Polypropylene Fiber Effect on Flexural Strength, Toughness, Deflection, Failure Mode and Microanalysis of Cementitious Backfills under Three-Point Bending Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Elements
2.2. Fiber Materials
2.3. Manufacturing of Specimens
2.4. Three-Point Bending Trial
2.5. SEM Microanalysis
3. Results and Discussion
3.1. Assessment of CTB’s Flexural Strength Behavior
3.2. Assessment of CTB’s Toughness/Deflection Behavior
3.2.1. Toughness Analysis
3.2.2. CTB’s Deflection Analysis
3.3. Analysis of LFR-CTB’s Failure Mode
3.4. CTB’s Microanalysis
4. Conclusions
- An FS value of a normal CTB specimen without fiber delamination and with a c/t proportion of 1:4 was the largest at a curing time of 14 days. By the decline in a c/t ratio, FS values of CTBs without fiber delamination showed the same decreasing trend as those of LFR-CTBs. However, RFS values of all LFR-CTBs were greater than those of CTBs without fiber delamination, indicating that adding fiber delamination can effectively enhance CTB’s flexural features.
- The largest AFM values were obtained for the CTB specimens without fiber delamination. When the c/t ratio reduced, AFM values of CTBs without fiber delamination showed the same decreasing trend as those of the LFR-CTB specimens.
- LFR-CTBs provided larger ATI values than CTB without fiber delamination, showing that adding fiber delamination facilitates the growth of CTB’s post-peak toughness. LFR-CTBs with a higher fiber delamination dimensional height have excellent flexural properties.
- The damage modes of CTBs and LFR-CTBs are mainly tensile damage along the loading route, and principal crack is chiefly in line with loading route with a small angle.
- Adding fiber delamination affected CTB’s strength features, resulting in enhanced filling ductility. The comparison of deflection values shows that the post-peak ductility of LFR-CTBs with a higher dimensional height of fiber delamination is larger than that of fills with a lower dimensional height.
- The boundaries of the layered interface of LFR-CTB were delineated by SEM microstructure analysis. Variance between the delamination’s upper and lower interfaces is small according to the microscopic image observation.
- The overall bonding of LFR-CTBs is excellent, and the presence of interlayer interfaces does not affect the overall bending performance of LFR-CTB specimens.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
GTs | Gold tailings |
PPF | Polypropylene fiber |
CTB | Cemented tailings backfill |
WFL | Without fiber layer |
CFL | Contains fiber layer |
LFR-CTB | Layered-fiber-reinforced CTB |
FRCTB | Fiber-reinforced cemented tailings backfill |
CTB-SLL | CTB specimen lower layer |
CTB-SUL | CTB specimen upper layer |
FM | Flexural modulus |
AFt | Ettringite |
AFM | Average flexural modulus |
SEM | Scanning electron microscope |
FS | Flexural strength |
RFS | Residual flexural strength |
ATI | Average toughness index |
c/t | Cement/tailings |
OPC | Ordinary Portland cement |
PSD | Particle size distribution |
USTB | University of Science and Technology Beijing |
EDS | Energy dispersive spectrometer |
C-S-H | Calcium silicate hydrate |
References
- Sotoudeh, F.; Nehring, M.; Kizil, M.; Knights, P.; Mousavi, A. A novel cut-off grade method for increasing the sustainability of underground metalliferous mining operations. Miner. Eng. 2021, 172, 107168. [Google Scholar] [CrossRef]
- Khandani, F.S.; Atapour, H.; Rad, M.Y.; Khosh, B. An experimental study on the mechanical properties of underground mining backfill materials obtained from recycling of construction and demolition waste. Case Stud. Constr. Mater. 2023, 18, e02046. [Google Scholar] [CrossRef]
- Chung, J.; Asad, M.W.A.; Topal, E. Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules. Resour. Policy 2022, 77, 102632. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Wang, Y. Progress and prospects of mining with backfill in metal mines in China. Int. J. Miner. Metall. Mater. 2023, 30, 1455–1473. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Bakhtavar, E.; Mokhtarian-Asl, M.; Sadiq, R.; Hewage, K. Mathematical modelling of waste rock management through incorporating open-pit waste rocks in underground stope filling: An environmental approach. Resour. Policy 2023, 85, 103885. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste management in the mining industry of metals ores, coal, oil and natural gas-A review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef]
- Yilmaz, E.; Koohestani, B.; Cao, S. Chapter 13-Recent practices in mine tailings’ recycling and reuse. In Managing Mining and Minerals Processing Wastes; Qi, C.C., Benson, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 271–304. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Liu, X.; Gao, F.; Li, S. Research and application of surface paste disposal for clay-sized tailings in tropical rainy climate. Int. J. Miner. Process. 2016, 157, 227–235. [Google Scholar] [CrossRef]
- Zhou, Y.; Fall, M. Mechanical and microstructural properties of cemented paste backfill with chloride-free antifreeze additives in subzero environments. J. Mater. Civ. Eng. 2023, 35, 04023148. [Google Scholar] [CrossRef]
- Carnogursky, E.A.; Fall, M.; Haruna, S. Rheology and setting time of saline cemented paste backfill. Miner. Eng. 2023, 202, 108258. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Development of cemented paste backfill with superfine tailings: Fluidity, mechanical properties, and microstructure characteristics. Materials 2023, 16, 1951. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaaoua, M. Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2013, 29, 81–100. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhou, H.; Wang, Y.; Li, X.; Zhang, Q.; Feng, Y.; Qi, C.C. Resistance loss in cemented paste backfill pipelines: Effect of inlet velocity, particle mass concentration, and particle size. Materials 2022, 15, 3339. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xue, G.L.; Yilmaz, E.; Yin, Z. Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry. Int. J. Min. Reclam. Environ. 2021, 35, 319–335. [Google Scholar] [CrossRef]
- Mafra, C.; Bouzahzah, H.; Stamenov, L.; Gaydardzhiev, S. An integrated management strategy for acid mine drainage control of sulfidic tailings. Miner. Eng. 2022, 185, 107709. [Google Scholar] [CrossRef]
- Yan, B.X.; Jia, H.; Yang, Z.; Yilmaz, E.; Liu, H. Goaf instability in an open pit iron mine triggered by dynamics disturbance: A large-scale similar simulation. Int. J. Min. Reclam. Environ. 2023, 37, 606–629. [Google Scholar] [CrossRef]
- Krishna, R.S.; Mishra, J.; Meher, S.; Das, S.K.; Mustakim, S.M.; Singh, S.K. Industrial solid waste management through sustainable green technology: Case study insights from steel and mining industry in Keonjhar, India. Mater. Today Proc. 2020, 33, 5243–5249. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E. Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag. Minerals 2022, 12, 6. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Belem, T.; Yilmaz, E. Novel lab tool for paste backfill. Can. Min. J. 2006, 127, 31–32. [Google Scholar]
- Weilv, W.; Xu, W.; Jianpin, Z. Effect of inclined interface angle on shear strength and deformation response of cemented paste backfill-rock under triaxial compression. Constr. Build. Mater. 2021, 279, 122478. [Google Scholar] [CrossRef]
- Xiu, Z.; Wang, S.; Ji, Y.; Wang, F.; Ren, F.; Wang, P. An analytical model for the triaxial compressive stress-strain relationships of cemented pasted backfill (CPB) with different curing time. Constr. Build. Mater. 2021, 313, 125554. [Google Scholar] [CrossRef]
- Qi, C.C.; Chen, Q.S.; Fourie, A.; Tang, X.; Zhang, Q.; Dong, X.; Feng, Y. Constitutive modelling of cemented paste backfill: A data-mining approach. Constr. Build. Mater. 2019, 197, 262–270. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Cao, S.; Yilmaz, E. Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill. Constr. Build. Mater. 2021, 300, 124005. [Google Scholar] [CrossRef]
- Li, Z.W.; Yang, X.L. Required strength of geosynthetics for reinforced 3D slopes in cohesive backfills with tensile strength cut-off. Geotext. Geomembr. 2019, 47, 729–739. [Google Scholar] [CrossRef]
- Xia, K.; Chen, C.; Liu, X.; Liu, X.; Yuan, J.; Dang, S. Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill. Int. J. Rock Mech. Min. Sci. 2023, 170, 105489. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Feng, G.R.; Cao, S. Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction. Constr. Build. Mater. 2021, 289, 123163. [Google Scholar] [CrossRef]
- Aldhafeeri, Z.; Fall, M. Coupled effect of sulphate and temperature on the reactivity of cemented tailings backfill. Int. J. Min. Reclam. Environ. 2021, 35, 80–94. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E.; Liu, Y.P. Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites. Int. J. Miner. Metall. Mater. 2022, 29, 345–355. [Google Scholar] [CrossRef]
- Qi, C.C.; Ly, H.-B.; Le, L.M.; Yang, X.; Guo, L.; Pham, B.T. Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony. Constr. Build. Mater. 2021, 284, 122857. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Ren, F.Y.; Guo, Z.B.; Qiu, J.P.; Ding, H.X. Strength and deformation behavior of cemented foam backfill in the sub-zero environment. J. Mater. Res. Technol. 2020, 9, 9219–9231. [Google Scholar] [CrossRef]
- Fang, K.; Ren, L.; Jiang, H.Q. Development of Mode I and Mode II fracture toughness of cemented paste backfill: Experimental results of the effect of mix proportion, temperature and chemistry of the pore water. Eng. Fract. Mech. 2021, 258, 108096. [Google Scholar] [CrossRef]
- Cui, L.; McAdie, A. Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings. Int. J. Rock Mech. Min. Sci. 2023, 169, 105434. [Google Scholar] [CrossRef]
- Liu, W.; Yu, H.; Wang, S.; Wei, M.; Wang, X.; Song, X. Evolution mechanism of mechanical properties of cemented tailings backfill with partial replacement of cement by rice straw ash at different binder content. Powder Technol. 2023, 419, 118344. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.; Gu, C.; Yang, F.; Liu, H.; Jin, J.; Zhou, Y. The failure mechanical properties of cemented paste backfill with recycled rubber. Materials 2023, 16, 3302. [Google Scholar] [CrossRef]
- Guner, N.U.; Yilmaz, E.; Sari, M.; Kasap, T. Cementitious backfill with partial replacement of Cu-rich mine tailings by sand: Rheological, mechanical and microstructural properties. Minerals 2023, 13, 437. [Google Scholar] [CrossRef]
- Lu, H.; Sun, Q. Preparation and strength formation mechanism of calcined oyster shell, red mud, slag, and iron tailing composite cemented paste backfill. Materials 2022, 15, 2199. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, S.; Yilmaz, E. Carbon nanotube reinforced cementitious tailings composites: Links to mechanical and microstructural characteristics. Constr. Build. Mater. 2023, 365, 130123. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Song, W.D. Distribution development of pore/crack expansion and particle structure of cemented solid-waste composites based on CT and 3D reconstruction techniques. Constr. Build. Mater. 2023, 376, 130966. [Google Scholar] [CrossRef]
- Yi, X.W.; Ma, G.W.; Fourie, A. Centrifuge model studies on the stability of fiber reinforced cemented paste backfill stopes. Geotext. Geomembr. 2018, 46, 396–401. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Wang, H. Experimental investigation on some performance of rubber fiber modified cemented paste backfill. Constr. Build. Mater. 2021, 271, 121586. [Google Scholar] [CrossRef]
- Qin, S.W.; Cao, S.; Yilmaz, E.; Li, J.J. Influence of types and shapes of 3D printed polymeric lattice on ductility performance of cementitious backfill composites. Constr. Build. Mater. 2021, 307, 124973. [Google Scholar] [CrossRef]
- Xu, W.; Li, Q.; Zhang, Y. Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill. Constr. Build. Mater. 2019, 222, 776–785. [Google Scholar] [CrossRef]
- Wang, A.A.; Cao, S.; Yilmaz, E. Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading. Constr. Build. Mater. 2022, 322, 126448. [Google Scholar] [CrossRef]
- Bhutta, A.; Borges, P.H.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem. Concr. Compos. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, S.; Yilmaz, E. Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill. Constr. Build. Mater. 2022, 343, 128137. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, K.; Yu, X.; Yan, Y.; He, Z.; Lai, Y.; Zhou, Y. Crack classification of fiber-reinforced backfill based on Gaussian mixed moving average filtering method. Cem. Concr. Compos. 2022, 134, 104740. [Google Scholar] [CrossRef]
- Alp, I.; Deveci, H.; Sungun, Y.H.; Yilmaz, A.O.; Kesimal, A.; Yilmaz, E. Pozzolanic characteristics of a natural raw material for use in blended cements. Iran. J. Sci. Technol. Trans. B Eng. 2009, 33, 291–300. [Google Scholar]
- Wu, D.; Zhao, R.K.; Xie, C.W.; Liu, S. Effect of curing humidity on performance of cemented paste backfill. Int. J. Miner. Metall. Mater. 2020, 27, 1046–1053. [Google Scholar] [CrossRef]
- Shao, X.; Tian, C.; Li, C.; Fang, Z.; Zhao, B.; Xu, B.; Ning, J.; Li, L.; Tang, R. The experimental investigation on mechanics and damage characteristics of the aeolian sand paste-like backfill materials based on acoustic emission. Materials 2022, 15, 7235. [Google Scholar] [CrossRef]
- Wang, A.A.; Cao, S.; Yilmaz, E. Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill. Constr. Build. Mater. 2022, 344, 128179. [Google Scholar] [CrossRef]
- Koohestani, B.; Mokhtari, P.; Yilmaz, E.; Mahdipour, F.; Darban, A.K. Geopolymerization mechanism of binder-free mine tailings by sodium silicate. Constr. Build. Mater. 2021, 268, 121217. [Google Scholar] [CrossRef]
- Liu, L.; Xin, J.; Qi, C.C.; Jia, H.; Song, K.I.-I.L. Experimental investigation of mechanical, hydration, microstructure and electrical properties of cemented paste backfill. Constr. Build. Mater. 2020, 263, 120137. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Yilmaz, E.; Cao, S. Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, Z.; Min, C.; Shi, Y.; Zhang, S.; Liu, W. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm. Materials 2023, 16, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Lai, Y.; He, Z.; Liu, W.; Zhao, R.; Wang, Y.; Tian, X.; Nie, J. Study on energy dissipation and acoustic emission characteristics of fiber tailings cemented backfill with different ash-sand ratios. Process Saf. Environ. Prot. 2023, 174, 983–996. [Google Scholar] [CrossRef]
- McLean, J.; Cui, L. Multiscale geomechanical behavior of fiber-reinforced cementitious composites under cyclic loading conditions—A review. Front. Mater. 2021, 8, 759126. [Google Scholar] [CrossRef]
- Benkirane, O.; Haruna, S.; Fall, M. Strength and microstructure of cemented paste backfill modified with nano-silica particles and cured under non-isothermal conditions. Powder Technol. 2023, 419, 118311. [Google Scholar] [CrossRef]
- Chakilam, S.; Cui, L. Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill. Constr. Build. Mater. 2020, 262, 120854. [Google Scholar] [CrossRef]
- Kseniia, R.; Zhou, W. Dynamic compressive response of high-performance fiber-reinforced cement composites. Constr. Build. Mater. 2020, 249, 118738. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.; Zhou, J.; Chen, Q.; Li, E.; Du, X. Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill. Constr. Build. Mater. 2018, 190, 211–221. [Google Scholar] [CrossRef]
- Li, J.J.; Yilmaz, E.; Cao, S. Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills. Constr. Build. Mater. 2021, 299, 124288. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Davide, E.; Zhou, Y.C.; Song, W.D.; Meng, X. Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading. Int. J. Miner. Metall. Mater. 2020, 27, 140–151. [Google Scholar] [CrossRef]
- Chen, Q.S.; Sun, S.Y.; Liu, Y.K.; Qi, C.C.; Zhou, H.B.; Zhang, Q.L. Experimental and numerical study on immobilization and leaching characteristics of fluoride from phosphogypsum based cemented paste backfill. Int. J. Miner. Metall. Mater. 2021, 28, 1440–1452. [Google Scholar] [CrossRef]
- Kasap, T.; Yilmaz, E.; Sari, M.; Karasu, S. Predicting long-term impact of cementitious mine fill considering sand as a copper-tailings substitution. Powder Technol. 2023, 428, 118887. [Google Scholar] [CrossRef]
- Qiu, W.; Hu, W.; Curtin, D.; Motoi, L. Soil particle size range correction for improved calibration relationship between the laser-diffraction method and sieve-pipette method. Pedosphere 2021, 31, 134–144. [Google Scholar] [CrossRef]
- Wang, A.A.; Cao, S.; Yilmaz, E. Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images. J. Mater. Res. Technol. 2023, 26, 1428–1444. [Google Scholar] [CrossRef]
- He, P.X.; Lai, J.M.; Wang, Y.B.; Zhao, C.X.; Huang, Z.C. Study on three-point bending properties of foam sandwich composites under different reinforcement methods. China Plast. 2021, 35, 22–28. [Google Scholar]
- Zhao, B.; Wu, H.T.; Huang, K.; Wang, Y.Z. Comparative study on bending strength of PDC composites layer. J. Zhongyuan Univ. Technol. 2018, 29, 11–15. [Google Scholar]
Group | Specimen Number | Height of CFL (mm) | c/t Ratio of CTB-SLL | c/t Ratio of CTB-SUL | Solid Content (wt%) | Curing Time (Days) |
---|---|---|---|---|---|---|
A | A1 | 0 | 1:4 | 1:4 | 70 | 14 |
A2 | 1:6 | 1:6 | ||||
A3 | 1:8 | 1:8 | ||||
B | B1 | 14 | 1:4 | 1:15 | 70 | 14 |
B2 | 1:6 | |||||
B3 | 1:8 | |||||
C | C1 | 26 | 1:4 | 1:15 | 70 | 14 |
C2 | 1:6 | |||||
C3 | 1:8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Cao, S.; Yilmaz, E. Polypropylene Fiber Effect on Flexural Strength, Toughness, Deflection, Failure Mode and Microanalysis of Cementitious Backfills under Three-Point Bending Conditions. Minerals 2023, 13, 1135. https://doi.org/10.3390/min13091135
Zhao Z, Cao S, Yilmaz E. Polypropylene Fiber Effect on Flexural Strength, Toughness, Deflection, Failure Mode and Microanalysis of Cementitious Backfills under Three-Point Bending Conditions. Minerals. 2023; 13(9):1135. https://doi.org/10.3390/min13091135
Chicago/Turabian StyleZhao, Ziyue, Shuai Cao, and Erol Yilmaz. 2023. "Polypropylene Fiber Effect on Flexural Strength, Toughness, Deflection, Failure Mode and Microanalysis of Cementitious Backfills under Three-Point Bending Conditions" Minerals 13, no. 9: 1135. https://doi.org/10.3390/min13091135
APA StyleZhao, Z., Cao, S., & Yilmaz, E. (2023). Polypropylene Fiber Effect on Flexural Strength, Toughness, Deflection, Failure Mode and Microanalysis of Cementitious Backfills under Three-Point Bending Conditions. Minerals, 13(9), 1135. https://doi.org/10.3390/min13091135