Au-Bi-Te(-Cu) Mineralization in the Wawa Gold Corridor (Ontario, Canada): Implications for the Role of Bi-Rich Polymetallic Melts in Orogenic Au Systems
Abstract
:1. Introduction
2. Geological Context
2.1. The Michipicoten Greenstone Belt and the Jubilee Stock
2.2. Structural and Hydrothermal Evolution of the Wawa Gold Corridor
3. Methods
3.1. Petrography and Mineral Identification
3.2. Sulphide Trace-Element Chemistry
4. Results
4.1. Mineral Paragenesis and Petrography of D3 Veins
4.2. Petrography and Composition of Au-Bi-Te-Bearing Mineral Assemblages
4.3. Mineral Chemistry
5. Discussion
5.1. Melt vs. Hydrothermal Assemblages in Late Veinlets
5.2. Sources of Au, Bi, and Te
5.3. Compositional Differences between MSZ and F-JSZ Assemblages
5.4. Melt Formation
5.4.1. Evolution of the System during the Replacement of Py3B by Siderite
5.4.2. The Formation and Mediation of Melts at Py3B-Siderite Reaction Interfaces
5.5. The Role of Bi-Rich Polymetallic Melts in the WGC and Other Orogenic Au Systems
5.6. Using Element Associations to Identify Magmatic–Hydrothermal Contributions of Au
6. Conclusions
- The formation of Bi-Te-Au melts in selected samples from the WGC was the product of deposit-scale mobilisation of these elements out of earlier sulphides, a process likely related to fluid circulation driven by the intrusion of Archean (2700–2670 Ma) lamprophyre dikes during the late stages of deformation. Melt composition was influenced by the geochemical environment in which the melts formed (i.e., proximity to abundant Te-rich sulphides in the JSZ footwall vs. the relatively Te-poor MSZ) and their precipitation and evolution was mediated by chemical reactions at fluid–pyrite–siderite reaction fronts.
- The paragenetic relationship of the two Au mineralizing events in the WGC, these being an early Au-As event and a later Au-Bi-Te event, seems to be shared by many orogenic Au deposits in which polymetallic melt generation has been documented. The apparent consistency with which Bi-rich melts postdate primary Fe-sulphide + Au-As mineralisation probably relates to the relatively oxidized nature of the hydrothermal fluids that form these deposits (above the stability field of Bi0) and the role of pre-existing sulphide mineralization in acting both as a potential source of Au and LMCEs and as favourable micro-environments for melt formation. The liquid-Bi collector model is evidently important in the upgrading of pre-existing Au mineralization but is probably not a feasible mechanism for the initial precipitation of gold in orogenic systems. Given the importance of sulphide minerals as repositories of Bi and Te in these systems, the use of trace-element analysis of such minerals in LMCE melt research may allow more complete understanding of such processes in natural systems.
- Despite the importance of late magmatic-hydrothermal fluids in the formation of Au-Bi-Te assemblages in the WGC, it is unlikely that these fluids introduced significant amounts of new Au, Bi, and Te to the deposit. This work highlights the importance of discriminating between the mobilization of existing Au (and related elements) and the addition of new Au. This intricacy is fundamental to resolving the sources of Au-bearing fluids that form orogenic deposits.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglas, N.; Mavrogenes, J.; Hack, A.; England, R. The liquid bismuth collector model: An alternative gold deposition mechanism. In Australian Geological Convention Abstract Volume: Understanding Planet Earth; Searching for a Sustainable Future on the Starting Blocks of the Third Millennium, 15th ed.; Skilbeck, C.G., Hubble, T.C.T., Eds.; Geological Society of Australia: Sydney, Australia, 2000; 135p. [Google Scholar]
- Tooth, B.; Brugger, J.; Ciobanu, C.L.; Liu, W. Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 2008, 36, 815–818. [Google Scholar] [CrossRef]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol. 2000, 13, 141–162. [Google Scholar]
- Bodnar, R.J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 119–142. [Google Scholar]
- Ciobanu, C.L.; Cook, N.J.; Pring, A. Bismuth tellurides as gold scavengers. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; pp. 1383–1386. [Google Scholar]
- Tooth, B.; Ciobanu, C.L.; Green, L.; O’Neill, B.; Brugger, J. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochim. Cosmochim. Acta 2011, 75, 5423–5443. [Google Scholar] [CrossRef]
- Hastie, E.C.G.; Kontak, D.J.; Lafrance, B. Gold remobilization: Insights from gold deposits in the Archean Swayze greenstone belt, Abitibi subprovince, Canada. Econ. Geol. 2020, 115, 241–277. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Tomkins, A.G. On the source of orogenic gold. Geology 2013, 41, 1255–1256. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–417. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Pitcairn, I. Orogenic gold: Is a genetic association with magmatism realistic? Miner. Depos. 2023, 58, 5–35. [Google Scholar] [CrossRef]
- Kerrich, R. Archean gold: Related to granulite formation or felsic intrusions? Geology 1989, 17, 1011–1015. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Kerrich, R. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geol. Rev. 1998, 12, 381–453. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Cassidy, K.F. Archean orogenic lode gold deposits. Rev. Econ. Geol. 2000, 13, 9–68. [Google Scholar]
- Hastie, E.C.G.; Kontak, D.J.; Lafrance, B.; Petrus, J.A.; Sharpe, R.; Fayek, M. Evaluating geochemical discriminants in Archean gold deposits: A Superior province perspective with an emphasis on the Abitibi greenstone belt. Econ. Geol. 2023, 118, 123–155. [Google Scholar] [CrossRef]
- Oberthür, T.; Weiser, T.W. Gold-bismuth-telluride-sulphide assemblages at the Viceroy Mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe. Mineral. Mag. 2008, 72, 953–970. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Birch, W.D.; Cook, N.J.; Pring, A.; Grundler, P.V. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos 2010, 116, 1–17. [Google Scholar] [CrossRef]
- Voudouris, P.C.; Spry, P.G.; Mavrogonatos, C.; Sakellaris, G.-A.; Bristol, S.K.; Melfos, V.; Fornadel, A.P. Bismuthinite derivatives, lillianite homologues, and bismuth sulfotellurides as indicators of gold mineralization in the Stanos shear-zone related deposit, Chalkidiki, Northern Greece. Can. Mineral. 2013, 51, 119–142. [Google Scholar] [CrossRef]
- Ilmen, S.; Alansari, A.; Bajddi, A.; Maacha, L. Cu-Au vein mineralization related to the Talat n’Imjjad shear zone (western High Atlas, Morocco): Geological setting, ore mineralogy, and geochemical evolution. Arab. J. Geosci. 2015, 8, 5039–5056. [Google Scholar] [CrossRef]
- Kerr, M.J.; Hanley, J.J.; Kontak, D.J.; Morrison, G.G.; Petrus, J.; Fayek, M.; Zajacz, Z. Evidence of upgrading gold tenor in an orogenic quartz-carbonate vein system by late magmatic-hydrothermal fluids at the Madrid Deposit, Hope Bay Greenstone Belt, Nunavut, Canada. Geochim. Cosmochim. Acta 2018, 241, 180–218. [Google Scholar] [CrossRef]
- Spence-Jones, C.P.; Jenkin, G.R.T.; Boyce, A.J.; Hill, N.J.; Sangster, C.J.S. Tellurium, magmatic fluids, and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit, Scotland. Ore Geol. Rev. 2018, 102, 894–905. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Huang, S.; Wei, R.; Sun, Z.; Hu, Q.; Hao, J. The gold occurrence in pyrite and Te-Bi mineralogy of the Fancha gold deposit, Xiaoqinling gold field, southern-margin of the North China Craton: Implication for ore genesis. Geol. J. 2020, 55, 5791–5811. [Google Scholar] [CrossRef]
- Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: Genetic implications in Cu-Au and Au skarns. Mineral. Petrol. 2006, 87, 277–304. [Google Scholar] [CrossRef]
- Cockerton, A.B.D.; Tomkins, A.G. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, Northwest Tasmania. Econ. Geol. 2012, 107, 667–682. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Pršek, J.; Melfos, V.; Voudouris, P.C.; Maliqi, F.; Kozub-Budzyń, G. Bismuth minerals from the Stan Terg deposit (Trepça, Kosovo). J. Min. Geochem. 2015, 192, 317–333. [Google Scholar] [CrossRef]
- Jiahao, Z.; Jingwen, M.; Fuquan, Y.; Fengmei, C.; Feng, L. Newly discovered native gold and bismuth in the Cihai iron-cobalt deposit, Eastern Tianshan, Northwest China. Acta Geol. Sin. 2016, 90, 928–938. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, X.; Fu, Y.; Lin, H.; Jiang, L. Mineralogy and mineral chemistry of Bi-minerals: Constraints on ore genesis of the Beiya giant porphyry-skarn gold deposit, southwestern China. Ore Geol. Rev. 2016, 79, 408–424. [Google Scholar] [CrossRef]
- Kolb, J.; Meyer, F.M.; Vennemann, T.; Sindern, S.; Prantl, S.; Böttcher, M.E.; Sakellaris, G.A. Characterisation of the hydrothermal fluids of the Guelb Moghrein iron oxide-Cu-Au-Co deposit, Mauritania: Ore mineral chemistry, fluid inclusions and isotope geochemistry. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2010; pp. 553–572. [Google Scholar]
- Acosta-Góngora, P.; Gleeson, S.A.; Samson, I.M.; Ootes, L.; Corriveau, L. Gold refining by bismuth melts in the iron oxide-dominated NICO Au-Co-Bi (±Cu±W) Deposit, NWT, Canada. Econ. Geol. 2015, 110, 291–314. [Google Scholar] [CrossRef]
- Cave, B.J.; Barnes, S.-J.; Pitcairn, I.K.; Sack, P.J.; Kuikka, H.; Johnson, S.C.; Duran, C.J. Multi-stage precipitation and redistribution of gold, and its collection by lead-bismuth and lead immiscible liquids in a reduced-intrusion related gold system (RIRGS); Dublin Gulch, western Canada. Ore Geol. Rev. 2019, 106, 28–55. [Google Scholar] [CrossRef]
- Guimarães, F.S.; Cabral, A.R.; Lehmann, B.; Rios, F.J.; Ávila, M.A.B.; de Castro, M.P.; Queiroga, G.N. Bismuth-melt trails trapped in cassiterite-quartz veins. Terra Nova 2019, 31, 358–365. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L. Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts., Romania: Paragenesis and genetic significance. Mineral. Mag. 2004, 68, 301–321. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, X.; Wu, Z.; Yang, T.; Li, D.; Ren, Y.; Liu, Q.; Zhu, K.; Yu, H. Mineralogy of Bi-sulfosalts and tellurides from the Yaoan gold deposit, southwest China: Metallogenic implications. Ore Geol. Rev. 2018, 98, 126–140. [Google Scholar] [CrossRef]
- Wehrle, E.A.; Montreuil, J.-F.; Samson, I.M.; Kontak, D.J.; Wu, M. Discriminating between primary and secondary Au events in a paragentically complex Archean lode-gold deposit, Wawa Gold Corridor, Ontario, Canada. Econ. Geol. 2023, 118, 347–370. [Google Scholar] [CrossRef]
- Bateman, R.; Ayer, J.A.; Dubé, B. The Timmins-Porcupine gold camp, Ontario: Anatomy of an Archean greestone belt and ontogeny of gold mineralization. Econ. Geol. 2008, 103, 1285–1308. [Google Scholar] [CrossRef]
- Polat, A. The geochemistry of Neoarchean (ca. 2700) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: Implications for petrogenetic and geodynamic processes. Precambrian Res. 2009, 168, 83–105. [Google Scholar] [CrossRef]
- Monecke, M.; Mercier-Langevin, P.; Dubé, B.; Frieman, B.M. Geology of the Abitibi greenstone belt. Rev. Econ. Geol. 2017, 19, 7–50. [Google Scholar]
- Samson, I.M.; Bas, B.; Holm, P.E. Hydrothermal evolution of auriferous shear zones, Wawa, Ontario. Econ. Geol. 1997, 92, 325–342. [Google Scholar] [CrossRef]
- Ciufo, T.J. Hydrothermal Alteration and Exploration Vectors at the Island Gold Deposit, Michipicoten Greenstone Belt, Wawa, Ontario. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2019. [Google Scholar]
- Ciufo, T.J.; Jellicoe, K.; Yakymchuk, C.; Lin, S.; Mercier-Langevin, P.; Wodicka, N. Geology, structural evolution, and hydrothermal alteration of the Island Gold deposit, Michipicoten greenstone belt, Ontario. Geol. Surv. Can. 2020, 8712, 143–156. [Google Scholar]
- Jellicoe, K.; Ciufo, T.J.; Lin, S.; Wodicka, N.; Wu, N.; Mercier-Langevin, P.; Yakymchuk, C. Genesis of the Island Gold deposit, Ontario, Canada: Implications for gold mineralization in the Wawa subprovince of the Superior province. Econ. Geol. 2022, 117, 1597–1612. [Google Scholar] [CrossRef]
- Haroldson, E.L. Fluid Inclusions and Stable Isotope Study of Magino; a Magmatic Related Archean Gold Deposit. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2014. [Google Scholar]
- Callan, N.J.; Spooner, E.T.C. Repetitive hydraulic fracturing and shear zone inflation in an Archean granitoid-hosted, ribbon banded, Au-quartz vein system, Renabie area, Ontario, Canada. Ore Geol. Rev. 1998, 12, 237–266. [Google Scholar] [CrossRef]
- McDivitt, J.A.; Lafrance, B.; Kontak, D.J.; Robichaud, L. The structural evolution of the Missanabie-Renabie gold district: Pre-orogenic veins in an orogenic gold setting and their influence on the formation of hybrid deposits. Econ. Geol. 2017, 112, 1959–1975. [Google Scholar] [CrossRef]
- McDivitt, J.A.; Kontak, D.J.; Lafrance, B.; Robichaud, L. Contrasting fluid chemistries, alteration characteristics, and metamorphic timing relationships recorded in hybridized orebodies of the Missanabie-Renabie gold district, Archean Wawa subprovince, Ontario, Canada. Econ. Geol. 2018, 113, 397–420. [Google Scholar] [CrossRef]
- McDivitt, J.A.; Kontak, D.J.; Lafrance, B.; Petrus, J.A.; Fayek, M. A trace metal, stable isotope (H, O, S), and geochronological (U-Pb titanite) characterization of hybridized gold orebodies in the Missanabie-Renabie district, Wawa subprovince (Canada). Miner. Depos. 2020, 56, 561–582. [Google Scholar] [CrossRef]
- Ontario Geological Survey. 1:250,000 Scale Bedrock Geology of Ontario; Miscellaneous Release-Data 126-Revision 1; Ontario Geological Survey: Greater Sudbury, ON, Canada, 2011.
- Turek, A.; Smith, P.E.; van Schmus, W.R. Rb-Sr and U-Pb ages of volcanism and granite emplacement in the Michipicoten belt–Wawa, Ontario. Can. J. Earth Sci. 1982, 19, 1608–1626. [Google Scholar] [CrossRef]
- Turek, A.; Sage, R.P.; van Schmus, W.R. Advances in the U-Pb zircon geochronology of the Michipicoten greenstone belt, Superior Province, Ontario. Can. J. Earth Sci. 1992, 29, 1154–1165. [Google Scholar] [CrossRef]
- Sullivan, R.W.; Sage, R.P.; Card, K.D. U-Pb zircon age of the Jubilee stock in the Michipicoten greenstone belt near Wawa, Ontario. Geolog. Surv. Canada 1985, 85-1B, 361–365. [Google Scholar]
- Halls, H.C.; Palmer, H.C. The tectonic relationship of two Early Proterozoic dyke swarms to the Kapuskasing Structural Zone: A paleomagnetic and petrographic study. Can. J. Earth Sci. 1990, 27, 87–103. [Google Scholar] [CrossRef]
- Lefebvre, N.; Kopylova, M.; Kivi, K. Archean calc-alkaline lamprophyres of Wawa, Ontario, Canada: Unconventional diamondiferous volcaniclastic rocks. Precambrian Res. 2005, 138, 57–87. [Google Scholar] [CrossRef]
- Stachel, T.; Banas, A.; Muehlenbachs, K.; Kurszlaukis, S.; Walker, E.C. Archean diamonds from Wawa (Canada): Samples from deep cratonic roots predating cratonization of the Superior province. Contrib. Mineral. Petrol. 2006, 151, 737–750. [Google Scholar] [CrossRef]
- Sage, R.P. Geology of Carbonatite-Alkalic Rock Complexes of Ontario: Firesand River Carbonatite Complex, District of Algoma; Ontario Ministry of Northern Development and Mines, Mines and Minerals Division: Greater Sudbury, ON, Canada, 1988; Study 47, 81p.
- Symons, D.T.A. Age of the Firesand River carbonatite complex from paleomagnetism. Can. J. Earth Sci. 1989, 26, 2401–2405. [Google Scholar] [CrossRef]
- Tomkins, A.G.; Pattison, D.R.M.; Zaleski, E. The Hemlo gold deposit, Ontario: An example of melting and mobilization of a previous metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ. Geol. 2004, 99, 1063–1084. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Damian, F.; Damina, G. Gold scavenged by bismuth melts: An example from Alpine shear-remobilizates in the Highiş Massif, Romania. Mineral. Petrol. 2006, 87, 351–384. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. The Bi-Cu (bismuth-copper) system. Bull. Alloy Phase Diagr. 1984, 5, 148–155. [Google Scholar] [CrossRef]
- Morey, A.A.; Tomkins, A.G.; Bierlein, F.P.; Weinberg, R.F.; Davidson, G.J. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Econ. Geol. 2008, 103, 599–614. [Google Scholar] [CrossRef]
- Lawley, C.J.M.; Jackson, S.; Yang, Z.; Davis, W.; Eglington, B. Tracing the transition of gold from source to sponge to sink. Econ. Geol. 2017, 112, 169–183. [Google Scholar] [CrossRef]
- Gourcerol, B.; Kontak, D.J.; Thurston, P.C.; Petrus, J.A. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models. Min. Depos. 2018, 53, 871–894. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Dubosq, R.; Lawley, C.J.M.; Rogowitz, A.; Schneider, D.A.; Jackson, S. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping. Lithos 2018, 310–311, 86–104. [Google Scholar] [CrossRef]
- Hastie, E.C.G.; Schindler, M.; Kontak, D.J.; Lafrance, B. Transporting and coarsening of gold nanoparticles in an orogenic deposit by dissolution-reprecipitation and Ostwald ripening. Commun. Earth Environ. 2021, 2, 57. [Google Scholar] [CrossRef]
- Rock, N.M.S.; Groves, D.I. Do lamprophyres carry gold as well as diamonds? Nature 1988, 332, 253–255. [Google Scholar] [CrossRef]
- Rock, N.M.S.; Groves, D.I.; Perring, C.S.; Golding, S.D. Gold, lamprophyres, and porphyries: What does their association mean? Econ. Geol. Monograph 1989, 6, 609–625. [Google Scholar]
- Wyman, D.; Kerrich, R. Alkaline magmatism, major structures, and gold deposits: Implications for greenstone belt gold metallogeny. Econ. Geol. 1988, 83, 454–461. [Google Scholar] [CrossRef]
- Kerrich, R.; Wyman, D.A. The mesothermal gold-lamprophyre association: Significance for an accretionary geodynamic setting, supercontinent cycles, and metallogenic processes. Mineral. Petrol. 1994, 51, 147–172. [Google Scholar] [CrossRef]
- Ashley, P.M.; Cook, N.D.; Hill, R.L.; Kent, A.J.R. Shoshonitic lamprophyre dikes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia. Lithos 1994, 32, 249–272. [Google Scholar] [CrossRef]
- Taylor, W.R.; Rock, N.M.S.; Groves, D.I.; Perring, C.S.; Golding, S.D. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and associations with gold mineralization. Appl. Geochem. 1994, 9, 197–222. [Google Scholar] [CrossRef]
- Müller, D.; Groves, D.I. Indirect associations between lamprophyres and gold-copper deposits. In Potassic Igneous Rocks and Associated Gold-Copper Mineralization; Müller, D., Groves, D.I., Eds.; Springer: Cham, Switzerland, 2019; pp. 279–306. [Google Scholar]
- Ciobanu, C.L.; Cook, N.J. Tellurides, selenides (and Bi-sulphosalts) in gold deposits. In 11th Quadrennial IAGOD Symposium and Geocongress; Robb, L.J., Montjoie, R., Eds.; Geological Survey of Namibia: Windhoek, Namibia, 2002. [Google Scholar]
- Wang, C.; Huang, Y.; Ma, Y.; Zhang, Z. Geochemistry, mineralogy and mineral chemistry of the Welatam Cu-Mo-Bi-Au prospect, Northeast Myanmar. Ore Geol. Rev. 2019, 111, 102973. [Google Scholar] [CrossRef]
- Putnis, A.; Austrheim, H. Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In Metasomatism and the Chemical Transformation of Rock; Lecture Notes in Earth System Sciences; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin, Germany, 2013; pp. 141–170. [Google Scholar]
- Tooth, B.; Etschmann, B.; Pokrovski, G.S.; Testemale, D.; Hazemann, J.-L.; Grundler, P.V.; Brugger, J. Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Acta 2013, 101, 156–172. [Google Scholar] [CrossRef]
- Brando Soares, M.; Neto, A.V.C.; Bertolino, L.C.; Alves, F.E.A.; de Almeida, A.M.; da Silva, P.H.M.; de Araújo Mabub, R.O.; Manduca, L.G.; de Pamplona Araújo, I.M.C. Multistage mineralization at the hypozonal São Sebastião gold deposit, Pitangui greenstone belt, Minas Gerais, Brazil. Ore Geol. Rev. 2018, 102, 618–638. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Baker, T.; Dubé, B.; Groves, D.I.; Hart, C.J.R.; Gosselin, P. Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ. Geol. 2005, 100, 407–450. [Google Scholar]
- Velásquez, G.; Béziat, D.; Salvi, S.; Siebenaller, L.; Borisova, A.Y.; Pokrovski, G.S.; de Parseval, P. Formation and deformation of pyrite and implications for gold mineralization in the El Callao district, Venezuela. Econ. Geol. 2014, 109, 457–486. [Google Scholar] [CrossRef]
- Mumin, A.H.; Fleet, M.E.; Chryssoulis, S.L. Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: Remobilization of “invisible” gold. Miner. Depos. 1994, 29, 445–460. [Google Scholar] [CrossRef]
- Hart, C.J.R. Reduced intrusion-related gold systems. In Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 95–112. [Google Scholar]
- Mathieu, L. Detecting magmatic-derived fluids using pyrite chemistry: Example of the Chibougamau area, Abitibi Subprovince, Québec. Ore Geol. Rev. 2019, 144, 103–127. [Google Scholar] [CrossRef]
Mineral | Occurrence | Formula | n | Element Concentration (at. %) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Au | Ag | Bi | Te | S | Se | Ni | ||||
±6.8 | ±1.7 | ±2.2 | ±3.1 | ±2.1 | ±3.8 | ±1.5 | ||||
Gold | F-JSZ and MSZ assemblages | Au | 17 | 97 | 2.6 | |||||
Bismuth | MSZ assemblages | Bi | 18 | 100 | ||||||
Maldonite | Au2Bi | 12 | 72 | 28 | ||||||
Bismuthinite | Bi2S3 | 9 | 37 | 63 | ||||||
Ingodite | Bi(Te0.55S0.36Se0.09) | 2 | 51 | 28 | 18 | 5 | ||||
Jonassonite | AuBi5S4 | 1 | 9 | 44 | 47 | |||||
Parkerite | Ni3Bi2S2 | 5 | 28 | 30 | 42 | |||||
Tsumoite | F-JSZ and MSZ assemblages | BiTe | 11 | 48 | 52 | |||||
Tetradymite | F-JSZ assemblages | Bi2Te2S | 13 | 36 | 40 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehrle, E.A.; Samson, I.M.; Montreuil, J.-F.; Kontak, D.J. Au-Bi-Te(-Cu) Mineralization in the Wawa Gold Corridor (Ontario, Canada): Implications for the Role of Bi-Rich Polymetallic Melts in Orogenic Au Systems. Minerals 2023, 13, 1119. https://doi.org/10.3390/min13091119
Wehrle EA, Samson IM, Montreuil J-F, Kontak DJ. Au-Bi-Te(-Cu) Mineralization in the Wawa Gold Corridor (Ontario, Canada): Implications for the Role of Bi-Rich Polymetallic Melts in Orogenic Au Systems. Minerals. 2023; 13(9):1119. https://doi.org/10.3390/min13091119
Chicago/Turabian StyleWehrle, Elliot A., Iain M. Samson, Jean-François Montreuil, and Daniel J. Kontak. 2023. "Au-Bi-Te(-Cu) Mineralization in the Wawa Gold Corridor (Ontario, Canada): Implications for the Role of Bi-Rich Polymetallic Melts in Orogenic Au Systems" Minerals 13, no. 9: 1119. https://doi.org/10.3390/min13091119
APA StyleWehrle, E. A., Samson, I. M., Montreuil, J. -F., & Kontak, D. J. (2023). Au-Bi-Te(-Cu) Mineralization in the Wawa Gold Corridor (Ontario, Canada): Implications for the Role of Bi-Rich Polymetallic Melts in Orogenic Au Systems. Minerals, 13(9), 1119. https://doi.org/10.3390/min13091119