Atomistic Computer Simulations of Uranyl Adsorption on Hydrated Illite and Smectite Surfaces
Abstract
:1. Introduction
2. Models and Methods
2.1. Structural Models
2.2. Force Field Parameters
2.3. Simulation Details
3. Results and Discussion
3.1. Atomic Density Profiles
3.2. Radial Distribution Functions
3.3. Free Energy of Uranyl Adsorption at Clay Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dohrmann, R.; Kaufhold, S.; Lundqvist, B. The role of clays for safe storage of nuclear waste. In Developments in Clay Science, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 5. [Google Scholar] [CrossRef]
- Sellin, P.; Leupin, O.X. The use of clay as an engineered barrier in radioactive-waste management—A review. Clays Clay Miner. 2014, 61, 477–498. [Google Scholar] [CrossRef]
- Grambow, B. Geological disposal of radioactive waste in clay. Elements 2016, 12, 239–245. [Google Scholar] [CrossRef]
- Norris, S. Radioactive waste confinement: Clays in natural and engineered barriers—Introduction. Geol. Soc. Spec. Publ. 2017, 443, 1–8. [Google Scholar] [CrossRef]
- Belousov, P.E.; Krupskaya, V.V. Bentonite clays of Russia and neighboring countries. Georesources 2019, 21, 79–90. [Google Scholar] [CrossRef]
- Eisenhour, D.D.; Brown, R.K. Bentonite and Its Impact on Modern Life. Elements 2009, 5, 83–88. [Google Scholar] [CrossRef]
- Krupskaya, V.V.; Biryukov, D.; Belousov, P.; Lekhov, V.; Romanchuk, A.Y.; Kalmykov, S. The use of natural clay materials to increase the nuclear and radiation safety level of nuclear legacy facilities. Radioact. Waste 2018, 2, 24–34. [Google Scholar]
- Laverov, N.P.; Yudintsev, S.; Kochkin, B.; Malkovsky, V. The russian strategy of using crystalline rock as a repository for nuclear waste. Elements 2016, 12, 253–256. [Google Scholar] [CrossRef]
- Wang, C.; Mushkin, V.F.; Khan, V.A.; Panamareva, A.N. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J. Radioanal. Nucl. Chem. 2022, 331, 3401–3426. [Google Scholar] [CrossRef]
- Ma, Z.; Pathegama Gamage, R.; Rathnaweera, T.; Kong, L. Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl. Clay Sci. 2019, 168, 436–449. [Google Scholar] [CrossRef]
- IAEA. Status and Trends in Spent Fuel and Radioactive Waste Management; IAEA Nuclear Energy Series; International Atomic Energy Agency: Vienna, Austria, 2022; 88p, Available online: https://www.iaea.org/publications/14739/status-and-trends-in-spent-fuel-and-radioactive-waste-management (accessed on 10 January 2024).
- Missana, T.; Alonso, U.; Garcia-Gutierrez, M.; Albarran, N.; Lopez, T. Experimental Study and Modeling of Uranium (VI) Sorption onto a Spanish Smectite. MRS Proc. 2008, 1124, 705. [Google Scholar] [CrossRef]
- Bachmaf, S.; Merkel, B.J. Sorption of uranium(VI) at the clay mineral–water interface. Environ. Earth Sci. 2010, 63, 925–934. [Google Scholar] [CrossRef]
- Villa-Alfageme, M.; Hurtado, S.; El Mrabet, S.; Pazos, M.C.; Castro, M.A.; Alba, M.D. Uranium immobilization by FEBEX bentonite and steel barriers in hydrothermal conditions. Chem. Eng. J. 2015, 269, 279–287. [Google Scholar] [CrossRef]
- Fan, Q.; Li, P.; Pan, D. Radionuclides sorption on typical clay minerals: Modeling and spectroscopies. In Interface Science and Technology, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 29. [Google Scholar] [CrossRef]
- Philipp, T.; Shams Aldin Azzam, S.; Rossberg, A.; Huittinen, N.; Schmeide, K.; Stumpf, T. U(VI)sorption on Ca-bentonite at (hyper)alkaline conditions—Spectroscopic investigations of retention mechanisms. Sci. Total Environ. 2019, 676, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.A.; Brown, G.E.; Parks, G.A. XAFS spectroscopic study of uranyl coordination in solids and aqueous solution. Am. Mineral. 1997, 82, 483–496. [Google Scholar] [CrossRef]
- Sylwester, E.R.; Allen, P.G.; Zhao, P.; Viani, B.E. Interactions of uranium and neptunium with cementitious materials studied by XAFS. Mater. Res. Soc. Symp. Proc. 2000, 608, 307–312. [Google Scholar] [CrossRef]
- Hennig, C.; Reich, T.; Dähn, R.; Scheidegger, A.M. Structure of uranium sorption complexes at montmorillonite edge sites. Radiochim. Acta 2002, 90, 653–657. [Google Scholar] [CrossRef]
- Catalano, J.G.; Brown, G.E. Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochim. Cosmochim. Acta 2005, 69, 2995–3005. [Google Scholar] [CrossRef]
- Walter, M.; Arnold, T.; Geipel, G.; Scheinost, A.; Bernhard, G. An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces. J. Colloid Interface Sci. 2005, 282, 293–305. [Google Scholar] [CrossRef]
- Křepelová, A.; Reich, T.; Sachs, S.; Drebert, J.; Bernhard, G. Structural characterization of U(VI) surface complexes on kaolinite in the presence of humic acid using EXAFS spectroscopy. J. Colloid Interface Sci. 2008, 319, 40–47. [Google Scholar] [CrossRef]
- Schlegel, M.L.; Descostes, M. Uranium uptake by hectorite and montmorillonite: A solution chemistry and polarized EXAFS study. Environ. Sci. Technol. 2009, 43, 8593–8598. [Google Scholar] [CrossRef]
- Fernandes, M.M.; Baeyens, B.; Dähn, R.; Scheinost, A.; Bradbury, M. U(VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study. Geochim. Cosmochim. Acta 2012, 93, 262–277. [Google Scholar] [CrossRef]
- Troyer, L.D.; Maillot, F.; Wang, Z.; Wang, Z.; Mehta, V.S.; Giammar, D.E.; Catalano, J.G. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers. Geochim. Cosmochim. Acta 2016, 175, 86–99. [Google Scholar] [CrossRef]
- Greathouse, J.A.; O’Brien, R.J.; Bemis, G.; Pabalan, R.T. Molecular dynamics study of aqueous uranyl interactions with quartz (010). J. Phys. Chem. B 2002, 106, 1646–1655. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Cygan, R.T. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Phys. Chem. Chem. Phys. 2005, 7, 3580–3586. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, J.A.; Cygan, R.T. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: Results from molecular simulations. Environ. Sci. Technol. 2006, 40, 3865–3871. [Google Scholar] [CrossRef]
- Kerisit, S.; Liu, C. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution. Geochim. Cosmochim. Acta 2010, 74, 4937–4952. [Google Scholar] [CrossRef]
- Kerisit, S.; Liu, C. Diffusion and adsorption of uranyl carbonate species in nanosized mineral fractures. Environ. Sci. Technol. 2012, 46, 1632–1640. [Google Scholar] [CrossRef]
- Martorell, B.; Kremleva, A.; Krüger, S.; Rösch, N. Density functional model study of uranyl adsorption on the solvated (001) surface of kaolinite. J. Phys. Chem. C 2010, 114, 13287–13294. [Google Scholar] [CrossRef]
- Teich-McGoldrick, S.L.; Greathouse, J.A.; Cygan, R.T. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite. Mol. Simul. 2014, 40, 610–617. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Loganathan, N.; Ngouana-Wakou, B.F.; Chen, Z. Interaction of Ions with Hydrated Clay Surfaces: Computational Molecular Modeling for Nuclear Waste Disposal Applications. Procedia Earth Planet. Sci. 2017, 17, 566–569. [Google Scholar] [CrossRef]
- Zhang, J.; Mallants, D.; Brady, P.V. Molecular dynamics study of uranyl adsorption from aqueous solution to smectite. Appl. Clay Sci. 2022, 218, 106361. [Google Scholar] [CrossRef]
- Pérez-Conesa, S.; Martínez, J.M.; Marcos, E.S. Hydration and Diffusion Mechanism of Uranyl in Montmorillonite Clay: Molecular Dynamics Using an Ab Initio Potential. J. Phys. Chem. C 2017, 121, 27437–27444. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Wang, J.; Wang, Y.; Fu, Y.; Zhao, J. Atom-scale understanding the adsorption mechanism of uranyl in the interlayer of montmorillonite: Insight from DFT + U calculation. Appl. Surf. Sci. 2023, 612, 155910. [Google Scholar] [CrossRef]
- Kremleva, A.; Krüger, S.; Rösch, N. Uranyl adsorption at (010) edge surfaces of kaolinite: A density functional study. Geochim. Cosmochim. Acta 2011, 75, 706–718. [Google Scholar] [CrossRef]
- Kremleva, A.; Martorell, B.; Krüger, S.; Rösch, N. Uranyl adsorption on solvated edge surfaces of pyrophyllite: A DFT model study. Phys. Chem. Chem. Phys. 2012, 14, 5815–5823. [Google Scholar] [CrossRef]
- Kremleva, A.; Krüger, S.; Rösch, N. Uranyl adsorption at solvated edge surfaces of 2:1 smectites. A density functional study. Phys. Chem. Chem. Phys. 2015, 17, 13757–13768. [Google Scholar] [CrossRef]
- Kremleva, A.; Krüger, S.; Rösch, N. Toward a reliable energetics of adsorption at solvated mineral surfaces: A computational study of uranyl(VI) on 2:1 clay minerals. J. Phys. Chem. C 2016, 120, 324–335. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Tinnacher, R.M.; Tournassat, C. Mechanistic understanding of uranyl ion complexation on montmorillonite edges: A combined first-principles molecular dynamics-surface complexation modeling approach. Environ. Sci. Technol. 2018, 52, 8501–8509. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Cygan, R.T.; Greathouse, J.A.; Heinz, H.; Kalinichev, A.G. Molecular models and simulations of layered materials. J. Mater. Chem. 2009, 19, 2470–2481. [Google Scholar] [CrossRef]
- Cygan, R.T.; Greathouse, J.A.; Kalinichev, A.G. Advances in Clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces. J. Phys. Chem. C 2021, 125, 17573–17589. [Google Scholar] [CrossRef]
- Tararushkin, E.V.; Pisarev, V.V.; Kalinichev, A.G. Equation of state, compressibility, and vibrational properties of brucite over wide pressure and temperature ranges: Atomistic computer simulations with the modified ClayFF classical force field. Minerals 2023, 13, 408. [Google Scholar] [CrossRef]
- Tararushkin, E.V.; Smirnov, G.S.; Kalinichev, A.G. Structure and properties of water in a new model of the 10-Å Phase: Classical and ab initio atomistic computational modeling. Minerals 2023, 13, 1018. [Google Scholar] [CrossRef]
- Kalinichev, A.G. Atomistic modeling of clays and related nanoporous materials with ClayFF force field. In Computational Modeling in Clay Mineralogy; Sainz-Díaz, C.I., Ed.; Association Internationale pour l’Etude des Argiles (AIPEA): Bari, Italy, 2021; Volume 3, pp. 17–52. [Google Scholar] [CrossRef]
- Martin, R.T.; Bailey, S.W.; Eberl, D.D.; Fanning, D.S.; Guggenheim, S.; Kodama, H.; Pevear, D.R.; Środoń, J.; Wicks, F.J. Report of the clay minerals society nomenclature committee: Revised classification of clay materials. Clays Clay Miner. 1991, 39, 333–335. [Google Scholar] [CrossRef]
- Drits, V.A.; Kossowskaya, A.G. Clay minerals: Smectites, mixed-layer silicates. Acad. Sci. USSR Trans. 1990, 446, 214. [Google Scholar]
- Altaner, S.P.; Ylagan, R.F. Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 1997, 45, 517–533. [Google Scholar] [CrossRef]
- Velde, B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer Science and Business Media LLC: Dordrecht, GX, The Netherlands, 2008; ISBN 9783540756330. [Google Scholar]
- Drits, V.A.; Sakharov, B.A. X-ray Structural Analysis of Mixed-Layer Minerals; Nauka Publishing: Moscow, Russia, 1976; 256p. (In Russian) [Google Scholar]
- Nadeau, P.H.; Wilson, M.J.; McHardy, W.J.; Tait, J.M. Interstratified clays as fundamental particles. Science 1984, 225, 923–925. [Google Scholar] [CrossRef]
- Srodon, J.; Zeelmaekers, E.; Derkowski, A. The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays Clay Miner. 2009, 57, 649–671. [Google Scholar] [CrossRef]
- Drits, V.A.; Zviagina, B.B.; McCarty, D.K.; Salyn, A.L. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. Am. Mineral. 2010, 95, 348–361. [Google Scholar] [CrossRef]
- Viani, A.; Gualtieri, A.; Artioli, G. The nature of disorder in montmorillonite by simulation of X-ray powder patterns. Am. Mineral. 2002, 87, 966–975. [Google Scholar] [CrossRef]
- Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954, 39, 92–96. [Google Scholar]
- Chipera, S.J.; Bish, D.L. Baseline studies of the clay minerals society source clays: Introduction. Clays Clay Miner. 2001, 49, 398–409. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Durkin, J.S.; Larentzos, J.P.; Cygan, R.T. Implementation of a Morse potential to model hydroxyl behaviour in phyllosilicates. J. Chem. Phys. 2009, 130, 134713. [Google Scholar] [CrossRef]
- Androniuk, I.; Kalinichev, A.G. Molecular dynamics simulation of the interaction of uranium (VI) with the C–S–H phase of cement in the presence of gluconate. Appl. Geochem. 2020, 113, 104496. [Google Scholar] [CrossRef]
- Berendsen, H.; Grigera, J.; Straatsma, T. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: New York, NY, USA, 2017; 626p. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, USA, 2002; 638p. [Google Scholar]
- Brown, W.M.; Kohlmeyer, A.; Plimpton, S.J.; Tharrington, A.N. Implementing molecular dynamics on hybrid high performance computers—Particle-particle particle-mesh. Comp. Phys. Comm. 2012, 183, 449–459. [Google Scholar] [CrossRef]
- Brown, W.M.; Wang, P.; Plimpton, S.J.; Tharrington, A.N. Implementing molecular dynamics on hybrid high performance computers—Short range forces. Comp. Phys. Comm. 2011, 182, 898–911. [Google Scholar] [CrossRef]
- Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. [Google Scholar] [CrossRef]
- Loganathan, N.; Kalinichev, A.G. Quantifying the mechanisms of site-specific ion exchange at an inhomogeneously charged surface: Case of Cs+/K+ on hydrated muscovite mica. J. Phys. Chem. C 2017, 121, 7829–7836. [Google Scholar] [CrossRef]
- Liu, X.D.; Lu, X.C.; Wang, R.C.; Zhou, H.Q. Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochim. Cosmochim. Acta 2008, 72, 1837–1847. [Google Scholar] [CrossRef]
- Meleshyn, A. Adsorption of Sr2+ and Ba2+ at the cleaved mica-water interface: Free energy profiles and interfacial structure. Geochim. Cosmochim. Acta 2010, 74, 1485–1497. [Google Scholar] [CrossRef]
- Krot, A.; Vlasova, I.; Trigub, A.; Averin, A.; Yapaskurt, V.; Kalmykov, S. From EXAFS of reference compounds to U(VI) speciation in contaminated environments. J. Synchrotron Radiat. 2022, 29, 303–314. [Google Scholar] [CrossRef]
- Liu, X.; Tournassat, C.; Grangeon, S.; Kalinichev, A.G.; Takahashi, Y.; Marques Fernandes, M. Molecular-level understanding of metal ion retention in clay-rich materials. Nat. Rev. Earth Environ. 2022, 3, 461–476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krot, A.D.; Vlasova, I.E.; Tararushkin, E.V.; Kalinichev, A.G. Atomistic Computer Simulations of Uranyl Adsorption on Hydrated Illite and Smectite Surfaces. Minerals 2024, 14, 109. https://doi.org/10.3390/min14010109
Krot AD, Vlasova IE, Tararushkin EV, Kalinichev AG. Atomistic Computer Simulations of Uranyl Adsorption on Hydrated Illite and Smectite Surfaces. Minerals. 2024; 14(1):109. https://doi.org/10.3390/min14010109
Chicago/Turabian StyleKrot, Anna D., Irina E. Vlasova, Evgeny V. Tararushkin, and Andrey G. Kalinichev. 2024. "Atomistic Computer Simulations of Uranyl Adsorption on Hydrated Illite and Smectite Surfaces" Minerals 14, no. 1: 109. https://doi.org/10.3390/min14010109
APA StyleKrot, A. D., Vlasova, I. E., Tararushkin, E. V., & Kalinichev, A. G. (2024). Atomistic Computer Simulations of Uranyl Adsorption on Hydrated Illite and Smectite Surfaces. Minerals, 14(1), 109. https://doi.org/10.3390/min14010109