Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cementitious Materials
2.2. Batch Sorption Experiments
2.3. Through-Diffusion Experiments
2.4. Autoradiography
3. Results
3.1. Uptake of Cl− by Cement Hydration Phases and HCP
3.2. Diffusion of 36Cl through HCP
3.2.1. Through-Diffusion Experiments
3.2.2. Autoradiography of HCP Blocks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasser, F.P. Application of inorganic cements to the conditioning and immobilisation of radioactive wastes. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M.I., Ed.; Woodhead: Oxford, UK, 2011; pp. 67–135. [Google Scholar]
- Bel, J.P.; Wickham, S.M.; Gens, R.M.F. Development of the supercontainer design for deep geological disposal of high-level heat emitting radioactive waste in Belgium. Mater. Res. Soc. Symp. Proc. 2006, 932, 1221. [Google Scholar] [CrossRef]
- Drace, Z.; Ojovan, M.I. A Summary of IAEA coordinated research project on cementitious materials for radioactive waste management. In Cement-Based Materials for Nuclear Waste Storage; Bart, F., Cau-dit-Coumes, C., Frizon, F., Lorente, S., Eds.; Springer: New York, NY, USA, 2013; pp. 3–11. [Google Scholar]
- Duro, L.; Altmaier, M.; Holt, E.; Mäder, U.; Claret, F.; Grambow, B.; Idiart, A.; Valls, A.; Montoya, V. Contribution of the results of the CEBAMA project to decrease uncertainties in the Safety Case and Performance Assessment of radioactive waste repositories. Appl. Geochem. 2020, 112, 104479. [Google Scholar] [CrossRef]
- Bach, T.; Pochard, I.M.; Cau-dit-Coumes, C.; Mercier, C.; Nonat, A. Prediction of long-term chemical evolution of a low-pH cement designed for underground radioactive waste repositories. In Cement-Based Materials for Nuclear Waste Storage; Bart, F., Cau-dit-Coumes, C., Frizon, F., Lorente, S., Eds.; Springer: New York, NY, USA, 2013; pp. 239–250. [Google Scholar]
- Cau Dit Coumes, C.; Courtois, S.; Nectoux, D.; Leclercq, S.; Bourbon, X. Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories. Cem. Concr. Res. 2006, 36, 2152–2163. [Google Scholar] [CrossRef]
- Codina, M.; Cau-dit-Coumes, C.; Le Bescop, P.; Verdier, J.; Ollivier, J.P. Design and characterization of low-heat and low-alkalinity cements. Cem. Concr. Res. 2008, 38, 437–448. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Ben Haha, M.; Figi, R.; Wieland, E. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cem. Concr. Res. 2012, 42, 410–423. [Google Scholar] [CrossRef]
- Glasser, F.P. Mineralogical aspects of cement in radioactive waste disposal. Mineral. Mag. 2001, 65, 621–633. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997; 459p. [Google Scholar]
- Ochs, M.; Mallants, D.; Wang, L. Radionuclide and Metal Sorption on Cement and Concrete; Springer: Cham, Switzerland, 2016; 301p. [Google Scholar]
- Glasser, F.P. Fundamental aspects of cement solidification and stabilization. J. Hazard. Mater. 1997, 52, 151–170. [Google Scholar] [CrossRef]
- Evans, N.D.M. Binding mechanisms of radionuclides to cement. Cem. Concr. Res. 2008, 38, 543–553. [Google Scholar] [CrossRef]
- Gougar, M.L.D.; Scheetz, B.E.; Roy, D.M. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste Manag. 1996, 16, 295–303. [Google Scholar] [CrossRef]
- Heath, T.G.; Illet, D.J.; Tweed, C.J. Development of a Near-Field Sorption Model for a Cementitious Repository; UK Nirex Report AEAT/R/ENV/0229; AEA Technology: Harwell, UK, 2000. [Google Scholar]
- Wang, L.; Ochs, M.; Mallants, D.; Vielle-Petit, L.; Martens, E.; Jacques, D.; de Cannière, P.; Berry, J.A.; Leterme, B. A new radionuclide sorption data base for benchmark cement accounting for geochemical evolution of cement. In Cement-Based Materials for Nuclear Waste Storage; Bart, F., Cau-dit-Coumes, C., Frizon, F., Lorente, S., Eds.; Springer: New York, NY, USA, 2013; pp. 103–112. [Google Scholar]
- Wieland, E. Sorption Data Base for the Cementitious Near Field of L/ILW and ILW Repositories for Provisional Safety Analyses for Sgt-E2; Nagra Technical Report NTB 14-08; Nagra: Wettingen, Switzerland, 2014. [Google Scholar]
- Wieland, E.; Van Loon, L.R. Cementitious Near-Field Sorption Data Base for Performance Assessment of an ILW Repository in Opalinus Clay; Nagra Technical Report NTB 02-20; Nagra: Wettingen, Switzerland, 2002. [Google Scholar]
- Posiva. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto; Posiva Report 2012-12; Posiva Oy: Eurajoki, Finland, 2012. [Google Scholar]
- SKB. Safety Analysis for SFR Long-Term Safety: Main Report for the Safety Assessment SR-PSU; SKB Technical Report 14-01; Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2015. [Google Scholar]
- Brown, D.A.; Chadwick, M.B.; Capote, R.; Kahler, A.C.; Trkov, A.; Herman, M.W.; Sonzogni, A.A.; Danon, Y.; Carlson, A.D.; Dunn, M.; et al. ENDF/B-VIII.0: The 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 2018, 148, 1–142. [Google Scholar] [CrossRef]
- Hummel, W. Chemistry of Selected Dose-Relevant Radionuclides; Nagra Technical Report NTB 17-05; Nagra: Wettingen, Switzerland, 2017. [Google Scholar]
- Grambow, B.; López-García, M.; Olmeda, J.; Grivé, M.; Marty, N.C.M.; Grangeon, S.; Claret, F.; Lange, S.; Deissmann, G.; Klinkenberg, M.; et al. Retention of radionuclides on cementitious systems: Main outcome of the CEBAMA project. Appl. Geochem. 2020, 112, 104480. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Ramachandran, V.S.; Feldman, R.F. Interaction of chloride and C-S-H. Cem. Concr. Res. 1990, 20, 875–883. [Google Scholar] [CrossRef]
- Viallis, H.; Faucon, P.; Petit, J.C.; Nonat, A. Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C-S-H). J. Phys. Chem. B 1999, 103, 5212–5219. [Google Scholar] [CrossRef]
- Sugiyama, D. Chemical alteration of calcium silicate hydrate (C-S-H) in sodium chloride solution. Cem. Concr. Res. 2008, 38, 1270–1275. [Google Scholar] [CrossRef]
- Birnin-Yauri, U.; Glasser, F. Friedel’s Salt, Ca2Al(OH)6(Cl,OH)·2H2O: Its solid solutions and their role in chloride binding. Cem. Concr. Res. 1998, 28, 1713–1723. [Google Scholar] [CrossRef]
- Balonis, M.; Lothenbach, B.; Le Saout, G.; Glasser, F.P. Impact of chloride on the mineralogy of hydrated Portland cement systems. Cem. Concr. Res. 2010, 40, 1009–1022. [Google Scholar] [CrossRef]
- Van Es, E.; Hinchliff, J.; Felipe-Sotelo, M.; Milodowski, A.E.; Field, L.P.; Evans, N.D.M.; Read, D. Retention of chlorine-36 by a cementitious backfill. Mineral. Mag. 2015, 79, 1297–1305. [Google Scholar] [CrossRef]
- Aggarwal, S.; Angus, M.J.; Ketchen, J. Sorption of Radionuclides onto Specific Mineral Phases Present in Repository Cements; AEA Technology Report NSS/R312, AEA-D&R-0395; AEA Technology PLC, Windscale: Cumbria, UK, 2000. [Google Scholar]
- Atkins, M.; Glasser, F.P.; Kindness, A. Cement hydrate phases: Solubility at 25 °C. Cem. Concr. Res. 1992, 22, 241–246. [Google Scholar] [CrossRef]
- Baur, I.; Keller, P.; Mavrocordatos, D.; Wehrli, B.; Johnson, C.A. Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 341–348. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The AFm phase in Portland cement. Cem. Concr. Res. 2006, 37, 118–130. [Google Scholar] [CrossRef]
- Lange, S. Structural Uptake and Retention of Safety Relevant Radionuclides by Cementitious Materials. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2019. [Google Scholar]
- Lange, S.; Kowalski, P.; Pšenička, M.; Klinkenberg, M.; Rohmen, S.; Bosbach, D.; Deissmann, G. Uptake of 226Ra in cementitious systems: A complementary solution chemistry and atomistic simulation study. Appl. Geochem. 2018, 96, 204–216. [Google Scholar] [CrossRef]
- Lange, S.; Klinkenberg, M.; Barthel, J.; Bosbach, D.; Deissmann, G. Uptake and retention of molybdenum in cementitious systems. Appl. Geochem. 2020, 119, 104630. [Google Scholar] [CrossRef]
- Francis, A.J.; Cather, R.; Crossland, I.G. Nirex Safety Assessment Research Programme: Development of the Nirex Reference Vault Backfill; Report on Current Status in 1994; UK NIREX Report no: S/97/014; United Kingdom Nirex Ltd.: Harwell, Oxfordshire, UK, 1997. [Google Scholar]
- Vehmas, T.; Schnidler, A.; Löija, M.; Leivo, M.; Holt, E. Reference mix design and castings for low-pH concrete for nuclear waste repositories. KIT Sci. Rep. 2017, 7734, 101–111. [Google Scholar]
- Vehmas, T.; Montoya, V.; Alonso, M.C.; Vasícek, R.; Rastrick, E.; Gaboreau, S.; Vecerník, P.; Leivo, M.; Holt, E.; Fink, N.; et al. Characterization of Cebama low-pH reference concrete and assessment of its alteration with representative waters in radioactive waste repositories. Appl. Geochem. 2020, 121, 104703. [Google Scholar] [CrossRef]
- Leivo, M.; Vehmas, T.; Holt, E. Developing low pH concrete for tunnel plugging structures in nuclear waste containment. In Proceedings of the XIII Nordic Concrete Research Symposium, Reykjavik, Iceland, 13–15 August 2014. [Google Scholar]
- Holt, E.; Koho, P. POPLU Experimental Summary Report. Deliverable D4.5, DOPAS Project (Contract Number: FP7–323273). 2016. Available online: https://www.posiva.fi/dopas/en/dopas/deliverables.html (accessed on 20 August 2024).
- Pointeau, I.; Coreau, N.; Reiller, P.E. Uptake of anionic radionuclides onto degraded cement pastes and competing effect of organic ligands. Radiochim. Acta 2008, 96, 367–374. [Google Scholar] [CrossRef]
- Felipe-Sotelo, M.; Hinchliff, J.; Drury, D.; Evans, N.D.M.; Williams, S.; Read, D. Radial diffusion of radiocaesium and radioiodide through cementitious backfill. Phys. Chem. Earth 2014, 70–71, 60–70. [Google Scholar] [CrossRef]
- Isaacs, M.; Lange, S.; Deissmann, G.; Bosbach, D.; Milodowski, A.E.; Read, D. Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste. Appl. Geochem. 2020, 116, 104580. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ, Version 1.48k; US National Institutes of Health: Bethesda, MD, USA, 2013. Available online: https://imagej.net (accessed on 4 July 2016).
- Cathelin, R. Linearize GelData; SIGENAE Team, INRA: Toulouse, France, 2013; Available online: https://imagej.net/ij/plugins/linearize-gel-data.html (accessed on 20 January 2017).
- Nagra. Project Opalinus Clay—Safety Report. Demonstration of Disposal Feasibility for Spent Fuel, Vitrified High-Level Waste and Long-Lived Intermediate Level Waste; Nagra Technical Report NTB 02-05; Nagra: Wettingen, Switzerland, 2002. [Google Scholar]
- Viallis-Terris, H.; Nonat, A.; Petit, J.C. Zeta-potential study of calcium silicate hydrates interacting with alkaline cations. J. Colloid Interface Sci. 2001, 244, 58–65. [Google Scholar] [CrossRef]
- Sugiyama, D.; Fujita, T. Chemical Alteration of Calcium Silicate Hydrates in Saline Groundwater—Mechanism of Sorption of Na on C-S-H and effect of NaCl on Leaching of Ca from C-S-H; CRIEPI Report T03056; Central Research Institute of Electric Power Industry: Tokyo, Japan, 2004. [Google Scholar]
- Fujiwara, K.; Saito, N.; Kaneko, M.; Toyohara, N.; Mitsuka, T.; Toyota, F.; Ikenaga, N. Fixation technique of radioiodine by cement. J. Nucl. Fuel Cycle Environ. 1999, 6, 75–78. [Google Scholar]
- Rojo, H.; Scheinost, A.C.; Lothenbach, B.; Laube, A.; Wieland, E.; Tits, J. Retention of selenium by calcium aluminate hydrate (AFm) phases under strongly-reducing radioactive waste repository conditions. Dalton Trans. 2018, 47, 4209–4218. [Google Scholar] [CrossRef]
- Nielsen, E.P.; Herfort, D.; Geiker, M.R. Binding of chloride and alkalis in Portland cement systems. Cem. Concr. Res. 2005, 35, 117–123. [Google Scholar] [CrossRef]
- Sarott, F.A.; Bradbury, M.H.; Pandolfo, P.; Spieler, P. Diffusion and adsorption studies on hardened cement paste and the effect of carbonation on diffusion rates. Cem. Concr. Res. 1992, 22, 439–444. [Google Scholar] [CrossRef]
- Jakob, A.; Sarott, F.A.; Spieler, P. Diffusion and Sorption on Hardened Cement Pastes—Experiments and Modelling Results; PSI-Bericht Nr. 99-05; Paul-Scherrer-Institut: Villingen, Switzerland, 1999. [Google Scholar]
- Nedyalkova, L.; Tits, J.; Bernard, E.; Wieland, E.; Mäder, U. Sorption experiments with HTO, 36-Cl, 125-I and 14-C labeled formate on aged cement matrices retrieved from long-term in-situ rock laboratory experiments. J. Adv. Concr. Technol. 2021, 19, 811–829. [Google Scholar] [CrossRef]
- Baker, S.; McCrohon, R.; Oliver, P.; Pilkington, N.J. The sorption of niobium, tin, iodine and chlorine onto NIREX reference vault backfill. Mater. Res. Soc. Symp. Proc. 1994, 333, 719–724. [Google Scholar] [CrossRef]
- Vasconcelos, R.; Walkley, B.; Day, S.; Tang, C.C.; Paraskevoulakos, H.; Gardner, L.J.; Corkhill, C.L. 18-month hydration of a low-pH cement for geological disposal of radioactive waste: The Cebama reference cement. Appl. Geochem. 2020, 116, 104536. [Google Scholar] [CrossRef]
Blend | OPC | PFA | GGBS | Hydrated Lime | Lime Flour | Silica Fume | Quartz Filler | w/c 1 |
---|---|---|---|---|---|---|---|---|
CEM I | 1 | 0.45 | ||||||
PFA–OPC | 1 | 3 | 0.45 | |||||
GGBS–OPC | 1 | 9 | 0.45 | |||||
NRVB | 1 | 0.38 | 1.1 | 0.55 | ||||
Cebama | 1 | 0.62 | 0.87 | 1.1 | 0.45 |
Phase | Rd (L kg−1) |
---|---|
C-S-H 0.9 | 17 ± 0.2 |
AFm-SO4 | 27 ± 0.6 |
AFm-CO3 | 17 ± 0.2 |
Binder | Rd (L kg−1) |
---|---|
CEM I | 11 ± 1.0 |
PFA–OPC | 26 ± 1.3 |
GGBS–OPC | 9.8 ± 0.2 |
NRVB | 7.5 ± 0.5 |
Cebama | 6.5 ± 0.1 |
Binder | Rf (-) |
---|---|
CEM I | 61.5 |
PFA–OPC | 1.0 |
GGBS–OPC | 38.1 |
NRVB | 1.6 |
Cebama | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaacs, M.; Lange, S.; Milodowski, A.E.; Bosbach, D.; Read, D.; Deissmann, G. Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes. Minerals 2024, 14, 1017. https://doi.org/10.3390/min14101017
Isaacs M, Lange S, Milodowski AE, Bosbach D, Read D, Deissmann G. Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes. Minerals. 2024; 14(10):1017. https://doi.org/10.3390/min14101017
Chicago/Turabian StyleIsaacs, Matthew, Steve Lange, Antoni E. Milodowski, Dirk Bosbach, David Read, and Guido Deissmann. 2024. "Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes" Minerals 14, no. 10: 1017. https://doi.org/10.3390/min14101017
APA StyleIsaacs, M., Lange, S., Milodowski, A. E., Bosbach, D., Read, D., & Deissmann, G. (2024). Retardation of Chlorine-36 by Cementitious Materials Relevant to the Disposal of Radioactive Wastes. Minerals, 14(10), 1017. https://doi.org/10.3390/min14101017