMMR. Saudi Arabian Directorate General of Mineral Resources. Mineral Resources Activities; Ministry of Petroleum and Mineral Resources: Riyadh, Saudi Arabia, 1970; pp. 46–70. [Google Scholar]
- Darwish, M.A.; Dar Ikram, H.; Abdulaziz, M.I. Saudi Arabia Starts Up a New Gold Mine at Mahd-Adh-Dahab, E&M/J; Macgraw-Hill: New York, NY, USA, 1988; pp. 34–38. [Google Scholar]
- Darwish, M.A.; Hanif, M. Minerals potential of Saudi Arabia. In Proceedings of the 1st Conference on Indigenous Materials and Their Utilization in the Gulf Region, Kuwait, 1 November 1986. [Google Scholar]
- Ibrahim, M. Big Plans for Mineral Investment in the Kingdom of Saudi Arabia; The Arab News Daily: Jeddah, Saudi Arabia, 1992. [Google Scholar]
- Babhair, A. Kingdom of Saudi Arabia, A Country Report; Saudi Geological Survey: Jeddah, Saudi Arabia, 2002. [Google Scholar]
- DMMR. Saudi Arabian Deputy Ministry for Mineral Resources Activities and Achievements 1990–1994; Ministry of Petroleum and Mineral Resources: Jeddah, Saudi Arabia, 1995. [Google Scholar]
- DMMR. Ministry of Petroleum and Mineral Resources, Saudi Arabian Mineral Resources Annual Report; Ministry of Petroleum and Mineral Resources: Jeddah, Saudi Arabia, 1984; pp. 13–14. [Google Scholar]
- Mudd, G. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future; Research Report No RR5; Department of Civil Engineering, Monash University and Mineral Policy Institute: Melbourne, Australia, 2007. [Google Scholar]
- Mudd, G.; Ward, J. Will Sustainability Constraints Cause ‘Peak Minerals’? In Proceedings of the 3rd International Conference on Sustainability Engineering and Science: Blueprints for Sustainable Infrastructure, Auckland, New Zealand, 9–12 December 2008. [Google Scholar]
- Darwish, M.A.; Butt, N.A. Mineral Resource Potential and Its Development in Saudi Arabia. JKAU Eng. Sci. 1996, 8, 107–120. [Google Scholar] [CrossRef]
- Fourth Development Plan (1985–1990); Ministry of Planning KSA: Riyadh, Saudi Arabia, 1985; pp. 167–184.
- Davis, G.; Tilton, J. Should Developing Countries Renounce Mining? A Perspective on the Debate, Colorado School of Mines. 2002. Available online: https://www.icmm.com/uploads/62TiltonDavisfinalversion.pdf (accessed on 1 April 2023).
- Togolo, M. Mining and sustainability—Placer Niugini Limited. In Proceedings of the PACRIM’99, International Conference on Earth Science, Exploration and Mining around the Pacific Rim, Bali, Indonesia, 10–13 October 1999. [Google Scholar]
- Aldagheiri, M. The minerals sector and sustainable development in Saudi Arabia. In Proceedings of the Sustainable Development Indicators in the Minerals Industry (SDIMI) 2009 Conference, Gold Coast, Australia, 6–8 July 2009. 28p. [Google Scholar]
- Alharbi, O.; Amjad, M.; Alabdulaaly, A.; Khater, G.; Alsari, A. Industrial utilization of white silica sandstone in Riyadh area, Saudi Arabia. Arab. Gulf J. Scient. Res. 1997, 15, 29–39. [Google Scholar]
- Al Jahdli, N.S. Geology of Jabal Ghadarah Area, Bi’r Tawilah District with Special Emphasis on Listvinite as a Potential Source for Gold in the Kingdom of Saudi Arabia. Master’s Thesis, King Abdulaziz University, Jeddah, Saudi Arabia, 2004. [Google Scholar]
- Harbi, H.A.; Eldougdoug, A.A.; Al Jahdali, N.S. Evolution of the Arabian Shield and associated mineralization. In Proceedings of the 9th Arab Conference of Mineral Resources, Jeddah, Saudi Arabia, 30 October–1 November 2006; pp. 1–11. [Google Scholar]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Al-Garni, M.A.; Hassanein, H.I.E. Aeromagnetic data analysis to enhance the demonstration of the subsurface mineralized zone occurrences, As-Safra prospect area, Saudi Arabia. Arab. J. Geosci. 2010, 5, 313–326. [Google Scholar] [CrossRef]
- Surour, A.A.; Harbi, H.M.; Ahmed, A.H. The Bi’r Tawilah deposit, central western Saudi Arabia: Supergene enrichment of a Pan-African epithermal gold mineralization. J. Afr. Earth Sci. 2014, 89, 149–163. [Google Scholar] [CrossRef]
- Torres, J.E.A. The Potential for CO2 Disposal in Western Saudi Arabia: The Jizan Group Basalts. Master’s Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2020. [Google Scholar]
- Eldosouky, A.M.; El-Qassas, R.A.Y.; Pham, L.T.; Abdelrahman, K.; Alhumimidi, M.S.; El Bahrawy, A.; Mickus, K.; Sehsah, H. Mapping Main Structures and Related Mineralization of the Arabian Shield (Saudi Arabia) Using Sharp Edge Detector of Transformed Gravity Data. Minerals 2022, 12, 71. [Google Scholar] [CrossRef]
- Alsaud, M.M. Structural mapping from high resolution aeromagnetic data in west central Arabian Shield, Saudi Arabia using normalized derivatives. Arab. J. Geosci. 2008, 1, 129–136. [Google Scholar] [CrossRef]
- Elawadi, E.; Mogren, S.; Ibrahim, E.; Batayneh, A.; Al-Bassam, A. Utilizing potential field data to support delineation of groundwater aquifers in the southern Red Sea coast, Saudi Arabia. J. Geophys. Eng. 2012, 9, 327–335. [Google Scholar] [CrossRef]
- Alandoonisi, N.; Harbi, H.M.; Atef, A.; Aboualnaga, H.; Rashed, M. Geophysical Assessment of the Environmental Pollution at Downstream of Wadi Uranah, Southwest of Makkah, Saudi Arabia. Nat. Environ. Pollut. Technol. 2018, 17, 391–398. [Google Scholar]
- Abuelnaga, H.S.; Aboulela, H.A.; El-Sawy, E.-S.K.; El Qassas, R.A. Detection of structural setting that controlling Hammam Faroun area, using aeromagnetic and seismicity data, Gulf of Suez, Egypt. J. Afr. Earth Sci. 2019, 158, 103560. [Google Scholar] [CrossRef]
- Assran, A.; El Qassas, R.; Yousef, M. Detection of prospective areas for mineralization deposits using image analysis technique of aeromagnetic data around Marsa Alam-Idfu road, Eastern Desert, Egypt. Egypt. J. Pet. 2019, 28, 61–69. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Pham, L.T.; Hassan, P.; Pradhan, M.B. A comparative study of THG, AS, TA, Theta, TDX, and LTHG techniques for improving source boundaries detection of magnetic data using synthetic models: A case study from G. Um Monqul, North Eastern Desert, Egypt. J. Afr. Earth Sci. 2020, 170, 103940. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; El-Qassas, R.A.; Pour, A.B.; Mohamed, H.; Sekandari, M. Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv. Space Res. 2021, 68, 3641–3662. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Pham, L.T.; El-Qassas, R.A.Y.; Hamimi, Z.; Oksum, E. Lithospheric Structure of the Arabian-Nubian Shield Using Satellite Potential Field Data. In The Geology of the Arabian-Nubian Shield; Regional Geology Reviews; Hamimi, Z., Fowler, A.R., Liégeois, J.P., Collins, A., Abdelsalam, M.G., Abd EI-Wahed, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- El-Qassas, R.A.Y.; Ahmed, S.B.; Abd-ElSalam, H.F.; Abu-Donia, A.M. Integrating of Remote Sensing and Airborne Magnetic Data to Outline the Geologic Structural Lineaments That Controlled Mineralization Deposits for the Area around Gabal El-Niteishat, Central Eastern Desert, Egypt. Geomaterials 2021, 11, 1–21. [Google Scholar] [CrossRef]
- El-Qassas, R.A.Y.; Abu-Donia, A.M.; Omar, A.E.A. Delineation of hydrothermal alteration zones associated with mineral deposits, using remote sensing and airborne geophysics data. A case study: El-Bakriya area, Central Eastern Desert, Egypt. Acta Geod. Geophys. 2023, 58, 71–107. [Google Scholar] [CrossRef]
- Elkhateeb, S.O.; Eldosouky, A.M.; Khalifa, M.O.; Aboalhassan, M. Probability of mineral occurrence in the Southeast of Aswan area, Egypt, from the analysis of aeromagnetic data. Arab. J. Geosci. 2021, 14, 1514. [Google Scholar] [CrossRef]
- Kharbish, S.; Eldosouky, A.M.; Amer, O. Integrating mineralogy, geochemistry and aeromagnetic data for detecting Fe–Ti ore deposits bearing layered mafic intrusion, Akab El-Negum, Eastern Desert, Egypt. Sci. Rep. 2022, 12, 15474. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Achadu, O.-I.M.; Thompson, C.E.; Eldosouky, A.M.; Abdelrahman, K.; Andráš, P. Towards Understanding the Source of Brine Mineralization in Southeast Nigeria: Evidence from High-Resolution Airborne Magnetic and Gravity Data. Minerals 2022, 12, 146. [Google Scholar] [CrossRef]
- Mahdi, A.M.; Eldosouky, A.M.; El Khateeb, S.O.; Youssef, A.M.; Saad, A.A. Integration of remote sensing and geophysical data for the extraction of hydrothermal alteration zones and lineaments; Gabal Shilman basement area, Southeastern Desert, Egypt. J. Afr. Earth Sci. 2022, 194, 104640. [Google Scholar] [CrossRef]
- Moore, T.A.; Al-Rehaili, M.H. Explanatory Notes to the Geologic Map of the Makkah Quadrangle, Sheet21d, Kingdom of Saudi Arabia: Saudi Arabian Dir. Gen. Min. Res. Geoscience Map GM-107C, 1:250,000 Scale. 1989. Available online: https://www.scirp.org/%28S%28czeh2tfqyw2orz553k1w0r45%29%29/reference/referencespapers.aspx?referenceid=2170065 (accessed on 1 April 2023).
- El-Hames, A.S. Determination of groundwater availability in shallow arid region aquifers utilizing GIS technology: A case study in Hada Al-Sham, Western Saudi Arabia. Hydrogeol. J. 2004, 13, 640–648. [Google Scholar] [CrossRef]
- Aero Service. Final Operational Report of Airborne Magnetic; Arabian Geophysical and Surveying Company: Dhahran, Saudi Arabia, 1966.
- Miller, H.G.; Singh, V. Potential field tilt—A new concept for location of potential field sources. J. Appl. Geophys. 1994, 32, 213–217. [Google Scholar] [CrossRef]
- Salem, A.; Williams, S.; Fairhead, D.; Smith, R.; Ravat, D. Interpretation of magnetic data using tilt-angle derivatives. Geophysics 2008, 73, L1–L10. [Google Scholar] [CrossRef]
- Barbosa, V.; Silva, J.B.C.; Medeiros, W.E. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 1999, 64, 48–60. [Google Scholar] [CrossRef]
- Dadet, P.; Marchesseau, J.; Millon, R.; Motti, E. Mineral occurrences related to stratigraphy and tectonics in Tertiary sediments near Umm Lajj, eastern Red Sea area, Saudi Arabia. Philos. Trans. R. Soc. Lond. Ser. A 1970, 267, 99–106. [Google Scholar]
- Reid, A.B.; Allsop, J.M.; Granser, H.; Millett, A.J.; Somerton, I.W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Bonnemaison, M.; Marcoux, E. Auriferous mineralization in some shear-zones: A three-stage model of metallogenesis. Miner. Deposita 1990, 25, 96–104. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Elkhateeb, S.O.; Mahdy, A.M.; Saad, A.A.; Fnais, M.S.; Abdelrahman, K.; Andráš, P. Structural analysis and basement topography of Gabal Shilman area, South Eastern Desert of Egypt, using aeromagnetic data. J. King Saud Univ. Sci. 2021, 34, 101764. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, K.; El-Qassas, R.A.Y.; Fnais, M.S.; Andráš, P.; Eldosouky, A.M. Geological Structures Controlling Au/Ba Mineralization from Aeromagnetic Data: Harrat ad Danun Area, Saudi Arabia. Minerals 2023, 13, 866. https://doi.org/10.3390/min13070866
Abdelrahman K, El-Qassas RAY, Fnais MS, Andráš P, Eldosouky AM. Geological Structures Controlling Au/Ba Mineralization from Aeromagnetic Data: Harrat ad Danun Area, Saudi Arabia. Minerals. 2023; 13(7):866. https://doi.org/10.3390/min13070866
Chicago/Turabian StyleAbdelrahman, Kamal, Reda Abdu Yousef El-Qassas, Mohammed S. Fnais, Peter Andráš, and Ahmed M. Eldosouky. 2023. "Geological Structures Controlling Au/Ba Mineralization from Aeromagnetic Data: Harrat ad Danun Area, Saudi Arabia" Minerals 13, no. 7: 866. https://doi.org/10.3390/min13070866
APA StyleAbdelrahman, K., El-Qassas, R. A. Y., Fnais, M. S., Andráš, P., & Eldosouky, A. M. (2023). Geological Structures Controlling Au/Ba Mineralization from Aeromagnetic Data: Harrat ad Danun Area, Saudi Arabia. Minerals, 13(7), 866. https://doi.org/10.3390/min13070866