Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes
Abstract
:1. Introduction
2. Geological Setting and Petrography
3. Analytical Methods
3.1. LA-ICP-MS Zircon U-Pb Dating
3.2. Whole-Rock Major and Trace Element Analyses
3.3. Whole-Rock Sr-Nd Isotopes
4. Results
4.1. LA-ICP-MS Zircon U-Pb Isotopic Data
4.2. Whole-Rock Major and Trace Element Geochemistry
4.3. Whole-Rock Sr-Nd
5. Discussion
5.1. Effects of Alteration
5.2. Crustal Contamination
5.3. Petrogenesis of the Cretaceous Nb-Enriched Mafic Dykes in the EKO
5.4. Tectonic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.H.; Liu, C.D.; Chen, H.W.; Yuan, W.M.; Liu, Y.H. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geol. J. China Univ. 2007, 13, 403. [Google Scholar]
- Xiong, F.; Ma, C.; Chen, B.; Ducea, M.N.; Hou, M.; Ni, S. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system. Lithos 2019, 340, 152–165. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, G.; Liu, Q.; Yao, J.; Han, Y. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422, 106717. [Google Scholar] [CrossRef]
- Gao, H.; Sun, F. Middle to Late Triassic granitic magmatism in the East Kunlun orogenic belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Zhang, J.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. London 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Craddock, W.H.; Kirby, E.; Dewen, Z.; Liu, J.L. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin. Basin Res. 2012, 24, 51–69. [Google Scholar] [CrossRef]
- Yang, J.S.; Meng, F.C.; Zhang, J.X.; Li, H.B. The shoshonitic volcanic rocks at Hongliuxia: Pulses of the Altyn Tagh in Cretaceous. Sci. China Ser. D 2001, 31, 83–89. [Google Scholar] [CrossRef]
- Sobel, E.R.; Arnaud, N.; Jolivet, M.; Ritts, B.D.; Brunel, M. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China, constrained by 40Ar/39Ar and apatite fission track thermochronology. Geol. Soc. Am. Mem. 2001, 194, 247–267. [Google Scholar]
- Chen, X.; Yuan, W.; Xu, J.; Wang, K.; Yuan, E.; Feng, Z. Tectonic activities in Dongshangen polymetallic ore district, eastern Kunlun Mountains, Qinghai-Tibet Plateau: Evidences from fission track thermochronology. Ore Geol. Rev. 2019, 112, 103065. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.V.; Zhou, Z.; Yin, A.; McRivette, M.W.; Chen, X.; Ding, L.; Geng, J.Z. Mesozoic-Cenozoic evolution of the Eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision. Lithosphere 2019, 11, 524–550. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.V.; Li, J.; Haproff, P.J.; Yin, A.; Chen, X.; Ding, L.; Li, B. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. Bulletin 2021, 133, 2393–2417. [Google Scholar] [CrossRef]
- Sajona, F.G.; Maury, R.C.; Bellon, H.; Cotton, J.; Defant, M.J.; Pubellier, M. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 1993, 21, 1007–1010. [Google Scholar] [CrossRef]
- Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 1996, 380, 237–240. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, J.; Wang, M.; Li, C.; Zhang, L.; Sun, W. Geochemistry and genesis of the Nadun Nb-enriched arc basalt in the Duolong mineral district, western Tibet: Indication of ridge subduction. Geosci Front. 2022, 13, 101283. [Google Scholar] [CrossRef]
- Guo, F.; Wu, Y.; Zhang, B.; Zhang, X.; Zhao, L.; Liao, J. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview. Earth. Sci. Rev. 2021, 212, 103448. [Google Scholar] [CrossRef]
- Castillo, P.R.; Rigby, S.J.; Solidum, R.U. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines. Lithos 2007, 97, 271–288. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Cawood, P.A.; Guo, X. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt–like mafic rocks. Bulletin 2017, 129, 698–714. [Google Scholar] [CrossRef]
- Chen, F.; Cui, X.; Lin, S.; Wang, J.; Ren, G.; Li, K. The earliest Neoproterozoic Nb-enriched mafic magmatism indicates subduction tectonics in the southwestern Yangtze Block, South China. Precambrian Res. 2023, 384, 106938. [Google Scholar] [CrossRef]
- Xiong, F.; Liu, Q.; Hou, M.; Yan, S. Petrogenesis of Neoproterozoic mafic dykes in western Yangtze Block, South China: Implications for the assembly and break-up of Rodinia. Int. Geol. Rev. 2023, 65, 2191–2211. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Jiang, M.; Li, H.; Xue, G.; Yuan, X. Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan Plateau. Sci. China Ser. D Earth Sci. 2001, 44, 1–9. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, J.; Cui, M. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Jiang, H.A.; Zhang, H. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 2016, 27, 474–490. [Google Scholar] [CrossRef]
- Guocan, W.; Nengsong, C.; Yunhai, Z.; Kexin, Z. Late Caledonian ductile thrusting deformation in the Central East Kunlun Belt, Qinghai, China and its significance: Evidence from geochronology. Acta Geol. Sin.-Engl. Ed. 2003, 77, 311–319. [Google Scholar] [CrossRef]
- Chen, N.; Sun, M.; He, L.; Zhang, K.; Wang, G. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen. Chin. Sci. Bull. 2002, 47, 1130–1133. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Liu, B.; Huang, J. Geochronology and geochemistry of Middle Devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry 2014, 74, 225–235. [Google Scholar] [CrossRef]
- Liu, H. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochem. J. 2005, 39, 1–20. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for IsoPlot 3.0. A Geochronological Toolkit for Microsoft Excel; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Ma, Q.; Zheng, J.; Griffin, W.L.; Zhang, M.; Tang, H.; Su, Y. Triassic “adakitic” rocks in an extensional setting (North China): Melts from the cratonic lower crust. Lithos 2012, 149, 159–173. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Polat, A.; Kerrich, R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contrib. Mineral. Petrol. 2001, 141, 36–52. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J.; Drummond, M.S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta 1996, 60, 1217–1229. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S.; Holland, H.D.; Turekian, K.K. The crust. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Oxford Press: Blackwell, UK, 1985; pp. 1–312. [Google Scholar]
- Ferrara, G.; Preite-Martinez, M.; Taylor, H.P.; Tonarini, S.; Turi, B. Evidence for crustal assimilation, mixing of magmas, and a 87Sr-rich upper mantle: An oxygen and strontium isotope study of the M. Vulsini volcanic area, Central Italy. Contrib. Mineral. Petrol. 1986, 92, 269–280. [Google Scholar] [CrossRef]
- McNutt, R.H. 87Sr/86Sr as indicators for rock-water interactions: Applications to brines found in Precambrian age rocks from Canada. In Saline Water and Gases in Crystalline Rocks; Geological Association of Canada Memorial University: St. John’s, NL, Canada, 1987; pp. 81–88. [Google Scholar]
- Conly, A.G.; Brenan, J.M.; Bellon, H.; Scott, S.D. Arc to rift transitional volcanism in the Santa Rosalia region, Baja California Sur, Mexico. J. Volcanol. Geotherm. Res. 2005, 142, 303–341. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, J.; Huang, Z.; Wu, T.; Zhang, H. Ca. 830 Ma alkaline mafic dykes in the southeastern Guizhou Province, South China: New constraints on the Neoproterozoic evolution of the Yangtze Block. Precambrian Res. 2023, 389, 107032. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A. Thirlwall MF, Mitchell JG. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.; Hofmann, A.W.; Dai, B.; Hou, M.; Zhao, K. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim. Cosmochim. Acta 2014, 124, 250–271. [Google Scholar] [CrossRef]
- Brombin, V.; Bonadiman, C.; Jourdan, F.; Roghi, G.; Coltorti, M.; Webb, L.E. Intraplate magmatism at a convergent plate boundary: The case of the Cenozoic northern Adria magmatism. Earth. Sci. Rev. 2019, 192, 355–378. [Google Scholar] [CrossRef]
- Chen, S.S.; Shi, R.D.; Fan, W.M.; Gong, X.H.; Wu, K. Early Permian mafic dikes in the Nagqu area, central Tibet, China, as-sociated with embryonic oceanic crust of the Meso-Tethys Ocean. J. Geophys. Res. Solid Earth 2017, 122, 4172–4190. [Google Scholar] [CrossRef]
- Li, X.; Mo, X.; Yu, X.; Ding, Y.; Huang, X.; Wei, P. Geochronological, geochemical and Sr–Nd–Hf isotopic constraints on the origin of the Cretaceous intraplate volcanism in West Qinling, Central China: Implications for asthenosphere–lithosphere interaction. Lithos 2013, 177, 381–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, C.; Sun, M.; Long, X.; Huang, Z.; Jiang, Y. Two late Carboniferous belts of Nb-enriched mafic magmatism in the Eastern Tianshan: Heterogeneous mantle sources and geodynamic implications. GSA Bull. 2020, 132, 1863–1880. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, L.; Liu, H.; Liu, H.; Liao, R.; Mastoi, A.S. Geochemistry of subducted metabasites exhumed from the Mariana forearc: Implications for Pacific seamount subduction. Geosci. Front. 2021, 12, 101117. [Google Scholar] [CrossRef]
- Brown, G.C.; Thorpe, R.S.; Webb, P.C. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. London 1984, 141, 413–426. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Y.; Zhai, M.; Wang, X.; Deng, X.; Liu, R. Ca. 2.1 Ga low-δ18O gabbro-diorite association in southern North China Craton: Implications for an intraplate rifting. Lithos 2022, 430, 106858. [Google Scholar] [CrossRef]
- Jahn, B.; Wu, F.; Lo, C.; Tsai, C. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Gill, J.B. Orogenic Andesites and Plate Tectonics; Spring: Berlin/Heidelberg, Germany, 1981; Volume 16, pp. 230–247. [Google Scholar]
- Zhao, J.; Zhou, M.; Wu, Y.; Zheng, J.; Wang, W. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton. Contrib. Mineral. Petrol. 2019, 174, 1–16. [Google Scholar] [CrossRef]
- Tatsumi, Y. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation? Annu. Rev. Earth. Planet. Sci. 2006, 34, 467–499. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Xu, J.; Xia, X.P.; Lai, C.K.; Zhou, M.; Ma, P. First identification of Late Permian Nb-enriched basalts in Ailaoshan region (SW Yunnan, China): Contribution from Emeishan plume to subduction of eastern Paleotethys. Geophys. Res. Lett. 2019, 46, 2511–2523. [Google Scholar] [CrossRef]
- Niu, Y. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin. Sci. Bull. 2009, 54, 4148–4160. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, L.; Yuan, H.; Sun, W.; Xiao, W. Receiver function mapping of the mantle transition zone beneath the Tian Shan orogenic belt. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024635. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Yuan, X.; Xiao, W.; Windley, B.F. Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision. Nat. Commun. 2022, 13, 3738. [Google Scholar] [CrossRef]
- Pirajno, F.; Santosh, M. Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore. Geol. Rev. 2014, 63, 265–295. [Google Scholar] [CrossRef]
- Comeau, M.J.; Stein, C.; Becken, M.; Hansen, U. Geodynamic modeling of lithospheric removal and surface deformation: Application to intraplate uplift in Central Mongolia. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021304. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Wyman, D.A.; Jiang, Z.Q.; Wu, F.Y.; Li, X.H.; Yang, J.H.; Guo, G.N.; Guo, H.F. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. J. Geophys. Res. Solid Earth 2015, 120, 6159–6181. [Google Scholar] [CrossRef]
- Wu, Z.; Barosh, P.J.; Ye, P.; Hu, D. Late Cretaceous tectonic framework of the Tibetan Plateau. J. Asian Earth Sci. 2015, 114, 693–703. [Google Scholar] [CrossRef]
- Meschede, M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb 1bZr 1bY diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Bian, Q.T.; Luo, X.Q.; Li, D.H.; Zhao, D.S.; Chen, H.H.; Xu, G.Z.; Chang, C.F.; Gao, Y.L. Geochemistry and Formation Environment of the Buqingshan Ophiolite Complex, Qinghai Province, China. Acta Gelogica Sin. 2001, 75, 45–55. [Google Scholar]
- Yang, J.S.; Wang, X.B.; Shi, R.D.; Xu, Z.Q.; Wu, C.L. The Dur’ngoi ophiolite in East Kunlun, northern Qinghai-tibet Plateau: A fragment of paleo-Tethyan oceanic crust. Geol. China 2004, 31, 225–239. [Google Scholar]
- Xu, C.; Zhao, X.; Huizenga, J.M.; Wei, J.; Zhou, H.; Wang, F.; Zhang, X.M. Petrogenesis of Permian to Triassic granitoids from the East Kunlun orogenic belt: Implications for crustal evolution during oceanic subduction and continental collision. Int. Geol. Rev. 2023, 65, 1781–1799. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.H.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J.; Wang, M.; Zhang, M. Paleo-Tethyan Ocean Evolution and Indosinian Orogenesis in the East Kunlun Orogen, Northern Tibetan Plateau. Minerals 2022, 12, 1590. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.; Zhang, Y.; Fan, X.; Wang, Y.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346, 105159. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Wang, H.; Li, B.; Feng, C.; Dick, J.M.; Li, J.C.; Kong, H.L.; Zhao, Z.Y. Geodynamic Setting and Cu-Ni Potential of Late Permian Xiwanggou Mafic-Ultramafic Rocks, East Kunlun Orogenic Belt, NW China. Front. Earth. Sci. 2021, 9, 666967. [Google Scholar] [CrossRef]
- Liu, Y.; Neubauer, F.; Genser, J.; Ge, X.; Takasu, A.; Yuan, S.; Chang, L.; Li, W. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China. J. Asian Earth Sci. 2007, 29, 243–252. [Google Scholar] [CrossRef]
- Robinson, D.M.; Dupont-Nivet, G.; Gehrels, G.E.; Zhang, Y. The Tula uplift, northwestern China: Evidence for regional tectonism of the northern Tibetan Plateau during late Mesozoic–early Cenozoic time. Geol. Soc. Am. Bull. 2003, 115, 35–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Z.; Zhou, H.; Wang, M.; Zhou, J.; Xiong, F. Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes. Minerals 2024, 14, 89. https://doi.org/10.3390/min14010089
Chu Z, Zhou H, Wang M, Zhou J, Xiong F. Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes. Minerals. 2024; 14(1):89. https://doi.org/10.3390/min14010089
Chicago/Turabian StyleChu, Zhiqiang, Hu Zhou, Mingchi Wang, Jiaming Zhou, and Fuhao Xiong. 2024. "Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes" Minerals 14, no. 1: 89. https://doi.org/10.3390/min14010089
APA StyleChu, Z., Zhou, H., Wang, M., Zhou, J., & Xiong, F. (2024). Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes. Minerals, 14(1), 89. https://doi.org/10.3390/min14010089