Particle Swarm Optimization (PSO) of High-Quality Magnetic Data of the Obudu Basement Complex, Nigeria
Abstract
:1. Introduction
2. Location and Geology of the Investigated Area
3. Methodology
3.1. Two-Dimensional Magnetic Forward Problem
- For a sphere (total field);
- For a sphere (vertical field);
- For a sphere (horizontal field);
- For a horizontal cylinder, FHD of thin sheet, and SHD of geological contact (all fields);
- For a thin sheet and FHD of geological contacts (all fields).
3.2. Magnetic Inverse Problem
3.3. Particle Swarm Optimization
4. Data Acquisition and Selection of Profiles
5. Interpretation and Discussion of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekwok, S.E.; Akpan, A.E.; Achadu, O.I.M.; Eze, O.E. Structural and lithological interpretation of aero-geophysical data in parts of the Lower Benue Trough and Obudu Plateau, Southeast Nigeria. Adv. Space Res. 2021, 68, 2841–2854. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Ebong, D.E. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. J. Afr. Earth Sci. 2019, 155, 43–53. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Kudamnya, E.A. Exploratory mapping of structures controlling mineralization in Southeast Nigeria using high resolution airborne magnetic data. J. Afr. Earth Sci. 2020, 162, 103700. [Google Scholar] [CrossRef]
- Ivakhnenkoa, O.P.; Abirova, R.; Logvinenkoc, A. New method for characterisation ofpetroleum reservoir fluid mineral deposits using magnetic analysis. Energy Procedia 2015, 76, 454–462. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Ekwok, S.E.; Akpan, A.E.; Achadu, O.-I.M.; Pham, L.T.; Abdelrahman, K.; Gómez-Ortiz, D.; Alarifi, S.S. Delineation of structural lineaments of Southeast Nigeria using high resolution aeromagnetic data. Open Geosci. 2022, 14, 331–340. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Ekwok, S.E.; Ben, U.C.; Ulem, C.A.; Abdelrahman, K.; Gomez-Ortiz, D.; Akpan, A.E.; George, A.M.; Pham, L.T. Appraisal of geothermal potentials of some parts of the Abakaliki Anticlinorium and adjoining areas (Southeast Nigeria) using magnetic data. Front. Earth Sci. 2023, 11, 1216198. [Google Scholar] [CrossRef]
- Alfaifi, H.J.; Ekwok, S.E.; Ulem, C.A.; Eldosouky, A.M.; Qaysi, S.; Abdelrahman, K.; Andráš, P.; Akpan, A.E. Exploratory assessment of geothermal resources in some parts of the Middle Benue Trough of Nigeria using airborne potential field data. J. King Saud. Univ. Sci. 2023, 35, 102521. [Google Scholar] [CrossRef]
- Abdelrahman, K.; Ekwok, S.E.; Ulem, C.A.; Eldosouky, A.M.; Al-Otaibi, N.; Hazaea, B.Y.; Hazaea, S.A.; Akpan, A.E. Exploratory Mapping of Geothermal Anomalies in the Neoproterozoic Arabian Shield, Saudi Arabia Using Magnetic Data. Minerals 2023, 13, 694. [Google Scholar] [CrossRef]
- Gündoğdu, N.Y.; Candansayar, M.E.; Genç, E. Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. J. Environ. Eng. Geophys. 2017, 22, 177–189. [Google Scholar] [CrossRef]
- Abo-Ezz, E.R.; Essa, K.S. A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure Appl. Geophys. 2016, 173, 1265–1278. [Google Scholar] [CrossRef]
- Ben, U.C.; Ekwok, S.E.; Akpan, A.E.; Mbonu, C.C.; Eldosouky, A.M.; Abdelrahman, K.; Gómez-Ortiz, D. Interpretation of magnetic anomalies by simple geometrical structures using the manta-ray foraging optimization. Front. Earth Sci. 2022, 10, 849079. [Google Scholar] [CrossRef]
- Ben, U.C.; Mbonu, C.C.; Thompson, C.E.; Ekwok, S.E.; Akpan, A.E.; Akpabio, I.; Eldosouky, A.M.; Abdelrahman, K.; Alzahrani, H.; Gómez-Ortiz, D.; et al. Investigating the applicability of the social spider optimization for the inversion of magnetic anomalies caused by dykes. J. King Saud. Univ. Sci. 2023, 35, 102569. [Google Scholar] [CrossRef]
- Essa, K.S.; Elhussein, M. Interpretation of magnetic data through particle swarm optimization: Mineral exploration cases studies. Nat. Resour. Res. 2020, 29, 521–537. [Google Scholar] [CrossRef]
- Abdelrahman, E.M.; Abo-Ezz, E.R.; Essa, K.S.; El-Araby, T.M.; Soliman, K.S. A new least-squares minimization approach to depth and shape determination from magnetic data. Geophys. Prospect. 2007, 55, 433–446. [Google Scholar] [CrossRef]
- Abdelrahman, E.M.; Abo-Ezz, E.R.; Essa, K.S. Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Explor. Geophys. 2012, 43, 178–189. [Google Scholar] [CrossRef]
- Ku, C.C.; Sharp, J.A. Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling. Geophysics 1983, 48, 754–774. [Google Scholar] [CrossRef]
- Thompson, D.T. EULDPH—A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 31–37. [Google Scholar] [CrossRef]
- Pilkington, M. Joint inversion of gravity and magnetic data for two-layer models. Geophysics 2006, 71, L35–L42. [Google Scholar] [CrossRef]
- Abdelrahman, E.M.; El-Araby, H.M.; El-Araby, T.M.; Essa, K.S. A least-squares minimization approach to depth determination from magnetic data. Pure Appl. Geophys. 2003, 160, 1259–1271. [Google Scholar] [CrossRef]
- Tlas, M.; Asfahani, J. Fair function minimization for interpretation of magnetic anomalies due to thin dikes, spheres and faults. J. Appl. Geophys. 2011, 75, 237–243. [Google Scholar] [CrossRef]
- Essa, K.S.; Elhussein, M. PSO (Particle Swarm Optimization) for interpretation of magnetic anomalies caused by simple geometrical structures. Pure Appl. Geophys. 2018, 175, 3539–3553. [Google Scholar] [CrossRef]
- Van den Bergh, F.; Engelbrecht, A.P. A Cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 225–239. [Google Scholar] [CrossRef]
- Boschetti, F.; Denith, M.C.; List, R.D. Inversion of potential field data by genetic algorithms. Geophys. Prospect. 1997, 45, 461–478. [Google Scholar] [CrossRef]
- Biswas, A. Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geosci. Front. 2015, 6, 875–893. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Balkaya, Ç.; Göktürkler, G.; Turan, S. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. J. Appl. Geophys. 2016, 129, 133–147. [Google Scholar] [CrossRef]
- Balkaya, C.; Ekinci, Y.L.; Göktürkler, G.; Turan, S. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. J. Appl. Geophys. 2017, 136, 372–386. [Google Scholar] [CrossRef]
- Biswas, A. Inversion of source parameters from magnetic anomalies for mineral/ore deposits exploration using global optimization technique and analysis of uncertainty. Nat. Resour. Res. 2018, 27, 77–107. [Google Scholar] [CrossRef]
- Essa, K.S.; Elhussein, M. Gravity Data Interpretation Using New Algorithms: A Comparative Study. In Gravity-Geoscience Applications, Industrial Technology and Quantum Aspect; Zouaghi, Z., Ed.; InTech: Rijeka, Croatia, 2018. [Google Scholar]
- Srivastava, S.; Datta, D.; Agarwal, B.N.P.; Mehta, S. Applications of ant colony optimization in determination of source parameters from total gradient of potential fields. Near Surf. Geophys. 2014, 12, 373–389. [Google Scholar] [CrossRef]
- Di Maio, R.; Rani, P.; Piegari, E.; Milano, L. Selfpotential data inversion through a genetic-price algorithm. Comput. Geosci. 2016, 94, 86–95. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE Service Center: PiscatawaY, NJ, USA, 1995. lV. pp. 1942–1948. [Google Scholar]
- Mishra, S.; Pant, M. Particle Swamp Optimization: A Hybrid Swarm Intelligence Algorithm. Procedia Comput. Sci. 2017, 115, 453–460. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the Congress on Evolutionary Computation, Seoul, Republic of Korea, 27–30 May 2001; pp. 81–86. [Google Scholar]
- Toushmalani, R. Gravity inversion of a fault by particle swarm optimization (PSO). Springer Plus 2013, 2, 315. [Google Scholar] [CrossRef]
- Juang, C.F. A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B 2004, 34, 997–1006. [Google Scholar] [CrossRef]
- Robinson, J.; Rahamat-Samii, Y. Particle swarm optimization in electromagnetic. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Cedeno, W.; Agrafiotis, D.K. Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. J. Comput. Aided Mol. Des. 2003, 17, 255–263. [Google Scholar] [CrossRef]
- Donelli, M.; Franceschini, G.; Martini, A.; Mass, A. An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 2006, 44, 298–312. [Google Scholar] [CrossRef]
- Wachowiak, M.P.; Smolıkova, R.; Zheng, Y.; Zurada, J.M.; Elmaghraby, A.S. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 289–301. [Google Scholar] [CrossRef]
- Chau, W.K. Application of a Particle Swarm Optimization Algorithm to Hydrological Problems. In Water Resources Research Progress; Robinson, L.N., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2008; pp. 3–12. [Google Scholar]
- Rahaman, M.A.; Lancelot, J.R. Continental Crust Evolution in SW Nigeria: Constraints from U/Pb dating of Pre-Pan-African Gneisses. In Rapport D’activite 1980–1984 Documents et Travaux du Centre Geologique et Geophysique de Montpellier; Universitédes Sciences et Techniques du Languedoc: Montpellier, France, 1984; pp. 41–50. [Google Scholar]
- Haruna, I.V. Review of the Basement Geology and Mineral Belts of Nigeria. J. Appl. Geol. Geophys. 2017, 5, 37–45. [Google Scholar]
- Agbi, I.; Ekwueme, B.N. Preliminary review of the geology of the hornblende biotite gneisses of Obudu Plateau Southeastern Nigeria. Glob. J. Geol. Sci. 2018, 17, 75–83. [Google Scholar] [CrossRef]
- Ukwang, E.E.; Ekwueme, B.N.; Kröner, A. Single zircon evaporation ages: Evidence for the Mesoproterozoic crust in the southeastern Nigerian basement complex. Chin. J. Geochem. 2012, 31, 48–54. [Google Scholar] [CrossRef]
- Toteu, S.F.; Penaye, J.; Djomani, Y.P. Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon. Can. J. Earth Sci. 2004, 41, 73–85. [Google Scholar] [CrossRef]
- Rao, T.K.S.P.; Subrahmanyam, M.; Srikrishna Murthy, A. Nomograms for the direct interpretation of magnetic anomalies due to long horizontal cylinders. Geophysics 1986, 51, 2156–2159. [Google Scholar] [CrossRef]
- Gay, P. Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics 1963, 28, 161–200. [Google Scholar] [CrossRef]
- Rao, T.; Subrahmanyam, M. Characteristic curves for the inversion of magnetic-anomalies of spherical ore bodies. Pure Appl. Geophys. 1988, 126, 69–83. [Google Scholar]
- Abdelrahman, E.M.; Essa, K.S. A new method for depth and shape determinations from magnetic data. Pure Appl. Geophys. 2015, 172, 439–460. [Google Scholar] [CrossRef]
- Rao, B.S.R.; Murthy, I.V.R.; Rao, C.V. A computer program for interpreting vertical magnetic anomalies of spheres and horizontal cylinders. Pure Appl. Geophys. 1973, 110, 2056–2065. [Google Scholar] [CrossRef]
- Gay, P. Standard curves for the interpretation of magnetic anomalies over long horizontal cylinders. Geophysics 1965, 30, 818–828. [Google Scholar] [CrossRef]
- Abdelrahman, E.M.; Essa, K.S. Magnetic interpretation using a least-squares, depth-shape curves method. Geophysics 2005, 70, L23–L30. [Google Scholar] [CrossRef]
- Lines, L.R.; Treitel, S. A review of least-squares inversion and its application to geophysical problems. Geophys. Prospect. 1984, 32, 159–186. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Geophysical Inversion Theory and Regularization Problems; Elsevier: Amsterdam, The Netherlands, 2002; p. 633. [Google Scholar]
- He, J.; Guo, H. A modified particle swarm optimization algorithm. Telkomnika 2013, 11, 6209–6215. [Google Scholar] [CrossRef]
- Sen, M.K.; Stoffa, P.L. Global Optimization Methods in Geophysical Inversion; Cambridge University Press: Cambridge, UK, 2013; p. 279. [Google Scholar]
- Sweilam, N.H.; El-Metwally, K.; Abdelazeem, M. Self potential signal inversion to simple polarized bodies using the particle swarm optimization method: A visibility study. J. Appl. Geophys. 2007, 6, 195–208. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 2002, 1, 235–306. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Achadu, O.-I.M.; Thompson, C.E.; Eldosouky, A.M.; Abdelrahman, K.; Andráš, P. Towards understanding the source of brine mineralization in Southeast Nigeria: Evidence from high-resolution airborne magnetic and gravity data. Minerals 2022, 12, 146. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Achadu, O.I.M.; Ulem, C.A. Implications of tectonic anomalies from potential feld data in some parts of Southeast Nigeria. Environ. Earth Sci. 2022, 81, 6. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Ebong, E.D.; Eze, O.E. Assessment of depth to magnetic sources using high resolution aeromagnetic data of some parts of the Lower Benue Trough and adjoining areas, Southeast Nigeria. Adv. Space Res. 2021, 67, 2104–2119. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Kudamnya, E.A.; Ebong, D.E. Assessment of groundwater potential using geophysical data: A case study in parts of Cross River State, south-eastern Nigeria. Appl. Water Sci. 2020, 10, 144. [Google Scholar] [CrossRef]
- Nwankwo, L.I. Structural styles in the Precambrian Basement Complex of southeastern Nigeria. J. Afr. Earth Sci. 2009, 53, 73–86. [Google Scholar]
- Ajibade, A.C.; Oyawoye, M.O.; Rahaman, M.A.; Adekeye, O.A. Petrology of migmatites of the Obudu Plateau, Nigeria. J. Afr. Earth Sci. 2010, 56, 23–30. [Google Scholar]
- Asouzu, E.C.; Onyeagocha, A.C. Geology and mineralization of the Obudu area of southeastern Nigeria. J. Afr. Earth Sci. 2013, 86, 20–34. [Google Scholar]
- Airo, M.L. Aeromagnetic and aeroradiometric response to hydrothermal alteration. Surv. Geophys. 2002, 23, 273–302. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Setting and Origin of Iron Oxide-Copper-Cobalt-Gold-Rare Earth Element Deposits of Southeast Missouri. 2013. Available online: http://minerals.usgs.gov/east/semissouri/index.html (accessed on 5 June 2023).
- Geological Survey of Canada (GSC). Airborne Geophysical Survey, Mount Milligan area, British Columbia (NTS 93 O/4W, N/1, N/2E); GSC Open File 2535; GSC: Montreal, Canada, 1992.
- Shafiqullah, M.; Langlois, J.D. The Pima Mining District Arizona—A Geochronologic Update. In New Mexico Geological Society Guidebook 29th Annual Fall Field Conference Guidebook; New Mexico Geological Society: Boulder, CO, USA, 1978; pp. 321–327. [Google Scholar]
- Abdelrahman, E.M.; Sharafeldin, S.M. An iterative least-squares approach to depth determination from residual magnetic anomalies due to thin dikes. J. Appl. Geophys. 1996, 34, 213–220. [Google Scholar] [CrossRef]
- Salem, A.; Aboud, E.; Elsirafy, A.; Ushijima, K. Structural mapping of Quseir area, northern Red Sea, Egypt, using high-resolution aeromagnetic data. Earth Planets Space 2005, 57, 761–765. [Google Scholar] [CrossRef]
- Biswas, A.; Parija, M.P.; Kumar, S. Global nonlinear optimization for the interpretation of source parameters from otal gradient of gravity and magnetic anomalies caused by thin dyke. Ann. Geophys. 2017, 60, G0218. [Google Scholar] [CrossRef]
S/N | Parameter | Range | PSO Result | GA Result |
---|---|---|---|---|
1 | K (nT) | 0–3000 | 315.67 | 297.54 |
2 | z (m) | 200–1200 | 425.34 | 417.69 |
3 | θ (°) | −90–90 | 43 | 47 |
4 | Sf (dimensionless) | 0.5–2.5 | 1.15 | 1.05 |
5 | x0 (m) | 1100–1900 | 1554.86 | 1527.97 |
6 | RMS (nT) | 6.43 | 8.59 |
S/N | Parameter | Range | PSO Result | GA Result |
---|---|---|---|---|
1 | K (nT) | 0–3000 | 257.71 | 278.28 |
2 | z (m) | 200–1200 | 543.75 | 549.14 |
3 | θ (°) | −90–90 | 54 | 50 |
4 | Sf (dimensionless) | 0.5–2.5 | 0.96 | 0.89 |
5 | x0 (m) | 2500–3800 | 3645.42 | 3654.87 |
6 | RMS (nT) | 4.81 | 6.28 |
S/N | Parameter | Range | PSO Result | GA Result |
---|---|---|---|---|
1 | K (nT) | 0−3000 | 189.53 | 208.35 |
2 | z (m) | 200–1200 | 560.87 | 569.26 |
3 | θ (°) | −90–90 | 48 | 52 |
4 | Sf (dimensionless) | 0.5–2.5 | 1.2 | 1.13 |
5 | x0 (m) | 500–3000 | 1950 | 1962 |
6 | RMS (nT) | 5.95 | 9.62 |
S/N | Parameter | Range | PSO Result | GA Result |
---|---|---|---|---|
1 | K (nT) | 0−3000 | 247.23 | 219.59 |
2 | z (m) | 200–1200 | 394.16 | 384.15 |
3 | θ (°) | −90–90 | 39 | 45 |
4 | Sf (dimensionless) | 0.5–2.5 | 1.26 | 0.97 |
5 | x0 (m) | 50–1250 | 165.41 | 170.57 |
6 | RMS (nT) | 8.92 | 11.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwok, S.E.; Eldosouky, A.M.; Essa, K.S.; George, A.M.; Abdelrahman, K.; Fnais, M.S.; Andráš, P.; Akaerue, E.I.; Akpan, A.E. Particle Swarm Optimization (PSO) of High-Quality Magnetic Data of the Obudu Basement Complex, Nigeria. Minerals 2023, 13, 1209. https://doi.org/10.3390/min13091209
Ekwok SE, Eldosouky AM, Essa KS, George AM, Abdelrahman K, Fnais MS, Andráš P, Akaerue EI, Akpan AE. Particle Swarm Optimization (PSO) of High-Quality Magnetic Data of the Obudu Basement Complex, Nigeria. Minerals. 2023; 13(9):1209. https://doi.org/10.3390/min13091209
Chicago/Turabian StyleEkwok, Stephen E., Ahmed M. Eldosouky, Khalid S. Essa, Anthony M. George, Kamal Abdelrahman, Mohammed S. Fnais, Peter Andráš, Emmanuel I. Akaerue, and Anthony E. Akpan. 2023. "Particle Swarm Optimization (PSO) of High-Quality Magnetic Data of the Obudu Basement Complex, Nigeria" Minerals 13, no. 9: 1209. https://doi.org/10.3390/min13091209
APA StyleEkwok, S. E., Eldosouky, A. M., Essa, K. S., George, A. M., Abdelrahman, K., Fnais, M. S., Andráš, P., Akaerue, E. I., & Akpan, A. E. (2023). Particle Swarm Optimization (PSO) of High-Quality Magnetic Data of the Obudu Basement Complex, Nigeria. Minerals, 13(9), 1209. https://doi.org/10.3390/min13091209