Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy)
Abstract
:1. Introduction
2. Overview of the IL Units
2.1. Stratigraphic Setting
2.2. Pre-Oligocene Deformation History
3. Previous Studies on the Metamorphism of IL Units
4. Sampling Strategy and Methods
5. Mineral Chemistry
5.1. Chlorite
5.2. White Mica
6. P–T Estimates
7. Discussion
7.1. Estimation of P–T Metamorphic Conditions
7.2. Comparison with Previous Estimates of P–T Conditions
7.3. Geodynamic Implications for the Closure of the Ligure-Piemontese Oceanic Basin
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Furnes, H. Ophiolites and their origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Agard, P.; Plunder, A.; Angiboust, S.; Bonnet, G.; Ruh, J. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos 2018, 320, 537–566. [Google Scholar] [CrossRef]
- Decandia, F.A.; Elter, P. La zona ofiolitifera del Bracco nel settore compreso tra Levanto e la Val Graveglia (Appennino Ligure). Mem. Soc. Geol. It. 1972, 11, 503–530. [Google Scholar]
- Abbate, E.; Bortolotti, V.; Conti, M. Apennines and Alps ophiolites and the evolution of the Western Tethys. Mem. Soc. Geol. It. 1986, 31, 23–44. [Google Scholar]
- Bortolotti, V.; Principi, G.; Treves, B. Ophiolites, Ligurides and the tectonic evolution from spreading to convergence of a Mesozoic Western Tethys segment. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Dordrecht, The Netherlands, 2001; pp. 151–164. [Google Scholar]
- Principi, G.; Bortolotti, V.; Chiari, M.; Cortesogno, L.; Gaggero, L.; Marcucci, M.; Saccani, E.; Treves, B. The pre-orogenic volcano-sedimentary covers of the western Tethys oceanic basin: A review. Ofioliti 2004, 29, 177–212. [Google Scholar]
- Boccaletti, M.; Elter, P.; Guazzone, G. Plate tectonic models for the development of the Western Alps and Northern Apennines. Nat. Phys. Sci. 1971, 234, 108–111. [Google Scholar] [CrossRef]
- Elter, P.; Pertusati, P.C. Considerazioni sul limite Alpi-Appennino e sulle relazioni con l’arco delle Alpi Occidentali. Mem. Soc. Geol. It. 1973, 12, 359–375. [Google Scholar]
- Principi, G.; Treves, B. Il sistema Corso-Appennino come prisma di accrezione. Riflessi sul problema generale del limite Alpi-Appennino. Mem. Soc. Geol. It. 1984, 28, 529–576. [Google Scholar]
- Bortolotti, V.; Principi, G.; Treves, B. Mesozoic evolution of Western Tethys and the Europe/Iberia/Adria plate junction. Mem. Soc. Geol. It. 1990, 45, 393–407. [Google Scholar]
- Doglioni, C. A proposal of kinematic modelling for W-dipping subductions-possible applications to the Tyrrhenian–Apennines system. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Malavieille, J.; Chemenda, A.; Larroque, C. Evolutionary model for Alpine Corsica: Mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 1998, 10, 317–322. [Google Scholar] [CrossRef]
- Molli, G. Northern Apennines-Corsica orogenic system: An updated overview. Geol. Soc. Lond. Spec. Publ. 2008, 298, 413–442. [Google Scholar] [CrossRef]
- Argnani, A. Plate motion and the evolution of Alpine Corsica and Northern Apennines. Tectonophysics 2012, 579, 207–219. [Google Scholar] [CrossRef]
- Cortesogno, L.; Galbiati, B.; Principi, G. Note alla “Carta geologica delle ofioliti del Bracco” e ricostruzione della paleogeografia giurassico-cretacea. Ofioliti 1987, 12, 261–342. [Google Scholar]
- Marroni, M.; Meccheri, M. L’Unità di Colli/Tavarone in Alta Val di Vara (Appennino Ligure): Caratteristiche litostratigrafiche e assetto strutturale. Boll. Soc. Geol. It. 1993, 112, 781–798. [Google Scholar]
- Molli, G. Pre-orogenic tectonic framework of the northern Apennines ophiolites. Eclogae Geol. Helv. 1996, 89, 163–180. [Google Scholar]
- Decarlis, A.; Gillard, M.; Tribuzio, R.; Epin, M.E.; Manatschal, G. Breaking up continents at magma-poor rifted margins: A seismic v. outcrop perspective. J. Geol. Soc. 2018, 175, 875–882. [Google Scholar] [CrossRef]
- Festa, A.; Meneghini, F.; Balestro, G.; Pandolfi, L.; Tartarotti, P.; Dilek, Y.; Marroni, M. Comparative analysis of the sedimentary cover units of the Jurassic Western Tethys ophiolites in the Northern Apennines and Western Alps (Italy): Processes of the formation of mass-transport and chaotic deposits during seafloor spreading and subduction zone tectonics. J. Geol. 2021, 129, 533–561. [Google Scholar]
- Pertusati, P.C.; Horremberger, J.C. Studio strutturale degli Scisti della Val Lavagna (Unità del Gottero, Appennino ligure). Boll. Soc. Geol. It. 1975, 94, 1375–1436. [Google Scholar]
- Meccheri, M.; Antompaoli, M.L. Analisi strutturale ed evoluzione delle deformazioni della regione di M. Verruga, M. Porcile e Maissana (Appennino Ligure, La Spezia). Boll. Soc. Geol. It. 1982, 101, 117–140. [Google Scholar]
- Van Zupthen, A.C.A.; van Wamel, W.A.; Bons, A.J. The structure of the Val Lavagna Nappe in the region of the Monte Ramaceto and Val Graveglia (Ligurian Apennines, Italy). Geol. Mijnb. 1985, 64, 373–384. [Google Scholar]
- Van Wamel, W.A. On the tectonics of the Ligurian Apennines (northern Italy). Tectonophysics 1987, 142, 87–98. [Google Scholar] [CrossRef]
- Marroni, M. Deformation history of the Mt. Gottero Unit (Internal Liguride Units, Northern Apennines). Boll. Soc. Geol. It. 1991, 110, 727–736. [Google Scholar]
- Hoogerduijn Strating, E.H.; Van Wamel, W.A. The structure of the Bracco complex (Ligurian Apennines, Italy): A change from Alpine to Apennine polarity. J. Geol. Soc. Lond. 1989, 146, 933–944. [Google Scholar] [CrossRef]
- Hoogerduijn Strating, E.H. Extensional faulting in an intraoceanic subduction complex—Working hypothesis for the Paleogene of the Alps-Apennine system. Tectonophysics 1994, 238, 255–273. [Google Scholar] [CrossRef]
- Marroni, M.; Meneghini, F.; Pandolfi, L. A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional western Tethys: Evidence from the Northern Apennines. Tectonics 2017, 36, 2227–2249. [Google Scholar] [CrossRef]
- Meneghini, F.; Marroni, M.; Pandolfi, L. Fluid flow during accretion in sediment-dominated margins: Evidence of a high-permeability fossil fault zone from the Internal Ligurian accretionary units of the Northern Apennines, Italy. J. Struct. Geol. 2007, 29, 515–529. [Google Scholar] [CrossRef]
- Meneghini, F.; Pandolfi, L.; Marroni, M. Recycling of heterogeneous material in the subduction factory: Evidence from the sedimentary mélange of the Internal Ligurian Units, Italy. J. Geol. Soc. 2020, 177, 587–599. [Google Scholar] [CrossRef]
- Venturelli, G.; Frey, M. Anchizone metamorphism in sedimentary sequences of the Northern Apennines. Rend. Soc. It. Miner. Petrol. 1977, 33, 109–123. [Google Scholar]
- Bonazzi, A.; Cortesogno, L.; Galbiati, B.; Reinhardt, M.; Salvioli Mariani, E.; Vernia, L. Nuovi dati sul metamorfismo di basso grado nelle unità Liguridi interne e loro possibile significato nell’evoluzione strutturale dell’Appennino Settentrionale. Acta Nat. At. Parm. 1987, 23, 17–47. [Google Scholar]
- Molli, G.; Pandolfi, L.; Tamponi, M. «Cristallinità» di illite e clorite nelle Unità Liguri dell’Alta Val Trebbia (Appennino Settentrionale). Atti Soc. Toscana Sci. Nat. 1992, 99, 79–92. [Google Scholar]
- Reinhardt, M. Vitrinite reflectance, illite crystallinity and tectonics: Results from the Northern Apennines (Italy). Org. Geochem. 1991, 17, 175–184.41. [Google Scholar] [CrossRef]
- Ducci, M.; Leoni, L.; Marroni, M.; Tamponi, M. Determinazione del grado metamorfico dell’Unità Gottero in alta Val Lavagna (Liguria Orientale, Appennino Settentrionale). Atti Soc. Toscana Sci. Nat. 1995, 102, 39–46. [Google Scholar]
- Leoni, L.; Marroni, M.; Sartori, F.; Tamponi, M. Indicators of very-low grade metamorphism in metapelites from Bracco/Val Graveglia Unit (Ligurian Apennines, Northern Italy) and their relationships with deformation. Acta Vulc. Mar. Vol. 1992, 2, 277–285. [Google Scholar]
- Leoni, L.; Marroni, M.; Sartori, F.; Tamponi, M. Metamorphic grade in metapelites of the internal liguride units (Northern Apennines, Italy). Eur. J. Mineral. 1996, 8, 35–50. [Google Scholar] [CrossRef]
- Ellero, A.; Leoni, L.; Marroni, M.; Sartori, F. Internal Liguride Units from Central Liguria, Italy: New constraints to the tectonic setting from white mica and chlorite studies. Schweiz. Mineral. Petrogr. Mitteilungen 2001, 81, 39–53. [Google Scholar]
- Reutter, K.-J.; Teichmüller, M.; Teichmüller, R.; Zanzucchi, G. The coalification pattern in the Northern Apennines and its paleogeothermic and tectonic significance. Geol. Rund. 1983, 72, 861–894. [Google Scholar] [CrossRef]
- Malavieille, J.; Molli, G.; Genti, M.; Dominguez, S.; Beyssac, O.; Taboada, A.; Vitale-Borvarone, A.; Lu, C.-Y.; Chen, C.-T. Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analog models and case studies. J. Geodyn. 2016, 100, 87–103. [Google Scholar] [CrossRef]
- Willner, A.P. Very-low-grade metamorphism. Encycl. Geol. 2021, 2, 513–521. [Google Scholar]
- Frey, M.; Robinson, D. Low-Grade Metamorphism; John Wiley & Sons: Hoboken, NJ, USA, 2009; 328p. [Google Scholar]
- Tinkham, D.K.; Ghent, E.D. Estimating P–T conditions of garnet growth with isochemical phase-diagram sections and the problem of effective bulk-composition. Can. Mineral. 2005, 43, 35–50. [Google Scholar] [CrossRef]
- Plunder, A.; Agard, P.; Dubacq, B.; Chopin, C.; Bellanger, M. How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps). J. Metam. Geol. 2012, 30, 323–346. [Google Scholar] [CrossRef]
- Lanari, P.; Engi, M. Local bulk composition effects on metamorphic mineral assemblages. Rev. Mineral. Geochem. 2017, 83, 55–102. [Google Scholar] [CrossRef]
- Lanari, P.; Duesterhoeft, E. Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives. J. Petrol. 2019, 60, 19–56. [Google Scholar] [CrossRef]
- Treves, B. Orogenic belts as accretionary prisms: The example of the northern Apennines. Ofioliti 1984, 9, 577–618. [Google Scholar]
- Nirta, G.; Principi, G.; Vannucchi, P. The Ligurian Units of Western Tuscany (Northern Apennines): Insight on the influence of pre-existing weakness zones during ocean closure. Geod. Acta 2007, 20, 71–97. [Google Scholar] [CrossRef]
- Meneghini, F.; Di Rosa, M.; Marroni, M.; Raimbourg, H.; Pandolfi, L. Subduction signature in the Internal Ligurian Units (Northern Apennine, Italy): Evidence from P–T metamorphic peak estimate. Terra Nova 2023. [Google Scholar] [CrossRef]
- Berman, R.G. Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications. Can. Mineral. 1991, 29, 833–855. [Google Scholar]
- Elter, P. L’ensemble ligure. Bull. Soc. Géol. Fr. 1975, 7, 984–997. [Google Scholar] [CrossRef]
- Mantovani, F.; Elter, F.M.; Pandeli, E.; Briguglio, A.; Piazza, M. The Portofino Conglomerate (Eastern Liguria, Northern Italy): Provenance, Age and Geodynamic Implications. Geosciences 2023, 13, 154. [Google Scholar] [CrossRef]
- Costa, E.; Di Giulio, A.; Villa, G. La finestra tettonica di Monte Zuccone (Appennino settentrionale): Rilevamento, petrografia delle arenarie e biostratigrafia. Atti Tic. Sci. Terra. 1989, 32, 175–190. [Google Scholar]
- Elter, P.; Catanzariti, R.; Ghiselli, F.; Marroni, M.; Molli, G.; Ottria, G.; Pandolfi, L. L’unità Aveto (Appennino Settentrionale): Caratteristiche litostratigrafiche, biostratigrafia, petrografia delle areniti ed assetto strutturale. Boll. Soc. Geol. It. 1999, 118, 41–64. [Google Scholar]
- Di Rosa, M.; Frassi, C.; Malasoma, A.; Marroni, M.; Meneghini, F.; Pandolfi, L. Syn-exhumation coupling of oceanic and continental units along the western edge of the Alpine Corsica: A review. Ofioliti 2020, 45, 71–102. [Google Scholar]
- Capponi, G.; Crispini, L.; Federico, L.; Malatesta, C. Geology of the Eastern Ligurian Alps: A review of the tectonic units. It. J. Geos. 2016, 135, 157–169. [Google Scholar] [CrossRef]
- Federico, L.; Capponi, G.; Crispini, L.; Scambelluri, M.; Villa, I.M. 39Ar/40Ar dating of high-pressure rocks from the Ligurian Alps: Evidence for a continuous subduction–exhumation cycle. Earth Planet. Sci. Lett. 2005, 240, 668–680. [Google Scholar] [CrossRef]
- Elter, P.; Marroni, M.; Molli, G.; Pandolfi, L. Caratteristiche stratigrafiche del Complesso di M.Penna/Casanova (Val Trebbia, Appennino Settentrionale). Atti Tic. Sci. Ter. 1991, 34, 97–106. [Google Scholar]
- Marroni, M.; Meneghini, F.; Pandolfi, L.; Noah, H.; Luvisi, E. The Ottone-Levanto Line of Eastern Liguria (Italy) uncovered: A Late Eocene-Early Oligocene snapshot of Northern Apennine geodynamics at the Alps/Apennines Junction. Episodes 2019, 42, 107–118. [Google Scholar] [CrossRef]
- Ducci, M.; Lazzaroni, F.; Marroni, M.; Pandolfi, L.; Taini, A. Tectonic framework of the northern Ligurian Apennine, Italy. C. R. Acad. Sci. Paris 1997, 324, 317–324. [Google Scholar]
- Bortolotti, V.; Principi, G. The Bargonasco-Upper Val Graveglia ophiolitic succession, Northern Apennines, Italy. Ofioliti 2003, 28, 137–140. [Google Scholar]
- Fonnesu, M.; Felletti, F. Facies and architecture of a sand-rich turbidite system in an evolving collisional-trench basin: A case history from the Upper Cretaceous-Palaeocene Gottero System (NW Apennines). Riv. Ital. Paleontol. Stratigr. 2019, 125, 449–487. [Google Scholar]
- Marroni, M.; Monechi, S.; Perilli, N.; Principi, G.; Treves, B. Cretaceous flysch deposits of the Northern Apennines, Italy: Age of inception of orogenesis-controlled sedimentation. Cretac. Res. 1992, 13, 487–504. [Google Scholar] [CrossRef]
- Di Biase, D.; Marroni, M.; Pandolfi, L. Age of the deformation phases in the Internal Liguride units: Evidences from lower Oligocene Val Borbera Conglomerates of Tertiary Piedmont Basin (northern Italy). Ofioliti 1997, 22, 231–238. [Google Scholar]
- Ramsay, J.G. Folding and Fracturing of Rocks; Mc Graw Hill Book Company: New York, NY, USA, 2011; p. 568. [Google Scholar]
- Cortesogno, L.; Haccard, D. Note illustrative alla Carta Geologica della zona Sestri-Voltaggio. Mem. Soc. Geol. It. 1984, 28, 115–150. [Google Scholar]
- Crispini, L.; Capponi, G. Tectonic evolution of the Voltri Massif and Sestri Voltaggio Zone (southern limit of the NW Alps): A review. Ofioliti 2001, 26, 161–164. [Google Scholar]
- Lucchetti, G.; Cabella, R.; Cortesogno, L. Pumpellyites and coexisting minerals in different low-grade metamorphic facies of Liguria, Italy. J. Metamorph. Geol. 1990, 8, 539–550. [Google Scholar] [CrossRef]
- Balestrieri, M.L.; Abbate, E.; Bigazzi, G. Insights on the thermal evolution of the Ligurian Apennines (Italy) through fission-track analyses. J. Geol. Soc. Lond. 1996, 153, 419–425. [Google Scholar] [CrossRef]
- Rahn, M.; Brandon, M.T.; Batt, G.E.; Garver, J.I. A zero-damage model for fission-track annealing in zircon. Am. Mineral. 2004, 89, 473–484. [Google Scholar] [CrossRef]
- Burkhard, M. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: A review. J. Struct. Geol. 1993, 15, 351–368. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Morris, A.P.; Evans, M.A.; Burkhard, M.; Groshong, R.H., Jr.; Onasch, C.M. Calcite twin morphology: A low-temperature deformation geothermometer. J. Struct. Geol. 2004, 26, 1521–1529. [Google Scholar] [CrossRef]
- De Andrade, V.; Vidal, O.; Lewin, E.; O’brien, P.; Agard, P. Quantification of electron microprobe compositional maps of rock thin sections: An optimized method and examples. J. Met. Geol. 2006, 24, 655–668. [Google Scholar] [CrossRef]
- Lanari, P.; Vidal, O.; De Andrade, V.; Dubacq, B.; Lewin, E.; Grosch, E.; Schwartz, S. XMAPTOOLS: A MATLAB c-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Mineral. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: Applications to P–T sections and geothermometry. Contrib. Mineral. Petrol. 2014, 167, 968. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Mineral. Petrol. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Massonne, H.J.; Schreyer, W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral. Petrol. 1987, 96, 212–224. [Google Scholar] [CrossRef]
- Vidal, O.; De Andrade, V.; Lewin, E.; Munoz, M.; Parra, T.; Pascarelli, S. P–T deformation Fe2+/Fe3+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J. Met. Geol. 2006, 24, 669–683. [Google Scholar] [CrossRef]
- Dubacq, B.; Vidal, O.; De Andrade, V. Dehydration of dioctahedral aluminous phyllosilicates: Thermodynamic modelling and implications for thermobarometric estimates. Contrib. Mineral. Petrol. 2010, 159, 159–174. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T. Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite-phengite assemblage. Geol. J. 2000, 35, 139–161. [Google Scholar] [CrossRef]
- Di Rosa, M.; Meneghini, F.; Marroni, M.; Frassi, C.; Pandolfi, L. The coupling of high-pressure oceanic and continental units in Alpine Corsica: Evidence for syn-exhumation tectonic erosion at the roof of the plate interface. Lithos 2020, 354, 105328. [Google Scholar] [CrossRef]
- Sanità, E.; Di Rosa, M.; Lardeaux, J.M.; Marroni, M.; Pandolfi, L. The Moglio-Testico Unit as subducted metamorphic oceanic fragments: Stratigraphic, structural and metamorphic constrains. Minerals 2022, 12, 1343. [Google Scholar] [CrossRef]
- Guidotti, C.V.; Sassi, F.P. Constraints on studies of metamorphic K-Na white micas. Rev. Mineral. Geochem. 2002, 46, 413–448. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Bourdelle, F.; Cathelineau, M. Low-temperature chlorite geothermometry: A graphical representation based on a T–R2+–Si diagram. Eur. J. Mineral. 2015, 27, 617–626. [Google Scholar] [CrossRef]
- Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2011; p. 428. [Google Scholar]
- Kübler, B. Cristallinité de l’illite et mixed-layer: Brève révision. Schweit. Mineral. Petr. Mitt. 1990, 70, 89–93. [Google Scholar]
- Merriman, R.J.; Frey, M. Patterns of very low-grade metamorphism in metapelitic rocks. In Low-Grade Metamorphism; Frey, M., Robinson, D., Eds.; Blackwell Science Ltd.: Hoboken, NJ, USA, 1998; pp. 61–107. [Google Scholar]
- Merriman, R.J.; Peacor, D.R. Very low-grade metapelites: Mineralogy, microfabrics and measuring reaction progress. In Low-Grade Metamorphism; Frey, M., Robinson, D., Eds.; Blackwell Science Ltd.: Hoboken, NJ, USA, 1998; pp. 10–60. [Google Scholar]
- Mullis, J.; Stern, W.B.; Capitani, C. Correlation of fluid inclusion temperatures with illite, smectite and chlorite “crystallinity” data and smear slide chemistry in sedimentary rocks from the external parts of the Central Alps (Switzerland). In IGCP Project 294, Low Temperature Metamorphism Symposium; Ein Dienst der ETH-Bibliothek: Santiago de Chile, Chile, 1993. [Google Scholar]
- Roberts, B.; Merriman, R.J.; Pratt, W. The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: Implications for the timing of metamorphism in the Welsh Basin. Geol. Mag. 1991, 128, 633–645. [Google Scholar] [CrossRef]
- Karig, D.E.; Sharman, G.F. Subduction and accretion in trenches. Geol. Soc. Am. Bull. 1975, 86, 377–389. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Structure and stratigraphy of forearc regions. AAPG Bull. 1979, 63, 2–31. [Google Scholar]
- England, P.C.; Thompson, A.B. Pressure—Temperature—Time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol. 1984, 25, 894–928. [Google Scholar] [CrossRef]
- Ruh, J.B.; Le Pourhiet, L.; Agard, P.; Burov, E.; Gerya, T. Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling. Geochem. Geophys. Geosyst. 2015, 16, 3505–3531. [Google Scholar] [CrossRef]
- Groppo, C.; Castelli, D. Prograde P–T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): Dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J. Petrol. 2010, 51, 2489–2514. [Google Scholar] [CrossRef]
- Angiboust, S.; Agard, P.; Yamato, P.; Raimbourg, H. Eclogite breccias in a subducted ophiolite: A record of intermediate-depth earthquakes? Geology 2012, 40, 707–710. [Google Scholar] [CrossRef]
- Ghignone, S.; Sudo, M.; Balestro, G.; Borghi, A.; Gattiglio, M.; Ferrero, S.; Van Schijndel, V. Timing of exhumation of meta-ophiolite units in the Western Alps: New tectonic implications from 40Ar/39Ar white mica ages from Piedmont Zone (Susa Valley). Lithos 2021, 404, 106443. [Google Scholar] [CrossRef]
- Moore, J.C.; Cowan, D.S.; Karig, D.E. Structural styles and deformation fabrics of accretionary complexes. Geology 1985, 13, 77–79. [Google Scholar] [CrossRef]
- Von Huene, R.; Scholl, D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 1991, 29, 279–316. [Google Scholar] [CrossRef]
- Lallemand, S.E.; Schnürle, P.; Malavieille, J. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. Journal of Geophysical Research. Solid Earth. 1994, 99, 12033–12055. [Google Scholar]
- Fagereng, Å.; Savage, H.M.; Morgan, J.K.; Wang, M.; Meneghini, F.; Barnes, P.M.; Bell, R.; Kitajima, H.; McNamara, D.D.; Saffer, D.M.; et al. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. Geology 2019, 47, 872–876. [Google Scholar] [CrossRef]
- Scholle, P.A. Diagenesis of deep-water carbonate turbidites, upper Cretaceous Monte Antola flysch, northern Apennines, Italy. J. Sedim. Res. 1971, 41, 233–250. [Google Scholar]
- Gelati, R.; Pasquaré, G. Interpretazione geologica del limite Alpi–Appennini in Liguria. Riv. It. Paleont. 1970, 76, 513–578. [Google Scholar]
- Vanossi, M.; Cortesogno, L.; Galbiati, B.; Messiga, B.; Piccardo, G.B.; Vannucci, R. Geologia delle Alpi liguri: Dati, problemi, ipotesi. Mem. Soc. Geol. It. 1986, 28, 5–75. [Google Scholar]
- Castellarin, A. Alps-Apennines and Po plain-frontal Apennines relations. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Dordrecht, The Netherlands, 2001; pp. 117–195. [Google Scholar]
- Mosca, P.; Polino, R.; Rogledi, S.; Rossi, M. New data for the kinematic interpretation of the Alps–Apennines junction (Northwestern Italy). Int. J. Earth Sci. 2010, 99, 833–849. [Google Scholar] [CrossRef]
- Seno, S.; Dallagiovanna, G.; Vanossi, M. A kinematic evolutionary model for the Penninic sector of the central Ligurian Alps. Int. J. Earth Sci. 2005, 94, 114–129. [Google Scholar] [CrossRef]
- Negro, F.; Bousquet, R.; Vils, F.; Pellet, C.M.; Hänggi-Schaub, J. Thermal structure and metamorphic evolution of the Piemont-Ligurian metasediments in the northern Western Alps. Swiss J. Geo. 2013, 106, 63–78. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Palmeri, R.; Godard, G.; Ferrando, S.; Compagnoni, R. A Dynamic Pressure Component in UHP Whiteschists from the Dora-Maira Massif (Western Alps, Italy) Revealed by Pressure-Induced Incipient Amorphization of Quartz. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014; p. V13B-4781. [Google Scholar]
- Manzotti, P.; Ballèvre, M.; Pitra, P.; Schiavi, F. Missing lawsonite and aragonite found: P–T and fluid composition in meta-marls from the Combin Zone (Western Alps). Contrib. Mineral. Petrol. 2021, 176, 60. [Google Scholar] [CrossRef]
- Malatesta, C.; Gerya, T.; Scambelluri, M.; Federico, L.; Crispini, L.; Capponi, G. Intraoceanic subduction of “heterogeneous” oceanic lithosphere in narrow basins: 2D numerical modeling. Lithos 2012, 140, 234–251. [Google Scholar] [CrossRef]
- Lanari, P. Micro-cartgraphie P-T-‘t’ dans les Roches Métamorphiques. Applications aux Alpes et à l’Himalaya. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2012. [Google Scholar]
Authors | Gottero Unit | Bracco-Val Graveglia Unit | Colli-Tavarone Unit |
---|---|---|---|
Venturelli and Frey, 1979 (1) | anchizone | anchizone | |
Reutter et al. 1980 (2) | diagenesis/anchizone | ||
Bonazzi et al., 1987 (1,2) | anchizone/epizone | anchizone | |
Lucchetti et al. (1990) | prehnite-pumpellyite facies | ||
Reinhardt, 1991 (1,2) | anchizone | ||
Molli et al., 1992 (1,3) | anchizone | ||
Ducci et al., 1995 (1,3) | anchizone | ||
Leoni et al., 1992 (1,3) | anchizone | ||
Leoni et al., 1996 (1,3) | anchizone | anchizone | anchizone |
Balestrieri et al., 1996 (4) | T range of 270–350 °C | ||
Marroni et al., 2004 (5) | T greater than 200 °C | ||
Malavieille et al., 2016 (6) | T = 253 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanità, E.; Di Rosa, M.; Marroni, M.; Meneghini, F.; Pandolfi, L. Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy). Minerals 2024, 14, 64. https://doi.org/10.3390/min14010064
Sanità E, Di Rosa M, Marroni M, Meneghini F, Pandolfi L. Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy). Minerals. 2024; 14(1):64. https://doi.org/10.3390/min14010064
Chicago/Turabian StyleSanità, Edoardo, Maria Di Rosa, Michele Marroni, Francesca Meneghini, and Luca Pandolfi. 2024. "Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy)" Minerals 14, no. 1: 64. https://doi.org/10.3390/min14010064
APA StyleSanità, E., Di Rosa, M., Marroni, M., Meneghini, F., & Pandolfi, L. (2024). Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy). Minerals, 14(1), 64. https://doi.org/10.3390/min14010064