Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Geochemical Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Letcher, T.M. 1—Global warming—A complex situation. In Climate Change, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–17. [Google Scholar] [CrossRef]
- Miao, E.; Du, Y.; Wang, H.; Xiong, Z.; Zhao, Y.; Zhang, J. Experimental study and kinetics on CO2 mineral sequestration by the direct aqueous carbonation of pepper stalk ash. Fuel 2021, 303, 121230. [Google Scholar] [CrossRef]
- Huijgen, W.J.; Witkamp, G.J.; Comans, R.N. Mineral CO2 Sequestration by Steel Slag Carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef]
- US Department of Commerce. Global Monitoring Laboratory—Carbon Cycle Greenhouse Gases. GML. 1 October 2005. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 11 November 2023).
- Rammer, B.; Millner, R.; Boehm, C. Comparing the CO2 Emissions of Different Steelmaking Routes. BHM Berg-und Hüttenmännische Monatshefte. 2017, 162, 7–13. [Google Scholar] [CrossRef]
- World Steel Association. World Steel in Figures 2021. Available online: https://worldsteel.org/steel-topics/statistics/World-Steel-in-Figures/ (accessed on 10 October 2023).
- Mapelli, C.; Dall’Osto, G.; Mombelli, D.; Barella, S.; Gruttadauria, A. Future Scenarios for Reducing Emissions and Consumption in the Italian Steelmaking Industry. Steel Res. Int. 2022, 93, 2100631. [Google Scholar] [CrossRef]
- International Energy Agency. Greenhouse Gas Emissions from Major Industrial Sources III-Iron and Steel Production Report PH3/30. Available online: https://ieaghg.org/docs/General_Docs/Reports/PH3-30%20iron-steel.pdf (accessed on 10 October 2023).
- International Energy Agency. Iron and Steel Technology Roadmap towards More Sustainable Steelmaking Part of the Energy Technology Perspectives Series. Available online: https://www.iea.org/reports/iron-and-steel-technology-roadmap (accessed on 23 October 2023).
- Lackner, K.S. A Guide to CO2 Sequestration. Science 2023, 300, 1677–1678. [Google Scholar] [CrossRef]
- Chai, Y.; Chalouati, S.; Fantucci, H.; Santos, R. Accelerated weathering and carbonation (mild to intensified) of natural Canadian silicates (kimberlite and wollastonite) for CO2 sequestration. Crystals 2021, 11, 1584. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Cui, K.; Wang, H.; Fu, T. Carbon capture and storage technology by steel-making slags: Recent progress and future challenges. Chem. Eng. J. 2023, 455, 140552. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Revitzer, H.; Salminen, J.; Said, A.; Fogelholm, C.-J.; Zevenhoven, R. Reduction of CO2 Emissions from Steel Plants by Using Steelmaking Slags for Production of Marketable Calcium Carbonate. Steel Res. Int. 2010, 80, 415–421. [Google Scholar] [CrossRef]
- Haque, F.; Khalidy, R.; Chiang, Y.; Santos, R. Constraining the capacity of global croplands to CO2 drawdown via mineral weathering. ACS Earth Space Chem. 2023, 7, 1294–1305. [Google Scholar] [CrossRef]
- Gadikota, G.; Matter, J.; Kelemen, P.; Brady, P.; Park, A.-H. Elucidating the differences in the carbon mineralization behaviors of calcium and magnesium bearing alumino-silicates and magnesium silicates for CO2 storage. Fuel 2020, 277, 117900. [Google Scholar] [CrossRef]
- Woodall, C.; Lu, X.; Dipple, G.; Wilcox, J. Carbon Mineralization with North American PGM Mine Tailings—Characterization and Reactivity Analysis. Minerals 2021, 11, 844. [Google Scholar] [CrossRef]
- Meima, J.A.; van der Weijden, R.; Eighmy, T.T.; Comans, R.N.J. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl. Geochem. 2002, 17, 1503–1513. [Google Scholar] [CrossRef]
- Chalouati, S.; Yoosefdoost, A.; Chiang, Y.; Santos, R. Intensified mineral carbonation of natural Canadian silicates using simultaneous ball milling. Int. J. Coal Geol. 2023, 277, 104332. [Google Scholar] [CrossRef]
- Al Hameli, F.; Belhaj, H.; Al Dhuhoori, M. CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment. Energies 2022, 15, 7805. [Google Scholar] [CrossRef]
- Sun, Y.; Payton, R.L.; Hier-Majumder, S.; Kingdon, A. Geological Carbon Sequestration by Reactive Infiltration Instability. Front. Earth Sci. 2020, 8, 533588. [Google Scholar] [CrossRef]
- Zhang, N.; Chai, Y.; Santos, R.; Šiller, L. Advances in process development of aqueous CO2 mineralisation towards scalability. J. Environ. Chem. Eng. 2020, 8, 104453. [Google Scholar] [CrossRef]
- Alexander, D.; Boodlal, D. Evaluating the effects of CO2 Injection in Faulted Saline Aquifers. Energy Procedia 2014, 63, 3012–3021. [Google Scholar] [CrossRef]
- Bai, H.; Yeh, A.C. Removal of CO2 Greenhouse Gas by Ammonia Scrubbing. Ind. Eng. Chem. Res. 1997, 30, 2490–2493. [Google Scholar] [CrossRef]
- Cormos, A.-M.; Dinca, C.; Petrescu, L.; Chisalita, D.A.; Szima, S.; Cormos, C.-C. Carbon capture and utilisation technologies applied to energy conversion systems and other energy-intensive industrial applications. Fuel 2018, 211, 883–890. [Google Scholar] [CrossRef]
- Carson, P.; Mumford, C. Hazardous Chemicals Handbook, Library of Congress Cataloguing in Publication Data. 2002. Available online: http://ccc.chem.pitt.edu/wipf/Web/HCH (accessed on 10 October 2023).
- Setayeshmanesh, T.; Parivazh, M.M.; Abbasi, M.; Osfouri, S.; Dianat, M.J.; Akrami, M. Reducing the Environmental Impacts of Desalination Reject Brine Using Modified Solvay Process Based on Calcium Oxide. Sustainability 2022, 14, 2298. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z. A modified Solvay process with low-temperature calcination of NaHCO3 using monoethanolamine: Solubility determination and thermodynamic modeling. AIChE J. 2019, 65, e16701. [Google Scholar] [CrossRef]
- Mourad, A.A.-H.; Mohammad, A.F.; Al-Marzouqi, A.H.; El-Naas, M.H.; Al-Marzouqi, M.H.; Altarawneh, M. CO2 capture and ions removal through reaction with potassium hydroxide in desalination reject brine: Statistical optimization. Chem. Eng. Process. Process Intensif. 2022, 170, 108722. [Google Scholar] [CrossRef]
- Ali, A.; Mendes, C.E.; de Melo, L.G.; Wang, J.; Santos, R.M. Production of Sodium Bicarbonate with Saline Brine and CO2 Co-Utilization: Comparing Modified Solvay Approaches. Crystals 2023, 13, 470. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Di Landro, U. Analysis of Electric Arc Furnace Slag. Steel Res. Int. 2012, 83, 1012–1019. [Google Scholar] [CrossRef]
- Adegoloye, G.; Beaucour, A.-L.; Ortola, S.; Noumowe, A. Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Constr. Build. Mater. 2016, 115, 171–178. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of microstructure on the leaching behaviour of electric arc furnace (EAF) carbon steel slag. Process Saf. Environ. Prot. 2016, 102, 810–821. [Google Scholar] [CrossRef]
- Menad, N.E.; Kana, N.; Seron, A.; Kanari, N. New EAF Slag Characterization Methodology for Strategic Metal Recovery. Materials 2021, 14, 1513. [Google Scholar] [CrossRef]
- Pamato, M.G.; Nestola, F.; Novella, D.; Smyth, J.R.; Pasqual, D.; Gatta, G.D.; Alvaro, M.; Secco, L. The High-Pressure Structural Evolution of Olivine along the Forsterite–Fayalite Join. Minerals 2019, 9, 790. [Google Scholar] [CrossRef]
- Emeleus, C.H.; Andrews, J.R. Mineralogy and petrology of kimberlite dyke and sheet intrusions and included peridotite xenoliths from South-West Greenland. Phys. Chem. Earth 1975, 9, 179–197. [Google Scholar] [CrossRef]
- Owais, M.; Järvinen, M.; Taskinen, P.; Said, A. Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. J. CO2 Util. 2019, 31, 1–7. [Google Scholar] [CrossRef]
- Hermosilla, D.; Ordóñez, R.; Blanco, L.; de la Fuente, E.; Blanco, Á. pH and Particle Structure Effects on Silica Removal by Coagulation. Chem. Eng. Technol. 2012, 35, 1632–1640. [Google Scholar] [CrossRef]
- Hansford, G.M.; Turner, S.M.R.; Staab, D.; Vernon, D. The suppression of fluorescence peaks in energy-dispersive X-ray diffraction. J. Appl. Crystallogr. 2014, 47, 1708–1715. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Said, A.; Mattila, H.-P.; Järvinen, M.; Zevenhoven, R. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl. Energy 2013, 112, 765–771. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M. Determining the composition of olivine from reflectance spectroscopy. J. Geophys. Res. Planets 1998, 103, 1367513688. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Elburg, M.; Arculus, R.; Thomas, R. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chem. Geol. 2006, 233, 346–357. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W., II. An integrated model of kimberlite ascent and eruption. Nature 2007, 447, 53–57. [Google Scholar] [CrossRef]
- Grégoire, M.; Tinguely, C.; Bell, D.R.; Roex, A.L. Spinel lherzolite xenoliths from the Premier kimberlite (Kaapvaal craton, South Africa): Nature and evolution of the shallow upper mantle beneath the Bushveld complex. Lithos 2005, 84, 185–205. [Google Scholar] [CrossRef]
- Huang, J.-C.; Shang, C. Air Stripping. Advanced Physicochemical Treatment Processes. In Handbook of Environmental Engineering; Wang, L.K., Hung, Y.T., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2006; Volume 4. [Google Scholar] [CrossRef]
- Béarat, H.; McKelvy, M.J.; Chizmeshya, A.V.G.; Gormley, D.; Nunez, R.; Carpenter, R.W.; Squires, K.; Wolf, G.H. Carbon Sequestration via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation. Environ. Sci. Technol. 2006, 40, 4802–4808. [Google Scholar] [CrossRef]
- Santos, R.; Zhang, N.; Bakhshoodeh, R. Multiscale process intensification of waste valorization reactions. Acc. Chem. Res. 2023, 56, 2606–2619. [Google Scholar] [CrossRef]
(wt%) | Al2O3 | CaO | Fe2O3 | MgO | Na2O | SO3 | SiO2 | LOI |
---|---|---|---|---|---|---|---|---|
EAF Slag | 4.2 | 36.2 | 28.7 | 9.3 | 0.06 | 0.23 | 14.1 | 0.10 |
Olivine | 2.1 | 2.1 | 9.2 | 38.7 | 0.21 | 0.07 | 39.1 | 7.3 |
Kimberlite | 1.5 | 8.6 | 8.7 | 33.4 | 0.23 | 0.15 | 28.3 | 16.5 |
Conc (M) | Ca | Fe | Mg | Ca | Fe | Mg | Ca | Fe | Mg | ||
---|---|---|---|---|---|---|---|---|---|---|---|
UPW | ABB | PBB | |||||||||
Slag | HCl | 1.000 | 16,081.20 | 5546.17 | 2097.62 | 262.53 | DT | 287.28 | 5415.03 | 1002.84 | 483.66 |
0.200 | 3199.02 | 180.48 | 198.12 | 38.19 | 37.52 | 370.29 | DT | 2.47 | DT | ||
0.050 | 789.45 | DT | 8.18 | 41.03 | 59.18 | 422.27 | 2.14 | 0.43 | 5.67 | ||
0.010 | 241.52 | DT | DT | 66.45 | 73.86 | 385.30 | 14.36 | 459.43 | 22.60 | ||
0.001 | 99.11 | DT | DT | 57.68 | 67.09 | 341.63 | 9.15 | 0.71 | 6.12 | ||
Brine | 0.000 | 138.90 | 0.40 | 0.90 | 45.20 | 38.40 | 189.70 | 0.60 | 1.40 | 1.00 | |
NaOH | 0.001 | 82.35 | 0.09 | 0.04 | 36.66 | 40.34 | 228.28 | 3.09 | 0.89 | 1.05 | |
0.010 | 73.42 | DT | DT | 24.13 | 34.63 | 169.24 | 1.90 | 0.00 | 0.26 | ||
0.050 | 39.28 | DT | DT | 15.73 | 33.75 | 183.41 | 2.88 | 0.35 | DT | ||
0.200 | 8.29 | 0.01 | DT | 7.89 | 27.74 | 76.79 | 3.23 | 0.35 | DT | ||
1.000 | 23.88 | DT | DT | 2.05 | 1.15 | 72.33 | 8.77 | 0.91 | DT | ||
Kimberlite | HCl | 1.000 | 4862.14 | 963.88 | 4713.14 | 22.20 | DT | 245.99 | 2783.84 | 248.36 | 1769.26 |
0.200 | 3118.89 | 4.86 | 977.25 | 4.30 | 1.07 | 227.30 | 7.07 | 7.74 | 58.11 | ||
0.050 | 732.13 | DT | 164.36 | 5.94 | DT | 8.18 | 5.79 | 0.30 | 8.37 | ||
0.010 | 166.71 | DT | 34.93 | 0.05 | 2.29 | 168.68 | 0.81 | DT | 3.99 | ||
0.001 | 21.77 | DT | 3.86 | 1.10 | 5.09 | 136.78 | 1.88 | DT | 5.76 | ||
Brine | 0.000 | 12.20 | 0.20 | 3.60 | 6.50 | 1.20 | 127.00 | 0.70 | 0.10 | 0.50 | |
NaOH | 0.001 | 41.03 | 0.18 | 7.01 | 5.98 | 1.37 | 120.70 | 3.06 | DT | DT | |
0.010 | 4.60 | DT | 0.59 | 6.50 | 2.34 | 121.58 | 2.32 | DT | DT | ||
0.050 | 5.20 | DT | 0.05 | 6.24 | 2.63 | 115.23 | 2.12 | DT | DT | ||
0.200 | 1.64 | DT | DT | 4.47 | 2.26 | 105.04 | 2.46 | DT | DT | ||
1.000 | 37.36 | DT | DT | 4.05 | 1.24 | 88.88 | 5.60 | 0.08 | DT | ||
Olivine | HCl | 1.000 | 295.62 | 2791.75 | 7377.88 | 13.51 | DT | 254.28 | 151.75 | 832.65 | 3163.50 |
0.200 | 159.37 | 390.42 | 1872.18 | 0.50 | 0.99 | 238.24 | 7.88 | 18.70 | 199.77 | ||
0.050 | 662.64 | 181.81 | 540.39 | 0.69 | 1.63 | 236.15 | 1.55 | 0.17 | 38.73 | ||
0.010 | 47.32 | DT | 95.48 | DT | 1.26 | 226.25 | DT | DT | DT | ||
0.001 | DT | DT | 14.99 | DT | 1.46 | 229.66 | 2.37 | 0.05 | DT | ||
Brine | 0.000 | 3.80 | 0.1 | 10.10 | 5.20 | 1.40 | 209.00 | 0.90 | DT | 1.60 | |
NaOH | 0.001 | 8.28 | DT | 1.43 | 5.52 | 1.33 | 205.78 | 3.06 | DT | 0.00 | |
0.010 | 14.75 | 1.70 | 22.08 | 5.57 | 1.34 | 201.89 | 2.69 | DT | DT | ||
0.050 | 3.67 | DT | 0.38 | 4.57 | 1.86 | 187.82 | 2.30 | DT | DT | ||
0.200 | 0.13 | DT | DT | 4.13 | 2.25 | 103.21 | 2.72 | DT | DT | ||
1.000 | 4.30 | DT | DT | 4.10 | 1.49 | 109.56 | 6.11 | 0.10 | DT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anto, S.M.; Ali, A.; Santos, R.M. Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration. Minerals 2024, 14, 97. https://doi.org/10.3390/min14010097
Anto SM, Ali A, Santos RM. Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration. Minerals. 2024; 14(1):97. https://doi.org/10.3390/min14010097
Chicago/Turabian StyleAnto, Shadman Monir, Asif Ali, and Rafael M. Santos. 2024. "Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration" Minerals 14, no. 1: 97. https://doi.org/10.3390/min14010097
APA StyleAnto, S. M., Ali, A., & Santos, R. M. (2024). Integration of Modified Solvay Process for Sodium Bicarbonate Synthesis from Saline Brines with Steelmaking for Utilization of Electric Arc Furnace Slag in CO2 Sequestration and Reagent Regeneration. Minerals, 14(1), 97. https://doi.org/10.3390/min14010097