The Behavior of Rare Earth Elements during Green Clay Authigenesis on the Congo Continental Shelf
Abstract
:1. Introduction
2. Green Clay Authigenesis at the Congo Shelf
3. Materials and Methods
3.1. Studied Glauconitic Pellets
3.2. Sample and Chemical Preparation
3.3. SEM Observations
3.4. Major and Trace Element Analyses
3.5. Nd and Hf Isotopic Analyses
4. Results
4.1. Major and Trace Element Abundances
4.2. Nd and Hf Isotope Compositions
5. Discussion
5.1. Trace Element Behavior during Green Clay Authigenesis
5.2. Negligible Seawater Influence for Nd and Hf Isotopes in Marine Authigenic Clays
5.3. Relict Accessory Phosphate Minerals Control REE Budget in Green Authigenic Clays
5.4. Implications for the Impact of Clay Authigenesis on the Marine REE Cycling
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalopoulos, P.; Aller, R.C. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. Science 1995, 270, 614–617. [Google Scholar] [CrossRef]
- Baldermann, A.; Warr, L.N.; Letofsky-Papst, I.; Mavromatis, V. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 2015, 8, 885–889. [Google Scholar]
- Dunlea, A.G.; Murray, R.W.; Santiago Ramos, D.P.; Higgins, J.A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 2017, 8, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, D.P.S.; Morgan, L.E.; Lloyd, N.S.; Higgins, J.A. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids. Geochim. Cosmochim. Acta 2018, 236, 99–120. [Google Scholar] [CrossRef]
- Baldermann, A.; Banerjee, S.; Czuppon, G.; Dietzel, M.; Farkaš, J.; Löhr, S.; Moser, U.; Scheiblhofer, E.; Wright, N.M.; Zack, T. Impact of green clay authigenesis on element sequestration in marine settings. Nat. Commun. 2022, 13, 1527. [Google Scholar]
- Isson, T.T.; Planavsky, N.J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 2018, 560, 471–475. [Google Scholar] [CrossRef]
- Trower, E.J.; Fischer, W.W. Precambrian Si isotope mass balance, weathering, and the significance of the authigenic clay silica sink. Sedim. Geol. 2019, 384, 1–11. [Google Scholar] [CrossRef]
- Frank, M. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev. Geophys. 2002, 40, 1–38. [Google Scholar]
- Goldstein, S.L.; Hemming, S.R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. In Treatise on Geochemistry; Elderfield, H., Turekian, K.K., Eds.; Elsevier: New York, NY, USA, 2003; Volume 6, pp. 453–489. [Google Scholar]
- Bertram, C.J.; Elderfield, H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochim. Cosmochim. Acta 1993, 57, 1957–1986. [Google Scholar] [CrossRef]
- Lacan, F.; Jeandel, C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface. Earth Planet. Sci. Lett. 2005, 232, 245–257. [Google Scholar] [CrossRef]
- Jeandel, C.; Oelkers, E.H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 2015, 395, 50–66. [Google Scholar]
- Abbott, A.N.; Löhr, S.; Trethewy, M. Are clay minerals the primary control on the oceanic rare earth element budget? Front. Mar. Sci. 2019, 6, 504. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.N.; Löhr, S.C.; Payne, A.; Kumar, H.; Du, J. Widespread lithogenic control of marine authigenic neodymium isotope records? Implications for paleoceanographic reconstructions. Geochim. Cosmochim. Acta 2022, 319, 318–336. [Google Scholar] [CrossRef]
- Du, J.; Haley, B.A.; Mix, A.C.; Abbott, A.N.; McManus, J.; Vance, D. Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments: The roles of authigenesis, marine silicate weathering and reverse weathering. Earth Planet. Sci. Lett. 2022, 596, 117792. [Google Scholar] [CrossRef]
- Rahlf, P.; Laukert, G.; Hathorne, E.C.; Vieira, L.H.; Frank, M. Dissolved neodymium and hafnium isotopes and rare earth elements in the Congo River Plume: Tracing and quantifying continental inputs into the southeast Atlantic. Geochim. Cosmochim. Acta 2021, 294, 192–214. [Google Scholar] [CrossRef]
- Hunt, H.R.; Summers, B.A.; Sieber, M.; Krisch, S.; Al-Hashem, A.; Hopwood, M.; Achterberg, E.E.; Conway, T.M. Distinguishing the influence of sediments, the Congo River, and water-mass mixing on the distribution of iron and its isotopes in the Southeast Atlantic Ocean. Mar. Chem. 2022, 247, 104181. [Google Scholar] [CrossRef]
- Al-Hashem, A.A.; Beck, A.J.; Krisch, S.; Menzel Barraqueta, J.L.; Steffens, T.; Achterberg, E.P. Particulate trace metal sources, cycling, and distributions on the southwest African shelf. Glob. Biogeochem. Cycles 2022, 36, e2022GB007453. [Google Scholar] [CrossRef]
- Goldstein, S.L.; O’nions, R.K.; Hamilton, P.J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 1984, 70, 221–236. [Google Scholar] [CrossRef]
- Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 2015, 170, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Vigier, N.; Burton, K.W.; Carignan, J.; Brenot, A.; Etoubleau, J.; Chu, N.C. The control of weathering processes on riverine and seawater hafnium isotope ratios. Geology 2006, 34, 433–436. [Google Scholar]
- Rickli, J.; Frank, M.; Baker, A.R.; Aciego, S.; De Souza, G.; Georg, R.B.; Halliday, A.N. Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean. Geochim. Cosmochim. Acta 2010, 74, 540–557. [Google Scholar] [CrossRef]
- Rickli, J.; Frank, M.; Stichel, T.; Georg, R.B.; Vance, D.; Halliday, A.N. Controls on the incongruent release of hafnium during weathering of metamorphic and sedimentary catchments. Geochim. Cosmochim. Acta 2013, 101, 263–284. [Google Scholar] [CrossRef]
- Patchett, P.J.; White, W.M.; Feldmann, H.; Kielinczuk, S.; Hofmann, A.W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 1984, 69, 365–378. [Google Scholar]
- Garçon, M.; Chauvel, C.; France-Lanord, C.; Huyghe, P.; Lavé, J. Continental sedimentary processes decouple Nd and Hf isotopes. Geochim. Cosmochim. Acta 2013, 121, 177–195. [Google Scholar] [CrossRef]
- Dausmann, V.; Gutjahr, M.; Frank, M.; Kouzmanov, K.; Schaltegger, U. Experimental evidence for mineral-controlled release of radiogenic Nd, Hf and Pb isotopes from granitic rocks during progressive chemical weathering. Chem. Geol. 2019, 507, 64–84. [Google Scholar]
- Rickli, J.; Frank, M.; Halliday, A.N. The hafnium–neodymium isotopic composition of Atlantic seawater. Earth Planet. Sci. Lett. 2009, 280, 118–127. [Google Scholar] [CrossRef]
- Stichel, T.; Frank, M.; Rickli, J.; Hathorne, E.C.; Haley, B.A.; Jeandel, C.; Pradoux, C. Sources and input mechanisms of hafnium and neodymium in surface waters of the Atlantic sector of the Southern Ocean. Geochim. Cosmochim. Acta 2012, 94, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Albarede, F.; Simonetti, A.; Vervoort, J.D.; Blichert-Toft, J.; Abouchami, W. A Hf-Nd isotopic correlation in ferromanganese nodules. Geophys. Res. Lett. 1988, 25, 3895–3898. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, J.D.; Patchett, P.J.; Blichert-Toft, J.; Albarède, F. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 1999, 168, 79–99. [Google Scholar]
- Vervoort, J.D.; Plank, T.; Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 2011, 75, 5903–5926. [Google Scholar] [CrossRef]
- Bayon, G.; Burton, K.W.; Soulet, G.; Vigier, N.; Dennielou, B.; Etoubleau, J.; Ponzevera, E.; German, C.R.; Nesbitt, R.W. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering. Earth Planet. Sci. Lett. 2009, 277, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Garçon, M.; Chauvel, C.; France-Lanord, C.; Limonta, M.; Garzanti, E. Which minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments? Chem. Geol. 2014, 364, 42–55. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, Y.; Balsam, W.; Lu, H.; Liu, L.; Chen, J.; Ji, J. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: Implications for sources and dispersal. Sci. Rep. 2014, 4, 5837. [Google Scholar]
- Bayon, G.; Skonieczny, C.; Delvigne, C.; Toucanne, S.; Bermell, S.; Ponzevera, E.; André, L. Environmental Hf–Nd isotopic decoupling in World river clays. Earth Planet. Sci. Lett. 2016, 438, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Bindeman, I.N.; Trinquier, A.; Retallack, G.J.; Bekker, A. Long-term evolution of terrestrial weathering and its link to Earth’s oxygenation. Earth Planet. Sci. Lett. 2022, 584, 117490. [Google Scholar]
- Corentin, P.; Pucéat, E.; Pellenard, P.; Freslon, N.; Guiraud, M.; Blondet, J.; Adatte, T.; Bayon, G. Hafnium-neodymium isotope evidence for enhanced weathering and uplift-climate interactions during the Late Cretaceous. Chem. Geol. 2022, 591, 120724. [Google Scholar]
- Chen, H.; Bayon, G.; Xu, Z.; Li, T. Hafnium isotope evidence for enhanced weatherability at high southern latitudes during Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 2023, 601, 117910. [Google Scholar] [CrossRef]
- Babonneau, N.; Savoye, B.; Cremer, M.; Klein, B. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar. Petrol. Geol. 2022, 19, 445–467. [Google Scholar] [CrossRef]
- Giresse, P. Quaternary Glauconitization on Gulf of Guinea, Glauconite Factory: Overview of and New Data on Tropical Atlantic Continental Shelves and Deep Slopes. Minerals 2022, 12, 908. [Google Scholar] [CrossRef]
- Giresse, P.; Wiewiora, A.; Lacka Lącka, B. Mineral phases and processes within green peloids from two recent deposits near the Congo River mouth. Clays Clay Miner. 1988, 23, 447–458. [Google Scholar]
- Odin, G.S. Glaucony from the Gulf of Guinea. In Green Marine Clays. Oolitic Ironstones, Verdine Facies, Glaucony Facies and Celadonite-Bearing Facies—A Comparative Study; Odin, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1988; Volume 45, pp. 225–247. [Google Scholar]
- Amouric, M.; Parron, C.; Casalini, L.; Giresse, P. A (1: 1) 7-Å Fe phase and its transformation in recent sediments: An HRTEM and AEM study. Clays Clay Miner. 1995, 43, 446–454. [Google Scholar] [CrossRef]
- Giresse, P. Essai de chronomètrie de la glauconitisation dans le Golfe de Guinée; exemple de vitesse diagénétique au Quaternaire supèrieur. CR Somm. Soc. Geol. Fr. 1975, 4, 163–164. [Google Scholar]
- Wiewióra, A.; Lacka, B.; Giresse, P. Characterization and origin of 1: 1 phyllosilicates within peloids of the Recent, Holocene and Miocene deposits of the Congo Basin. Clay Clay Min. 1996, 44, 587–598. [Google Scholar] [CrossRef]
- Bayon, G.; Dennielou, B.; Etoubleau, J.; Ponzevera, E.; Toucanne, S.; Bermell, S. Intensifying weathering and land use in Iron Age Central Africa. Science 2012, 335, 1219–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayon, G.; Schefuß, E.; Dupont, L.; Borges, A.V.; Dennielou, B.; Lambert, T.; Mollenhauer, G.; Monin, L.; Ponzevera, E.; Skonieczny, C.; et al. The roles of climate and human land-use in the late Holocene rainforest crisis of Central Africa. Earth Planet. Sci. Lett. 2019, 505, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Wiewióra, A.; Giresse, P.; Jaunet, A.M.; Wilamowski, A.; Elsass, F. Crystal chemistry of layer silicates of the Miocene green grain (Congo Basin) from Transmission Electron Microscopy (TEM) and Analytical Electron Microscopy (AEM) observations. Clays Clay Min. 1999, 47, 582–590. [Google Scholar]
- Stille, P.; Clauer, N. The process of glauconitization: Chemical and isotopic evidence. Contrib. Min. Petrol. 1994, 117, 253–262. [Google Scholar] [CrossRef]
- Giresse, P.; Jansen, J.H.F.; Kouyoumontzakis, G.; Moguedet, G. Les fonds de la plateforme congolaise, le delta sous-marin du fleuve Congo. Bilan de huit ans de recherches sédimentologiques, pal6ontologiques, géochimiques et géophysiques. Trav. Doc. ORSTOM 1981, 138, 13–45. [Google Scholar]
- Giresse, P. Le fer et les glauconies au large du fleuve Congo. Sci. Geol. Bull. Mem. 1985, 38, 293–322. [Google Scholar] [CrossRef]
- Giresse, P.; Aloïsi, J.C.; Kuete, M.; Monteillet, J.; Ngueutchoua, G. Quaternary sedimentary deposits on the Cameroon shelf: Characterization of facies and late Quaternary shorelines. Quat. Int. 1995, 29, 75–87. [Google Scholar] [CrossRef]
- Giresse, P.; Odin, G.S. Nature minéralogique et origine des glauconies du plateau continental du Gabon et du Congo. Sedimentology 1973, 20, 457–488. [Google Scholar] [CrossRef]
- Gingele, F.X.; Müller, P.M.; Schneider, R.R. Orbital forcing of freshwater input in the Zaire Fan area—Clay mineral evidence from the last 200 kyr. Palaeogeog. Palaeoclimatol. Palaeoecol. 1998, 138, 17–26. [Google Scholar] [CrossRef]
- Barrat, J.A.; Keller, F.; Amossé, J.; Taylor, R.N.; Nesbitt, R.W.; Hirata, T. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation. Geostand. Newslett. 1996, 20, 133–139. [Google Scholar] [CrossRef]
- Barrat, J.A.; Zanda, B.; Moynier, F.; Bollinger, C.; Liorzou, C.; Bayon, G. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta 2012, 83, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Min. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Giresse, P. Réponse aux observations de G.S. Odin relative à la note sur «Essai de chronométrie de la glauconitisation dans le golfe de Guinée …» Compléments et remarques. CR Somm. Soc. Geol. Fr. 1976, 3, 108–111. [Google Scholar]
- van de Kamp, P.C. Potassium distribution and metasomatism in pelites and schists: How and when, relation to postdepositional events. J. Sedim. Res. 2016, 86, 683–711. [Google Scholar] [CrossRef]
- Tribovillard, N.; Bout-Roumazeilles, V.; Abraham, R.; Ventalon, S.; Delattre, M.; Baudin, F. The contrasting origins of glauconite in the shallow marine environment highlight this mineral as a marker of paleoenvironmental conditions. Comptes Rendus Géoscience 2023, 355, 1–16. [Google Scholar] [CrossRef]
- Hao, W.; Chen, N.; Sun, W.; Mänd, K.; Kirsimäe, K.; Teitler, Y.; Somelar, P.; Robbins, L.J.; Babechuck, M.G.; Planavsky, N.J.; et al. Binding and transport of Cr (III) by clay minerals during the Great Oxidation Earth Planet. Sci. Lett. 2022, 584, 117503. [Google Scholar]
- Bayon, G.; German, C.R.; Burton, K.W.; Nesbitt, R.W.; Rogers, N. Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth Planet. Sci. Lett. 2004, 224, 477–492. [Google Scholar] [CrossRef]
- Giresse, P.; Bayon, G.; Tallobre, C.; Loncke, L. Neodymium Isotopes in Glauconite for Palaeoceanographic Reconstructions at Continental Margins: A Preliminary Investigation From Demerara Rise. Front. Earth Sci. 2021, 9, 652501. [Google Scholar] [CrossRef]
- Nozaki, Y.; Zhang, J.; Amakawa, H. The fractionation between Y and Ho in the marine environment. Earth Planet. Sci. Lett. 1997, 148, 329–340. [Google Scholar]
- Allègre, C.J.; Dupré, B.; Négrel, P.; Gaillardet, J. Sr-Nd-Pb isotope systematics in Amazon and Congo River systems: Constraints about erosion processes. Chem. Geol. 1996, 131, 93–112. [Google Scholar] [CrossRef]
- Banfield, J.F.; Eggleton, R.A. Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering. Clays Clay Miner. 1989, 37, 113–127. [Google Scholar]
- Braun, J.J.; Pagel, M.; Muller, J.P.; Bilong, P.; Michard, A.; Guillet, B. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 1990, 54, 781–795. [Google Scholar]
- Seghal, J. Red and Lateritic Soils; Balkema: Rotterdam, The Netherlands, 1998; 453p. [Google Scholar]
- Dill, H.G. The geology of aluminium phosphates and sulphates of the alunite group minerals: A review. Earth Sci. Rev. 2001, 53, 35–93. [Google Scholar] [CrossRef]
- Lima da Costa, M.; Sabá Leite, A.; Pöllmann, H. A laterite-hosted APS deposit in the Amazon region, Brasil: The physical-chemical regime and environment of formation. J. Geochem. Explor. 2016, 170, 107–124. [Google Scholar]
- Berger, A.; Gnos, E.; Janots, E.; Fernandez, A.; Giese, J. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. Chem. Geol. 2008, 254, 238–248. [Google Scholar]
- Rasmussen, B. Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones; a major sink for oceanic phosphorus. Am. J. Sci. 1996, 296, 601–632. [Google Scholar] [CrossRef]
- Kohlitsch, U.; Pring, A. Crystal-chemistry of the crandallite, beudantite and the alunite groups: A review and evaluation of the suitability as storage material for toxic metals. J. Mineralog. Petrol. Sci. 2001, 96, 67–78. [Google Scholar]
- Ji, B.; Zhang, W. The effect of mechanical grinding and thermal treatment on the recovery of rare earth elements (REEs) from kaolinite. Powder Technol. 2021, 394, 622–631. [Google Scholar]
- Gaudin, A.; Ansan, V.; Lorand, J.P.; Pont, S. Genesis of a florencite-bearing kaolin deposit on ordovician schists at Saint-Aubin-des-Châteaux, Armorican Massif, France. Ore Geol. Rev. 2020, 120, 103445. [Google Scholar]
- Bayon, G.; Lemaitre, N.; Barrat, J.A.; Wang, X.; Feng, D.; Duperron, S. Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation. Chem. Geol. 2020, 555, 119832. [Google Scholar]
# | Sample | Lat S (°) | Long E (°) | Core Depth (cm b.s.f.) | Water Depth (m b.s.l.) | Approx. Age (kyr) | Degree of Glauconitization a |
---|---|---|---|---|---|---|---|
1 | C240 | 4°42 | 11°47 | 0–10 | 16 | 1–2 | Type 1 |
2 | 70VB | 5°01 | 11°57 | 0–10 | 25 | 2–3 | Type 1 |
3 | 9VT | 4°57 | 11°51 | 0–10 | 41 | 2–3 | Type 2 |
4 | 44VMB | 4°57 | 11°49 | 0–10 | 46 | 2–3 | Type 2 |
5 | C198 | 4°41 | 11°40 | 0–10 | 50 | 4–6 | Type 2 |
6 | C109 | 4°52 | 11°30 | 0–10 | 104 | 10 | Type 2 |
7 | C1180 | 5°04 | 11°33 | 0–10 | 110 | 12 | Type 3 |
8 | C203 | 4°49 | 11°16 | 0–10 | 125 | 20 | Type 3 |
9 | C236 | 5°06 | 11°30 | 0–10 | 200 | 20 | Type 2 |
10 | C213-10 | 4°36 | 11°06 | 10–20 | 113 | 10 | Type 3 |
11 | C213-39 | ‘ | ‘ | 39–40 | ‘ | 12 | Type 3 |
12 | C213-90 | ‘ | ‘ | 90–100 | ‘ | 13 | Type 3 |
13 | C213-130 | ‘ | ‘ | 130–140 | ‘ | 15 | Type 3 |
14 | C213-198 | ‘ | ‘ | 198 | ‘ | 20 | Type 1 |
# | Sample | Degree of Glauconitization a | 143Nd/144Nd | 2 se | eNd | 2 se | 176Hf/177Hf | 2 se | eHf | 2 se | DeHf clay | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 M HCl leachates | |||||||||||||||
1 | C240 | Type 1 | 0.511771 | ± | 0.000008 | −16.75 | ± | 0.16 | 0.282760 | ± | 0.000021 | −0.89 | ± | 0.73 | 6.9 |
2 | 70VB | Type 1 | 0.511782 | ± | 0.000011 | −16.55 | ± | 0.22 | 0.282698 | ± | 0.000013 | −3.08 | ± | 0.46 | 4.6 |
3 | 9VT | Type 2 | 0.511738 | ± | 0.000009 | −17.40 | ± | 0.17 | 0.282664 | ± | 0.000032 | −4.28 | ± | 1.14 | 4.0 |
4 | 44VMB | Type 2 | 0.511746 | ± | 0.000011 | −17.25 | ± | 0.22 | 0.282704 | ± | 0.000013 | −2.86 | ± | 0.45 | 5.2 |
5 | C198 | Type 2 | 0.511687 | ± | 0.000005 | −18.39 | ± | 0.10 | 0.282684 | ± | 0.000029 | −3.56 | ± | 1.04 | 5.6 |
6 | C109 | Type 2 | 0.511720 | ± | 0.000004 | −17.74 | ± | 0.08 | 0.282646 | ± | 0.000018 | −4.92 | ± | 0.62 | 3.7 |
7 | C1180 | Type 3 | 0.511733 | ± | 0.000004 | −17.49 | ± | 0.08 | 0.282690 | ± | 0.000025 | −3.37 | ± | 0.90 | 5.0 |
8 | C203 | Type 3 | 0.511726 | ± | 0.000006 | −17.63 | ± | 0.11 | 0.282733 | ± | 0.000020 | −1.84 | ± | 0.70 | 6.7 |
9 | C236 | Type 2 | 0.511726 | ± | 0.000012 | −17.63 | ± | 0.23 | 0.282665 | ± | 0.000011 | −4.23 | ± | 0.41 | 4.3 |
10 | C213-10 | Type 3 | 0.511661 | ± | 0.000005 | −18.89 | ± | 0.09 | 0.282709 | ± | 0.000015 | −2.70 | ± | 0.51 | 6.8 |
11 | C213-39 | Type 3 | 0.511693 | ± | 0.000004 | −18.29 | ± | 0.08 | 0.282718 | ± | 0.000018 | −2.37 | ± | 0.62 | 6.7 |
12 | C213-90 | Type 3 | 0.511690 | ± | 0.000005 | −18.33 | ± | 0.09 | 0.282703 | ± | 0.000015 | −2.91 | ± | 0.54 | 6.2 |
13 | C213-130 | Type 3 | 0.511676 | ± | 0.000008 | −18.62 | ± | 0.16 | 0.282706 | ± | 0.000014 | −2.80 | ± | 0.48 | 6.5 |
14 | C213-198 | Type 1 | 0.511711 | ± | 0.000005 | −17.93 | ± | 0.09 | 0.282683 | ± | 0.000013 | −3.62 | ± | 0.47 | 5.1 |
Clay-size fractions | |||||||||||||||
2 | 70VB | Type 1 | 0.511785 | ± | 0.000009 | −16.48 | ± | 0.17 | 0.282466 | ± | 0.000008 | −11.27 | ± | 0.29 | −3.6 |
3 | 9VT | Type 2 | 0.511725 | ± | 0.000009 | −17.66 | ± | 0.18 | 0.282497 | ± | 0.000006 | −10.17 | ± | 0.22 | −1.6 |
4 | 44VMB | Type 2 | 0.511745 | ± | 0.000007 | −17.27 | ± | 0.13 | 0.282501 | ± | 0.000007 | −10.06 | ± | 0.24 | −1.8 |
6 | C109 | Type 2 | 0.511742 | ± | 0.000007 | −17.33 | ± | 0.13 | 0.282496 | ± | 0.000025 | −10.23 | ± | 0.88 | −1.9 |
8 | C203 | Type 3 | 0.511695 | ± | 0.000015 | −18.24 | ± | 0.28 | 0.282640 | ± | 0.000013 | −5.14 | ± | 0.44 | 3.9 |
11 | C213-39 | Type 3 | 0.511702 | ± | 0.000008 | −18.10 | ± | 0.16 | 0.282592 | ± | 0.000014 | −6.84 | ± | 0.48 | 2.0 |
12 | C213-90 | Type 3 | 0.511686 | ± | 0.000009 | −18.41 | ± | 0.17 | 0.282623 | ± | 0.000010 | −5.73 | ± | 0.36 | 3.4 |
13 | C213-130 | Type 3 | 0.511698 | ± | 0.000006 | −18.19 | ± | 0.12 | 0.282619 | ± | 0.000010 | −5.86 | ± | 0.37 | 3.1 |
14 | C213-198 | Type 1 | 0.511748 | ± | 0.000011 | −17.20 | ± | 0.22 | 0.282505 | ± | 0.000014 | −9.91 | ± | 0.49 | −1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayon, G.; Giresse, P.; Chen, H.; Rouget, M.-L.; Gueguen, B.; Moizinho, G.R.; Barrat, J.-A.; Beaufort, D. The Behavior of Rare Earth Elements during Green Clay Authigenesis on the Congo Continental Shelf. Minerals 2023, 13, 1081. https://doi.org/10.3390/min13081081
Bayon G, Giresse P, Chen H, Rouget M-L, Gueguen B, Moizinho GR, Barrat J-A, Beaufort D. The Behavior of Rare Earth Elements during Green Clay Authigenesis on the Congo Continental Shelf. Minerals. 2023; 13(8):1081. https://doi.org/10.3390/min13081081
Chicago/Turabian StyleBayon, Germain, Pierre Giresse, Hongjin Chen, Marie-Laure Rouget, Bleuenn Gueguen, Gabriel Ribeiro Moizinho, Jean-Alix Barrat, and Daniel Beaufort. 2023. "The Behavior of Rare Earth Elements during Green Clay Authigenesis on the Congo Continental Shelf" Minerals 13, no. 8: 1081. https://doi.org/10.3390/min13081081
APA StyleBayon, G., Giresse, P., Chen, H., Rouget, M. -L., Gueguen, B., Moizinho, G. R., Barrat, J. -A., & Beaufort, D. (2023). The Behavior of Rare Earth Elements during Green Clay Authigenesis on the Congo Continental Shelf. Minerals, 13(8), 1081. https://doi.org/10.3390/min13081081