Mineralization and Skarn Formation Associated with Alkaline Magma Chambers Emplaced in a Limestone Basement: A Review
Abstract
:1. Introduction
2. Geological Background
2.1. Somma-Vesuvius Volcanic System
2.2. Colli Albani Volcanic District (CAVD)
2.3. Merapi Volcano
3. Skarn Formation and Associated Mineralization
3.1. Skarn Formation at Somma-Vesuvius Volcanic System
3.2. Skarn Formation at CAVD
3.3. Skarn Formation at Merapi Volcano
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fulignati, P.; Marianelli, P.; Santacroce, R.; Sbrana, A. The Skarn Shell of the 1944 Vesuvius Magma Chamber. Genesis and P-T-X Conditions from Melt and Fluid Inclusion Data. Eur. J. Miner. 2000, 12, 1025–1039. [Google Scholar] [CrossRef]
- Fulignati, P.; Kamenetsky, V.S.; Marianelli, P.; Sbrana, A.; Mernagh, T.P. Melt Inclusion Record of Immiscibility between Silicate, Hydrosaline, and Carbonate Melts: Applications to Skarn Genesis at Mount Vesuvius. Geology 2001, 29, 1043. [Google Scholar] [CrossRef]
- Fulignati, P.; Marianelli, P.; Santacroce, R.; Sbrana, A. Probing the Vesuvius Magma Chamberhost Rock Interface through Xenoliths. Geol. Mag. 2004, 141, 417–428. [Google Scholar] [CrossRef]
- Fulignati, P.; Panichi, C.; Sbrana, A.; Caliro, S.; Gioncada, A.; Moro, A.D. Skarn Formation at the Walls of the 79AD Magma Chamber of Vesuvius (Italy): Mineralogical and Isotopic Constraints. Neues Jahrb. Fur Mineral. Abh. 2005, 181, 53–66. [Google Scholar] [CrossRef]
- Jolis, E.M.; Troll, V.R.; Harris, C.; Freda, C.; Gaeta, M.; Orsi, G.; Siebe, C. Skarn Xenolith Record Crustal CO2 Liberation during Pompeii and Pollena Eruptions, Vesuvius Volcanic System, Central Italy. Chem. Geol. 2015, 415, 17–36. [Google Scholar] [CrossRef]
- Stoppa, F.; Principe, C.; Schiazza, M.; Liu, Y.; Giosa, P.; Crocetti, S. Magma Evolution inside the 1631 Vesuvius Magma Chamber and Eruption Triggering. Open Geosci. 2017, 9, 24–52. [Google Scholar] [CrossRef]
- Federico, M.; Peccerillo, A. Mineral Chemistry and Petrogenesis of Granular Ejecta from the Alban Hills Volcano (Central Italy). Mineral. Petrol. 2002, 74, 223–252. [Google Scholar] [CrossRef]
- Gaeta, M.; Di Rocco, T.; Freda, C. Carbonate Assimilation in Open Magmatic Systems: The Role of Melt-Bearing Skarns and Cumulate-Forming Processes. J. Petrol. 2009, 50, 361–385. [Google Scholar] [CrossRef]
- Peccerillo, A.; Federico, M.; Barbieri, M.; Brilli, M.; Wu, T.-W. Interaction between Ultrapotassic Magmas and Carbonate Rocks: Evidence from Geochemical and Isotopic (Sr, Nd, O) Compositions of Granular Lithic Clasts from the Alban Hills Volcano, Central Italy. Geochim. Cosmochim. Acta 2010, 74, 2999–3022. [Google Scholar] [CrossRef]
- Di Rocco, T.; Freda, C.; Gaeta, M.; Mollo, S.; Dallai, L. Magma Chambers Emplaced in Carbonate Substrate: Petrogenesis of Skarn and Cumulate Rocks and Implications for CO2 Degassing in Volcanic Areas. J. Petrol. 2012, 53, 2307–2332. [Google Scholar] [CrossRef]
- Chadwick, J.P.; Troll, V.R.; Ginibre, C.; Morgan, D.; Gertisser, R.; Waight, T.E.; Davidson, J.P. Carbonate Assimilation at Merapi Volcano, Java, Indonesia: Insights from Crystal Isotope Stratigraphy. J. Petrol. 2007, 48, 1793–1812. [Google Scholar] [CrossRef]
- Whitley, S.; Gertisser, R.; Halama, R.; Preece, K.; Troll, V.R.; Deegan, F.M. Crustal CO2 Contribution to Subduction Zone Degassing Recorded through Calc-Silicate Xenoliths in Arc Lavas. Sci. Rep. 2019, 9, 8803. [Google Scholar] [CrossRef] [PubMed]
- Whitley, S.; Halama, R.; Gertisser, R.; Preece, K.; Deegan, F.M.; Troll, V.R. Magmatic and Metasomatic Effects of Magma–Carbonate Interaction Recorded in Calc-Silicate Xenoliths from Merapi Volcano (Indonesia). J. Petrol. 2020, 61, egaa048. [Google Scholar] [CrossRef]
- Matthews, S.J.; Marquillas, R.A.; Kemp, A.J.; Grange, F.K.; Gardeweg, M.C. Active Skarn Formation beneath Lascar Volcano, Northern Chile: A Petrographic and Geochemical Study of Xenoliths in Eruption Products. J. Metamorph. Geol. 1996, 14, 509–530. [Google Scholar] [CrossRef]
- Goff, F.; Love, S.P.; Warren, R.G.; Counce, D.; Obenholzner, J.; Siebe, C.; Schmidt, S.C. Passive Infrared Remote Sensing Evidence for Large, Intermittent CO2 Emissions at Popocatépetl Volcano, Mexico. Chem. Geol. 2001, 177, 133–156. [Google Scholar] [CrossRef]
- Janik, C.J.; Goff, F.; Fahlquist, L.; Adams, A.I.; Alfredo Roldan, M.; Chipera, S.J.; Trujillo, P.E.; Counce, D. Hydrogeochemical Exploration of Geothermal Prospects in the Tecuamburro Volcano Region, Guatemala. Geothermics 1992, 21, 447–481. [Google Scholar] [CrossRef]
- Spandler, C.; Martin, L.H.J.; Pettke, T. Carbonate Assimilation during Magma Evolution at Nisyros (Greece), South Aegean Arc: Evidence from Clinopyroxenite Xenoliths. Lithos 2012, 146–147, 18–33. [Google Scholar] [CrossRef]
- Deegan, F.M.; Troll, V.R.; Freda, C.; Misiti, V.; Chadwick, J.P.; McLeod, C.L.; Davidson, J.P. Magma–Carbonate Interaction Processes and Associated CO2 Release at Merapi Volcano, Indonesia: Insights from Experimental Petrology. J. Petrol. 2010, 51, 1027–1051. [Google Scholar] [CrossRef]
- Troll, V.R.; Hilton, D.R.; Jolis, E.M.; Chadwick, J.P.; Blythe, L.S.; Deegan, F.M.; Schwarzkopf, L.M.; Zimmer, M. Crustal CO2 Liberation during the 2006 Eruption and Earthquake Events at Merapi Volcano, Indonesia: Crustal CO2 Liberation at Merapi Volcano. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Jolis, E.M.; Freda, C.; Troll, V.R.; Deegan, F.M.; Blythe, L.S.; McLeod, C.L.; Davidson, J.P. Experimental Simulation of Magma–Carbonate Interaction beneath Mt. Vesuvius, Italy. Contrib. Miner. Petrol. 2013, 166, 1335–1353. [Google Scholar] [CrossRef]
- La Spina, G.; Arzilli, F.; Burton, M.R.; Polacci, M.; Clarke, A.B. Role of Volatiles in Highly Explosive Basaltic Eruptions. Commun. Earth Environ. 2022, 3, 156. [Google Scholar] [CrossRef]
- Federico, M.; Peccerillo, A.; Barbieri, M.; Wu, T.W. Mineralogical and Geochemical Study of Granular Xenoliths from the Alban Hills Volcano, Central Italy: Bearing on Evolutionary Processes in Potassic Magma Chambers. Contrib. Mineral. Petrol. 1994, 115, 384–401. [Google Scholar] [CrossRef]
- Troll, V.R.; Deegan, F.M.; Jolis, E.M.; Harris, C.; Chadwick, J.P.; Gertisser, R.; Schwarzkopf, L.M.; Borisova, A.Y.; Bindeman, I.N.; Sumarti, S.; et al. Magmatic Differentiation Processes at Merapi Volcano: Inclusion Petrology and Oxygen Isotopes. J. Volcanol. Geotherm. Res. 2013, 261, 38–49. [Google Scholar] [CrossRef]
- Wenzel, T. Partial Melting and Assimilation of Dolomitic Xenoliths by Mafic Magma: The Ioko-Dovyren Intrusion (North Baikal Region, Russia). J. Petrol. 2002, 43, 2049–2074. [Google Scholar] [CrossRef]
- Mollo, S.; Gaeta, M.; Freda, C.; Di Rocco, T.; Misiti, V.; Scarlato, P. Carbonate Assimilation in Magmas: A Reappraisal Based on Experimental Petrology. Lithos 2010, 114, 503–514. [Google Scholar] [CrossRef]
- Freda, C.; Gaeta, M.; Misiti, V.; Mollo, S.; Dolfi, D.; Scarlato, P. Magma–Carbonate Interaction: An Experimental Study on Ultrapotassic Rocks from Alban Hills (Central Italy). Lithos 2008, 101, 397–415. [Google Scholar] [CrossRef]
- Iacono Marziano, G.; Gaillard, F.; Pichavant, M. Limestone Assimilation by Basaltic Magmas: An Experimental Re-Assessment and Application to Italian Volcanoes. Contrib. Miner. Petrol. 2008, 155, 719–738. [Google Scholar] [CrossRef]
- Blythe, L.S.; Deegan, F.M.; Freda, C.; Jolis, E.M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V.R. CO2 Bubble Generation and Migration during Magma–Carbonate Interaction. Contrib. Miner. Petrol. 2015, 169, 42. [Google Scholar] [CrossRef]
- Carter, L.B.; Dasgupta, R. Effect of Melt Composition on Crustal Carbonate Assimilation: Implications for the Transition from Calcite Consumption to Skarnification and Associated CO2 Degassing: Carbonate Assimilation by Evolving Magma. Geochem. Geophys. Geosystems 2016, 17, 3893–3916. [Google Scholar] [CrossRef]
- Knuever, M.; Sulpizio, R.; Mele, D.; Pisello, A.; Costa, A.; Perugini, D.; Vetere, F. Decarbonation and Clast Dissolution Timescales for Short-Term Magma-Carbonate Interactions in the Volcanic Feeding System and Their Influence on Eruptive Dynamics: Insights from Experiments at Atmospheric Pressure. Accept. Publ. Chem. Geol. 2023. [Google Scholar]
- Fulignati, P.; Kamenetsky, V.S.; Marianelli, P.; Sbrana, A.; Meffre, S. First Insights on the Metallogenic Signature of Magmatic Fluids Exsolved from the Active Magma Chamber of Vesuvius (AD 79 “Pompei” Eruption). J. Volcanol. Geotherm. Res. 2011, 200, 223–233. [Google Scholar] [CrossRef]
- Fulignati, P.; Kamenetsky, V.S.; Marianelli, P.; Sbrana, A. PIXE Mapping on Multiphase Fluid Inclusions in Endoskarn Xenoliths of AD 472 Eruption of Vesuvius (Italy). Period. Mineral. 2013, 82, 291–297. [Google Scholar] [CrossRef]
- Kerrick, D.M. The Genesis of Zoned Skarns in the Sierra Nevada, California. J. Petrol. 1977, 18, 144–181. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn Deposits. Econ. Geol. 1981, 75th Anniversary Volume, 317–391. [Google Scholar]
- Meinert, L.D. Skarns and Skarn Deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Lentz, D.R. Carbonatite Genesis: A Reexamination of the Role of Intrusion-Related Pneumatolytic Skarn Processes in Limestone Melting. Geology 1999, 27, 335. [Google Scholar] [CrossRef]
- Korzhinskii, D.S. Theory of Metasomatic Zoning; Clarendon Press: Oxford, England, 1970; ISBN 0-19-854374-3. [Google Scholar]
- Hofmann, A. Chromatographic Theory of Infiltration Metasomatism and Its Application to Feldspars. Am. J. Sci. 1972, 272, 69. [Google Scholar] [CrossRef]
- Burnham, C.W. Hydrothermal Fluids at the Magmatic Stage. Geochem. Hydrothermal Ore Depos. 1967, 34–76. [Google Scholar]
- Kesler, S.E. Mechanisms of Magmatic Assimilation at a Marble Contact, Northern Haiti. Lithos 1968, 1, 219–229. [Google Scholar] [CrossRef]
- Cioni, R.; Santacroce, R.; Sbrana, A. Pyroclastic Deposits as a Guide for Reconstructing the Multi-Stage Evolution of the Somma-Vesuvius Caldera. Bull. Volcanol. 1999, 61, 207–222. [Google Scholar] [CrossRef]
- Santacroce, R.; Cioni, R.; Marianelli, P.; Sbrana, A.; Sulpizio, R.; Zanchetta, G.; Donahue, D.J.; Joron, J.L. Age and Whole Rock–Glass Compositions of Proximal Pyroclastics from the Major Explosive Eruptions of Somma-Vesuvius: A Review as a Tool for Distal Tephrostratigraphy. J. Volcanol. Geotherm. Res. 2008, 177, 1–18. [Google Scholar] [CrossRef]
- Santacroce, R. Somma-Vesuvius. Quad. Della Ric. Sci. 1987, 114, 1–251. [Google Scholar]
- Brocchini, D.; Principe, C.; Castradori, D.; Laurenzi, M.A.; Gorla, L. Quaternary Evolution of the Southern Sector of the Campanian Plain and Early Somma-Vesuvius Activity: Insights from the Trecase 1 Well. Mineral. Petrol. 2001, 73, 67–91. [Google Scholar] [CrossRef]
- Barberi, F.; Leoni, L. Metamorphic Carbonate Ejecta from Vesuvius Plinian Eruptions: Evidence of the Occurrence of Shallow Magma Chambers. Bull. Volcanol. 1980, 43, 107–120. [Google Scholar] [CrossRef]
- Bruno, P.P.G.; Cippitelli, G.; Rapolla, A. Seismic Study of the Mesozoic Carbonate Basement around Mt. Somma–Vesuvius, Italy. J. Volcanol. Geotherm. Res. 1998, 84, 311–322. [Google Scholar] [CrossRef]
- Scaillet, B.; Pichavant, M.; Cioni, R. Upward Migration of Vesuvius Magma Chamber over the Past 20,000 Years. Nature 2008, 455, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, L.; Mastrolorenzo, G. Short Residence Times for Alkaline Vesuvius Magmas in a Multi-Depth Supply System: Evidence from Geochemical and Textural Studies. Earth Planet. Sci. Lett. 2010, 296, 133–143. [Google Scholar] [CrossRef]
- Del Moro, A.; Fulignati, P.; Marianelli, P.; Sbrana, A. Magma Contamination by Direct Wall Rock Interaction: Constraints from Xenoliths from the Walls of a Carbonate-Hosted Magma Chamber (Vesuvius 1944 Eruption). J. Volcanol. Geotherm. Res. 2001, 112, 15–24. [Google Scholar] [CrossRef]
- Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; Ayuso, R.A. Isotope Geochemistry and ¯uid Inclusion Study of Skarns from Vesuvius. Mineral. Petrol. 2001, 73, 145–176. [Google Scholar] [CrossRef]
- Piochi, M.; Ayuso, R.A.; De Vivo, B.; Somma, R. Crustal Contamination and Crystal Entrapment during Polybaric Magma Evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr Isotope Evidence. Lithos 2006, 86, 303–329. [Google Scholar] [CrossRef]
- Dallai, L.; Cioni, R.; Boschi, C.; D’Oriano, C. Carbonate-Derived CO2 Purging Magma at Depth: Influence on the Eruptive Activity of Somma-Vesuvius, Italy. Earth Planet. Sci. Lett. 2011, 310, 84–95. [Google Scholar] [CrossRef]
- Pascal, M.-L.; Di Muro, A.; Fonteilles, M.; Principe, C. Zirconolite and Calzirtite in Banded Forsterite-Spinel-Calcite Skarn Ejecta from the 1631 Eruption of Vesuvius: Inferences for Magma-Wallrock Interactions. Miner. Mag. 2009, 73, 333–356. [Google Scholar] [CrossRef]
- Pascal, M.-L.; Fonteilles, M.; Boudouma, O.; Principe, C. Qandilite from Vesuvius Skarn Ejecta: Conditions of Formation and Miscibility Gap in the Ternary Spinal—Qandilite—Magnesioferrite. Can. Mineral. 2011, 49, 459–485. [Google Scholar] [CrossRef]
- Cioni, R.; Civetta, L.; Marianelli, P.; Metrich, N.; Santacroce, R.; Sbrana, A. Compositional Layering and Syn-Eruptive Mixing of a Periodically Refilled Shallow Magma Chamber: The AD 79 Plinian Eruption of Vesuvius. J. Petrol. 1995, 36, 739–776. [Google Scholar] [CrossRef]
- Cioni, R.; Marianelli, P.; Santacroce, R. Thermal and Compositional Evolution of the Shallow Magma Chambers of Vesuvius: Evidence from Pyroxene Phenocrysts and Melt Inclusions. J. Geophys. Res. 1998, 103, 18277–18294. [Google Scholar] [CrossRef]
- Marianelli, P.; Métrich, N.; Sbrana, A. Shallow and Deep Reservoirs Involved in Magma Supply of the 1944 Eruption of Vesuvius. Bull. Volcanol. 1999, 61, 48–63. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; ISBN 978-3-540-25885-8. [Google Scholar]
- Funiciello, R.; Parotto, M. Il Substrato Sedimentario Nell’area Dei Colli Albani: Considerazioni Geodinamiche e Paleogeografiche Sul Margine Tirrenico Dell’Appennino Centrale. Geol. Romana 1978, 17, 233–288. [Google Scholar]
- Bianchi, I.; Piana Agostinetti, N.; De Gori, P.; Chiarabba, C. Deep Structure of the Colli Albani Volcanic District (Central Italy) from Receiver Functions Analysis. J. Geophys. Res. 2008, 113, B09313. [Google Scholar] [CrossRef]
- Freda, C.; Gaeta, M.; Palladino, D.M.; Trigila, R. The Villa Senni Eruption (Alban Hills, Central Italy): The Role of H2O and CO2 on the Magma Chamber Evolution and on the Eruptive Scenario. J. Volcanol. Geotherm. Res. 1997, 78, 103–120. [Google Scholar] [CrossRef]
- Giordano, G.; De Benedetti, A.A.; Diana, A.; Diano, G.; Gaudioso, F.; Marasco, F.; Miceli, M.; Mollo, S.; Cas, R.A.F.; Funiciello, R. The Colli Albani Mafic Caldera (Roma, Italy): Stratigraphy, Structure and Petrology. J. Volcanol. Geotherm. Res. 2006, 155, 49–80. [Google Scholar] [CrossRef]
- Gaeta, M.; Freda, C.; Christensen, J.N.; Dallai, L.; Marra, F.; Karner, D.B.; Scarlato, P. Time-Dependent Geochemistry of Clinopyroxene from the Alban Hills (Central Italy): Clues to the Source and Evolution of Ultrapotassic Magmas. Lithos 2006, 86, 330–346. [Google Scholar] [CrossRef]
- Iacono Marziano, G.; Gaillard, F.; Pichavant, M. Limestone Assimilation and the Origin of CO2 Emissions at the Alban Hills (Central Italy): Constraints from Experimental Petrology. J. Volcanol. Geotherm. Res. 2007, 166, 91–105. [Google Scholar] [CrossRef]
- Freda, C.; Gaeta, M.; Giaccio, B.; Marra, F.; Palladino, D.M.; Scarlato, P.; Sottili, G. CO2-Driven Large Mafic Explosive Eruptions: The Pozzolane Rosse Case Study from the Colli Albani Volcanic District (Italy). Bull. Volcanol. 2011, 73, 241–256. [Google Scholar] [CrossRef]
- Freda, C.; Gaeta, M.; Karner, D.B.; Marra, F.; Renne, P.R.; Taddeucci, J.; Scarlato, P.; Christensen, J.N.; Dallai, L. Eruptive History and Petrologic Evolution of the Albano Multiple Maar (Alban Hills, Central Italy). Bull. Volcanol. 2006, 68, 567–591. [Google Scholar] [CrossRef]
- Gertisser, R.; Charbonnier, S.J.; Keller, J.; Quidelleur, X. The Geological Evolution of Merapi Volcano, Central Java, Indonesia. Bull. Volcanol. 2012, 74, 1213–1233. [Google Scholar] [CrossRef]
- Surono, N.; Jousset, P.; Pallister, J.; Boichu, M.; Buongiorno, M.F.; Budisantoso, A.; Costa, F.; Andreastuti, S.; Prata, F.; Schneider, D.; et al. The 2010 Explosive Eruption of Java’s Merapi Volcano—A ‘100-Year’ Event. J. Volcanol. Geotherm. Res. 2012, 241–242, 121–135. [Google Scholar] [CrossRef]
- Komorowski, J.-C.; Jenkins, S.; Baxter, P.J.; Picquout, A.; Lavigne, F.; Charbonnier, S.; Gertisser, R.; Preece, K.; Cholik, N.; Budi-Santoso, A.; et al. Paroxysmal Dome Explosion during the Merapi 2010 Eruption: Processes and Facies Relationships of Associated High-Energy Pyroclastic Density Currents. J. Volcanol. Geotherm. Res. 2013, 261, 260–294. [Google Scholar] [CrossRef]
- van Bemmelen, R.W. The Geology of Indonesia. In Proceedings of the Indonesian Petroleum Association, IA: General Geology of Indonesia and Adjacent Archipelagoes; Indonesian Petroleum Association: Jakarta, Indonesia, 1949; pp. 1–77. [Google Scholar]
- Smyth, H. East Java: Cenozoic Basins, Volcanoes and Ancient Basement. In Proceedings of the Indonesian Petroleum Association, 30th Annual Convention; Indonesian Petroleum Association, Jakarta, Indonesia, 2005; pp. 251–266. [Google Scholar]
- Gertisser, R.; Keller, J. Temporal Variations in Magma Composition at Merapi Volcano (Central Java, Indonesia): Magmatic Cycles during the Past 2000 Years of Explosive Activity. J. Volcanol. Geotherm. Res. 2003, 123, 1–23. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Martel, C.; Gouy, S.; Pratomo, I.; Sumarti, S.; Toutain, J.-P.; Bindeman, I.N.; de Parseval, P.; Metaxian, J.-P. Surono Highly Explosive 2010 Merapi Eruption: Evidence for Shallow-Level Crustal Assimilation and Hybrid Fluid. J. Volcanol. Geotherm. Res. 2013, 261, 193–208. [Google Scholar] [CrossRef]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Robidoux, P.; Di Napoli, R. Along-Arc, Inter-Arc and Arc-to-Arc Variations in Volcanic Gas CO2 /S T Ratios Reveal Dual Source of Carbon in Arc Volcanism. Earth-Sci. Rev. 2017, 168, 24–47. [Google Scholar] [CrossRef]
- Marsh, B.D. Solidification Fronts and Magmatic Evolution. Miner. Mag. 1995, 60, 5–40. [Google Scholar] [CrossRef]
- Marianelli, P.; Métrich, N.; Santacroce, R.; Sbrana, A. Mafic Magma Batches at Vesuvius: A Glass Inclusion Approach to the Modalities of Feeding Stratovolcanoes. Contrib. Mineral. Petrol. 1995, 120, 159–169. [Google Scholar] [CrossRef]
- Tracy, R.J.; Frost, B.R. Phase Equilibria and Thermobarometry of Calcareous, Ultramafic and Mafic Rocks, and Iron Formations. Rev. Mineral. Geochem. 1991, 26, 207–289. [Google Scholar]
- Rittmann, A. Die Geologisch Bedingte Evolution Und Differentiation Des Somma-Vesuvmagmas. Z. Für Vulkanol. 1933, 15, 8–94. [Google Scholar]
- Pichavant, M.; Scaillet, B.; Pommier, A.; Iacono-Marziano, G.; Cioni, R. Nature and Evolution of Primitive Vesuvius Magmas: An Experimental Study. J. Petrol. 2014, 55, 2281–2310. [Google Scholar] [CrossRef]
- Ito, E.; White, W.M.; Göpel, C. The O, Sr, Nd and Pb Isotope Geochemistry of MORB. Chem. Geol. 1987, 62, 157–176. [Google Scholar] [CrossRef]
- Harmon, R.S.; Hoefs, J. Oxygen Isotope Heterogeneity of the Mantle Deduced from Global 18O Systematics of Basalts from Different Geotectonic Settings. Contrib. Miner. Petrol. 1995, 120, 95–114. [Google Scholar] [CrossRef]
- Deegan, F.M.; Troll, V.R.; Freda, C.; Misiti, V.; Chadwick, J.P. Fast and Furious: Crustal CO2 Release at Merapi Volcano, Indonesia. Geol. Today 2011, 27, 63–64. [Google Scholar] [CrossRef]
- Buono, G.; Pappalardo, L.; Harris, C.; Edwards, B.R.; Petrosino, P. Magmatic Stoping during the Caldera-Forming Pomici Di Base Eruption (Somma-Vesuvius, Italy) as a Fuel of Eruption Explosivity. Lithos 2020, 370–371, 105628. [Google Scholar] [CrossRef]
- Candela, P.A.; Piccoli, P.M. Magmatic Processes in the Development of Porphyry-Type Ore Systems; Society of Economic Geologists: Littleton, CO, USA, 2005. [Google Scholar] [CrossRef]
- Keppler, H.; Wyllie, P.J. Partitioning of Cu, Sn, Mo, W, U, and Th between Melt and Aqueous Fluid in the Systems Haplogranite-H/O-HCl and Haplogranite-H20-HF. Contrib. Mineral. Petrol. 1991, 109, 139–150. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Van Achterbergh, E.; Ryan, C.G.; Naumov, V.B.; Mernagh, T.P.; Davidson, P. Extreme Chemical Heterogeneity of Granite-Derived Hydrothermal Fluids: An Example from Inclusions in a Single Crystal of Miarolitic Quartz. Geology 2002, 30, 459. [Google Scholar] [CrossRef]
- Sottili, G.; Taddeucci, J.; Palladino, D.M.; Gaeta, M.; Scarlato, P.; Ventura, G. Sub-Surface Dynamics and Eruptive Styles of Maars in the Colli Albani Volcanic District, Central Italy. J. Volcanol. Geotherm. Res. 2009, 180, 189–202. [Google Scholar] [CrossRef]
- Masotta, M.; Freda, C.; Gaeta, M. Origin of Crystal-Poor, Differentiated Magmas: Insights from Thermal Gradient Experiments. Contrib. Miner. Petrol. 2012, 163, 49–65. [Google Scholar] [CrossRef]
- Handley, H.K.; Blichert-Toft, J.; Gertisser, R.; Macpherson, C.G.; Turner, S.P.; Zaennudin, A.; Abdurrachman, M. Insights from Pb and O Isotopes into Along-Arc Variations in Subduction Inputs and Crustal Assimilation for Volcanic Rocks in Java, Sunda Arc, Indonesia. Geochim. Cosmochim. Acta 2014, 139, 205–226. [Google Scholar] [CrossRef]
- Barnes, C.G.; Prestvik, T.; Sundvoll, B.; Surratt, D. Pervasive Assimilation of Carbonate and Silicate Rocks in the Hortavær Igneous Complex, North-Central Norway. Lithos 2005, 80, 179–199. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Gurenko, A.A.; Martel, C.; Kouzmanov, K.; Cathala, A.; Bohrson, W.A.; Pratomo, I.; Sumarti, S. Oxygen Isotope Heterogeneity of Arc Magma Recorded in Plagioclase from the 2010 Merapi Eruption (Central Java, Indonesia). Geochim. Cosmochim. Acta 2016, 190, 13–34. [Google Scholar] [CrossRef]
- Deegan, F.M.; Troll, V.R.; Whitehouse, M.J.; Jolis, E.M.; Freda, C. Boron Isotope Fractionation in Magma via Crustal Carbonate Dissolution. Sci. Rep. 2016, 6, 30774. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenes, J.; Blundy, J. Crustal Sequestration of Magmatic Sulfur Dioxide. Geology 2017, 45, 211–214. [Google Scholar] [CrossRef]
- Nadeau, O.; Williams-Jones, A.E.; Stix, J. Sulphide Magma as a Source of Metals in Arc-Related Magmatic Hydrothermal Ore Fluids. Nat. Geosci. 2010, 3, 501–505. [Google Scholar] [CrossRef]
- Agangi, A.; Reddy, S.M. Open-System Behaviour of Magmatic Fluid Phase and Transport of Copper in Arc Magmas at Krakatau and Batur Volcanoes, Indonesia. J. Volcanol. Geotherm. Res. 2016, 327, 669–686. [Google Scholar] [CrossRef]
- Iacono-Marziano, G.; Gaillard, F.; Scaillet, B.; Pichavant, M.; Chiodini, G. Role of Non-Mantle CO2 in the Dynamics of Volcano Degassing: The Mount Vesuvius Example. Geology 2009, 37, 319–322. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Aiuppa, A.; Avino, R.; Granieri, D.; Moretti, R.; Parello, F. First 13C/12C Isotopic Characterisation of Volcanic Plume CO2. Bull. Volcanol. 2011, 73, 531–542. [Google Scholar] [CrossRef]
- Massaro, S.; Costa, A.; Sulpizio, R. Evolution of the Magma Feeding System during a Plinian Eruption: The Case of Pomici Di Avellino Eruption of Somma–Vesuvius, Italy. Earth Planet. Sci. Lett. 2018, 482, 545–555. [Google Scholar] [CrossRef]
- Pappalardo, L.; Buono, G.; Fanara, S.; Petrosino, P. Combining Textural and Geochemical Investigations to Explore the Dynamics of Magma Ascent during Plinian Eruptions: A Somma–Vesuvius Volcano (Italy) Case Study. Contrib. Miner. Petrol. 2018, 173, 61. [Google Scholar] [CrossRef]
- Carr, B.B.; Clarke, A.B.; de’ Michieli Vitturi, M. Earthquake Induced Variations in Extrusion Rate: A Numerical Modeling Approach to the 2006 Eruption of Merapi Volcano (Indonesia). Earth Planet. Sci. Lett. 2018, 482, 377–387. [Google Scholar] [CrossRef]
- Preece, K.; Gertisser, R.; Barclay, J.; Charbonnier, S.J.; Komorowski, J.-C.; Herd, R.A. Transitions between Explosive and Effusive Phases during the Cataclysmic 2010 Eruption of Merapi Volcano, Java, Indonesia. Bull. Volcanol. 2016, 78, 54. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.B.; Clarke, A.B.; De’ Michieli Vitturi, M. Volcanic Conduit Controls on Effusive-Explosive Transitions and the 2010 Eruption of Merapi Volcano (Indonesia). J. Volcanol. Geotherm. Res. 2020, 392, 106767. [Google Scholar] [CrossRef]
Eruption | Magma Composition/Magma Chamber | Solidification Front Rock | Skarn/Cumulate Type | Main Mineral Phases | Rare Mineral Phases | Accessory Mineral Phases | Metasomatizing Fluid Composition |
---|---|---|---|---|---|---|---|
1944 [1,3,57] | tephrite to phonotephrite/homogneous mafic magma chamber | Upper part: glass bearing fergusites | Magmatic Skarn: melilite-bearing skarn | fassaitic cpx + melilite + olivine + spinel | glass + plagioclase + perovskite | - | Cl-F-H2O-rich fluid phase |
Lower part: Cumulates (clinopyroxenites to olivine-clinopyroxenites) | Magmatic Skarn: phologopite-bearing skarn | fassaitic cpx + phlogopite + spinel + olivine | glass + plagioclase + periclase; cpx rarely has diopsidic/salitic cores | - | |||
Exoskarn: periclase-bearing skarn | fassaitic cpx + periclase + olivine + spinel + perovskite | - | - | ||||
thermo-metamorphic periclase-bearing marbles | interstitial periclase in calcite + mg-rich calcite | olivine | |||||
1631 [6,53,54] | phonotephrite to phonolite / stratified magma chamber | n.d. | Pyroxenite | cpx + biotite + apatite | spinel + anorthite + amphibole + leucite | Zr- and Ti-Oxides | n.d. |
Endoskarn: phlogopite-bearing skarn | phlogopite | olivine + cpx | - | ||||
Zoned Skarn | (1) olivine + spinel | (1) perovskite + qandilite + baddeleyite | (1) zirconolite + calzirtite | ||||
(2) calcite | (2) inclusions of olivine, spinel and Mg-Ti-/Zr-Oxides | - | |||||
AD 472 “Pollena” [2,3,5,56] | phonotephrite to phonolite/stratified magma chamber | Upper Part: foid-bearing syenites | Endoskarn: melilite-bearing skarn | fassaitic cpx + melilite + phlogopite | wollastonite | - | n.d. |
Lower Part: Cumulates (clinopyroxenites to olivine-clinopyroxenites) | Magmatic Skarn: phlogopite-bearing skarn | fassaitic cpx + phlogopite + spinel | olivine + nephelin + calcite | - | |||
thermo-metamorphic marbles | |||||||
AD 79 “Pompei”[3,4,5,31,55,56] | tephriphonolite and phonolite/two-folded magma chamber | Upper Part: foid-bearing syenites | Endoskarn (only 1 sample) | fassaitic cpx + olivine + spinel + calcite + garnet | phlogopite + dolomite + nepheline + anorthite + microsommite | REE- and Th-allanite + pyrrhotite + apatite + sphene + zircon + scheelite + thorite + monzanite + stibnite + Nb- and Zr-perovskite + pyrite + galena | Cl-F-H2O-rich fluid phase |
Lower Part: Cumulates (clinopyroxenites to olivine-clinopyroxenites) | Magmatic Skarn: melilite-bearing skarn | fassaitic cpx + phlogopite + spinel | olivine + melilite | - | |||
Magmatic Skarn: phlogopite-bearing skarn | fassaitic cpx + olivine + spinel + calcite | phlogopite + dolomite + nepheline | - | ||||
Exoskarn: phlogopite-bearing skarn | olivine + phlogopite + calcite + dolomite | spinel + sodalite | pyrrhotite + apatite + thorianite + baddeleyte + U-thorite | ||||
Exoskarn: periclase-bearing skarn | olivine + spinel + calcite | dolomite + periclase + magnesite | baddeleyte + monzanite + sphene + REE-flouride | ||||
Hornfels (only 1 sample) | wollastonite + fassaitic cpx + anorthite | contains rhyolitic glass with quartz + fassaitic cpx; | pyrrhotite + sphene | ||||
thermo-metamorphic marbles |
Eruption | Magma Composition | Solidification Front Rock | Skarn / Cumulate Type | Main Mineral Phases | Rare Mineral Phases | Accessory Mineral Phases | Metasomatizing Fluid Composition |
---|---|---|---|---|---|---|---|
Albano Maar (Unit a) [8,10] | Trachybasalt (primitive) to Phonotephrite (differentiated) | OCCp (primitive olivine-bearing orthocumulate) | Endoskarn: CaTs-rich | cpx + spinel | olivine + calcite inclusions in cpx and spinel + interstitial glass | - | n.d. |
OCCd (differentiated olivine-bearing orthocumulate) | Endoskarn: CaTs-rich with two mingled domains | (1) calcite bearing + cpx + olivine + spinel + phlogopite + glass | (1) calcite inclusions in spinel | - | |||
POC (phlogopite-bearing orthocumulate) | (2) calcite free + cpx + olivine + vesiculated glass | (2) phologopite | - | ||||
Exoskarn: layered skarn | (1) carbonate layers: calcite + olivine + cpx | - | - | ||||
(2) silicate layer: cpx (90%) + calcite | (2) phlogopite, olivine, spinel | - | |||||
Albano Maar (late-stage hydro-volcanic activity) [7,9] | leucitite-tephrite - leucitite to phonotephrite | n.d. | Group 1 | cpx + foids + phlogopite + K-Fsp + garnet | - | amphibole + Fe-Ti-oxides + flourite + zircon + sphene + cuspidine + Ca-Th-REE-rich Si-phosphates | F-rich fluid phase |
Group 2 | (1) olivine + spinel | - | - | ||||
(2) phlogopite + olivine + cpx + spinel | (2) interstitial glass | - | |||||
Group 3 | K-fsp + phlogopite | leucite + sodalite group minerals + garnet + cpx + phlogopite + nephelin | apatite + magnetite + pyrrhotite + Ca-Th-REE-rich Si-phosphates | ||||
Group 4 | K-fsp + phlogopite | reaction rim: polygonal microlites of acicular leucite; matrix: wollastonite + garnet + leucite + sodalite-group minerals + nephelin + phlogopite | matrix: wollatonite + garnet + cpx + leucite as phenocrysts |
Eruption | Magma Composition | Solidification Front Rock | Skarn/Cumulate Type | Main Mineral Phases | Rare Mineral Phases | Accessory Mineral Phases | Metasomatizing Fluid Composition |
---|---|---|---|---|---|---|---|
1998 block and ash flow [11,72] | basaltic andesite | n.d. | Skarn (not specified) | wollastonite + diopsidic cpx | Ca-plagioclase (anorthite) + quartz + Ca-amphibole (tremolite) + garnet | - | n.d. |
1994–2010 dome lavas [12,72] | high-K basalt to basaltic andesite | n.d. | Endoskarn | wollastonite + cpx + plagioclase + glass | calcite + quartz + garnet | wadalite-like phase + gehlenite + cuspidine + flourite | n.d. |
Exoskarn | fassaitic cpx + wollastonite + plagioclase + garnet | calcite | cuspidine + spurrite + flourite | ||||
1994–2010 eruptions [13,72] | high-K basalt to basaltic andesite | n.d. | Endoskarn (magma-R1-R2-R3-R4-skarn core) | R1: cpx + magnetite | - | R1–4 and Core: calcite + titanite + chromite + gehlenite + wadalite-like phase + Ca-Zr-Ti-O mineral + cotunnite + anhydrite + baryte + pyrrhotite + cubanite | F-Cl-S-rich fluid phase |
R2: plagioclase + cpx | R2: glass + amphibole | ||||||
R3: cpx | |||||||
R4: vesicular glass + cpx | R4: plagioclase + wollastonite + quartz | ||||||
Core: wollastonite | Core: cpx + garnet | ||||||
Exoskarn (2 distinct mineral assemblages) | (1) wollatonite + garnet + plagioclase | (1) CaTs-cpx + quartz + calcite | (1) cuspidine + ellestadite + anhydrite + pyrrhotite | ||||
(2) gehlenite + garnet + CaTs-cpx + spinel + wollastonite + plagioclase | - | (2) ellestadite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knuever, M.; Mele, D.; Sulpizio, R. Mineralization and Skarn Formation Associated with Alkaline Magma Chambers Emplaced in a Limestone Basement: A Review. Minerals 2023, 13, 1184. https://doi.org/10.3390/min13091184
Knuever M, Mele D, Sulpizio R. Mineralization and Skarn Formation Associated with Alkaline Magma Chambers Emplaced in a Limestone Basement: A Review. Minerals. 2023; 13(9):1184. https://doi.org/10.3390/min13091184
Chicago/Turabian StyleKnuever, Marco, Daniela Mele, and Roberto Sulpizio. 2023. "Mineralization and Skarn Formation Associated with Alkaline Magma Chambers Emplaced in a Limestone Basement: A Review" Minerals 13, no. 9: 1184. https://doi.org/10.3390/min13091184
APA StyleKnuever, M., Mele, D., & Sulpizio, R. (2023). Mineralization and Skarn Formation Associated with Alkaline Magma Chambers Emplaced in a Limestone Basement: A Review. Minerals, 13(9), 1184. https://doi.org/10.3390/min13091184