Influence of Particle Size on Flotation Separation of Ilmenite and Forsterite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Micro-Flotation Experiments
2.2.2. Zeta Potential Measurements
2.2.3. Contact Angle Measurements
2.2.4. Particle Size Measurements
2.2.5. SEM and EDS Analysis
2.2.6. DLVO Theoretical
3. Results and Discussion
3.1. Micro-Flotation Experiments
3.2. Zeta Potential Measurements
3.3. Contact Angle Measurements
3.4. Particle Size Measurements
3.5. SEM and EDS Analysis
3.6. DLVO Theoretical Calculation
4. Conclusions
- The content of conventional-sized forsterite (−45 + 25, −25 + 19 μm) has little effect on the floatability of ilmenite in a neutral environment. However, the ilmenite recovery decreases with an increase in the fine forsterite (−19 μm) content. In the mining industry, where the content of forsterite is gradually increasing, particular attention should be paid to variations in the content of fine forsterite (−19 μm) during the flotation production process.
- According to particle size measurements, scanning electron microscopy (SEM), and E-DLVO theoretical calculations, fine forsterite (−19 μm) directly covers the surface of coarse ilmenite (−151 + 74 μm) particles, preventing the ilmenite from being collected and reducing its floatability. On the other hand, aggregates of fine forsterite (−19 μm) enter the ilmenite concentrate together with the ilmenite, resulting in lower ilmenite recovery.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
total interaction energy by DLVO theory, J | |
total interaction energy by E-DLVO theory, J | |
interaction energy due to van der Waals forces, J | |
interaction energy due to electrical double layer effects, J | |
interaction energy due to hydration/hydrophobic effects, J | |
Hamaker constant, J | |
effective Hamaker constant of materials 1 and 2 in medium 3, J | |
radius of particles 1 and 2, m | |
permittivity of free space, 8.854 × 10−12 F·m−1 | |
relative permittivity, for water | |
dimensionless surface potential, | |
zeta potential of particles 1 and 2, V | |
Debye–Hückel parameter, m−1 | |
minimum separation distance between two spheres, m | |
elementary charge, 1.602 × 10−19 C | |
Avogadro number, 6.023 × 1023 mol−1 | |
concentration, mol·m−3 | |
charge number | |
Boltzmann constant, 1.38 × 10−23 J·K−1 | |
temperature, K | |
parameter of polar component of the surface tension of compound i, donating electron or accepting proton | |
parameter of polar component of the surface tension of compound i, donating proton or accepting electron | |
parameter of a polar (Lifshitz–van der Waals) component of the surface tension of compound i |
References
- Fang, S.; Xu, L.; Wu, H.; Tian, J.; Lu, Z.; Sun, W.; Hu, Y. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner. Eng. 2018, 126, 16–23. [Google Scholar] [CrossRef]
- Vásquez, R.; Molina, A. Effects of thermal preoxidation on reductive leaching of ilmenite. Miner. Eng. 2012, 39, 99–105. [Google Scholar] [CrossRef]
- Meng, Q.; Yuan, Z.; Yu, L.; Xu, Y.; Du, Y.; Zhang, C. Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch. Appl. Surf. Sci. 2018, 440, 955–962. [Google Scholar] [CrossRef]
- USGS. Mineral commodity summaries 2023. US Geological Survey; USGS: Reston, VA, USA, 2023; 210p. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Zhou, M.F.; Chen, W.T.; Wang, C.Y.; Prevec, S.A.; Liu, P.P.; Howarth, G.H. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geosci. Front. 2013, 4, 481–502. [Google Scholar] [CrossRef]
- Yang, Y.; Hui, B.; Yan, W.; He, B.; Wang, W. Research on process mineralogy of fine ilmenite in Panxi area. Multipurp. Util. Miner. Resour. 2020, 3, 131–135. [Google Scholar] [CrossRef]
- Hui, B.; Yang, Y.H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology. Multipurp. Util. Miner. Resour. 2020, 4, 126–129. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Solongo, S.K.; Heyes, G.W.; Ilyas, S.; Kim, H. Bubble−particle interactions with hydrodynamics, XDLVO theory, and surface roughness for flotation in an agitated tank using CFD simulations. Miner. Eng. 2020, 152, 106368. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Batkhuyag, A.; Goryachev, B.E. Mineralization Kinetics of Air Bubble in Pyrite Slurry under Dynamic Conditions. J. Min. Sci. 2018, 54, 840–844. [Google Scholar] [CrossRef]
- Goryachev, B.E.; Nikolaev, A.A.; Ils’ina, E.Y. Analysis of flotation kinetics of particles with the controllable hydrophobic behavior. J. Min. Sci. 2010, 46, 72–77. [Google Scholar] [CrossRef]
- Nikolaev, A.A. Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study. Resources 2023, 12, 51. [Google Scholar] [CrossRef]
- Jameson, G.J. The effect of surface liberation and particle size on flotation rate constants. Miner. Eng. 2012, 36–38, 132–137. [Google Scholar] [CrossRef]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Yao, J.; Xue, J.; Li, D.; Fu, Y.; Gong, E.; Yin, W. Effects of fine–coarse particles interaction on flotation separation and interaction energy calculation. Part. Sci. Technol. 2018, 36, 11–19. [Google Scholar] [CrossRef]
- Yao, J.; Yin, W.; Gong, E. Depressing effect of fine hydrophilic particles on magnesite reverse flotation. Int. J. Miner. Process. 2016, 149, 84–93. [Google Scholar] [CrossRef]
- Forbes, E.; Davey, K.J.; Smith, L. Decoupling rehology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp. Miner. Eng. 2014, 56, 136–144. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.; Cao, M.; Liu, Q. Slime coatings in froth flotation: A review. Miner. Eng. 2017, 114, 26–36. [Google Scholar] [CrossRef]
- Eckert, K.; Schach, E.; Gerbeth, G.; Rudolph, M. Carrier Flotation: State of the Art and its Potential for the Separation of Fine and Ultrafine Mineral Particles. Mater. Sci. Forum 2019, 959, 125–133. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Sun, W.; Xu, L. The Effect of Polystyrene on the Carrier Flotation of Fine Smithsonite. Minerals 2017, 7, 52. [Google Scholar] [CrossRef]
- Yang, H.; Tang, Q.; Wang, C.; Zhang, J. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Miner. Eng. 2013, 45, 67–72. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Zhang, G.F.; Feng, Q.M.; Lu, Y.P.; Ou, L.M. Autogenous-carrier flotation of fine ilmenite. Chin. J. Nonferrous Met. 2009, 19, 554–560. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Liu, S.; Deng, J. Influence of particle size on flotation separation of ilmenite, olivine, and pyroxene. Physicochem. Probl. Miner. Process. 2021, 57, 106–117. [Google Scholar] [CrossRef]
- Fan, G.; Cao, Y. The shear flocculation flotation behaviors of micro fine ilmenite and titanaugite. J. China Univ. Min. Technol. 2015, 44, 532–539. [Google Scholar] [CrossRef]
- Lange, A.G.; Skinner, W.M.; Smart, R.S.C. Fine: Coarse particle interactions and aggregation in sphalerite flotation. Miner. Eng. 1997, 10, 681–693. [Google Scholar] [CrossRef]
- Oats, W.J.; Ozdemir, O.; Nguyen, A.V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng. 2010, 23, 413–419. [Google Scholar] [CrossRef]
- Peng, Y.; Bradshaw, D. Mechanisms for the improved flotation of ultrafine pentlandite and its separation from lizardite in saline water. Miner. Eng. 2012, 36–38, 284–290. [Google Scholar] [CrossRef]
- Yan, X.; Wei, L.; Meng, Q.; Wang, J.; Yang, Q.; Zhai, S.; Lu, J. A study on the mechanism of calcium ion in promoting the sedimentation of illite particles. J. Water Process Eng. 2021, 42, 102153. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Li, J.; Weng, L.; Wu, C.; Liu, K. Improvement on combustible matter recovery in coal slime flotation with the addition of sodium silicate. Colloids Surf. A 2020, 603, 125220. [Google Scholar] [CrossRef]
- Liao, Y.; Hao, X.; An, M.; Yang, Z.; Ma, L.; Ren, H. Enhancing low-rank coal flotation using mixed collector of dodecane and oleic acid: Effect of droplet dispersion and its interaction with coal particle. Fuel 2020, 280, 118634. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, J. Hydrophobic aggregation of alumina in surfactant solution. Miner. Eng. 2003, 16, 1167–1172. [Google Scholar] [CrossRef]
- Hartmann, R.; Kinnunen, P.; Illikainen, M. Cellulose-mineral interactions based on the DLVO theory and their correlation with flotability. Miner. Eng. 2018, 122, 44–52. [Google Scholar] [CrossRef]
- Farahat, M.; Hirajima, T.; Sasaki, K.; Doi, K. Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids Surf. B Biointerfaces 2009, 74, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Bu, X.; Xia, W.; Peng, Y.; Yu, H.; Xie, G. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol. 2018, 339, 434–439. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Bu, X.; Ni, C.; Xie, G.; Peng, Y. Investigation on interaction behavior between coarse and fine particles in the coal flotation using focused beam reflectance measurement (FBRM) and particle video microscope (PVM). Sep. Sci. Technol. 2021, 56, 1418–1430. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Tan, J.; Liang, L.; Xie, G. Mechanism of slime coating on coal surface with different metamorphic degrees. Colloids Surf. A 2023, 675, 132038. [Google Scholar] [CrossRef]
- Li, D.; Yin, W.; Liu, Q.; Cao, S.; Sun, Q.; Zhao, C.; Yao, J. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner. Eng. 2017, 114, 74–81. [Google Scholar] [CrossRef]
- Han, H.; Yin, W.; Wang, D.; Zhu, Z.; Yang, B.; Yao, J. New insights into the dispersion mechanism of citric acid for enhancing the flotation separation of fine siderite from hematite and quartz. Colloids Surf. A 2022, 641, 128459. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Yu, H.; Liu, M. Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite. Colloids Surf. A 2021, 626, 127080. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q. Interaction Behavior between Coarse and Fine Particles in the Reverse Flotation of Fluorapatite and Dolomite. Langmuir 2023, 39, 12931–12943. [Google Scholar] [CrossRef]
- Vincent, B. Early (pre-DLVO) studies of particle aggregation. Adv. Colloid Interface Sci. 2012, 170, 56–67. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science: Soft Colloids; Elsevier: Amsterdam, The Netherlands, 2005; Volume 5. [Google Scholar]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of the stability of lyophobic colloids. J. Colloid Sci. 1955, 10, 224–225. [Google Scholar] [CrossRef]
- Schenkel, J.H.; Kitchener, J.A. A test of the Derjaguin-Verwey-Overbeek theory with a colloidal suspension. Trans. Faraday Soc. 1960, 56, 161–173. [Google Scholar] [CrossRef]
- Hogg, R.; Healy, T.W.; Fuerstenau, D.W. Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 1966, 62, 1638–1651. [Google Scholar] [CrossRef]
- Pugh, R.J.; Kitchener, J.A. Theory of selective coagulation in mixed colloidal suspensions. J. Colloid Interface Sci. 1971, 35, 656–664. [Google Scholar] [CrossRef]
- Israelachvili, J.; Pashley, R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature 1982, 300, 341–342. [Google Scholar] [CrossRef]
- Claesson, P.M.; Blom, C.E.; Herder, P.C.; Ninham, B.W. Interactions between water—Stable hydrophobic Langmuir—Blodgett monolayers on mica. J. Colloid Interface Sci. 1986, 114, 234–242. [Google Scholar] [CrossRef]
- Van Oss, C.J. Interfacial Forces in Aqueous Media; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Monopolar surfaces. Adv. Colloid Interface Sci. 1987, 28, 35–64. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Determination of the Hydrophobia Interaction Energy-Application to Separation Processes. Sep. Sci. Technol. 1987, 22, 1–24. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz—Van der Waals and Polar Interactions in Macroscopic Systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Van Oss, C.J.V.; Good, R.J. Surface Tension and the Solubility of Polymers and Biopolymers: The Role of Polar and Apolar Interfacial Free Energies. J. Macromol. Sci. Chem. 1989, 26, 1183–1203. [Google Scholar] [CrossRef]
- van Oss, C.J.; Giese, R.F.; Costanzo, P.M. DLVO and Non-DLVO Interactions in Hectorite. Clays Clay Miner. 1990, 38, 151–159. [Google Scholar] [CrossRef]
- Bergström, L. Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 1997, 70, 125–169. [Google Scholar] [CrossRef]
- Semsari Parapari, P.; Irannajad, M.; Mehdilo, A. Effect of acid surface dissolution pretreatment on the selective flotation of ilmenite from olivine and pyroxene. Int. J. Miner. Process. 2017, 167, 49–60. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, X.; Xu, L.; Wang, D.; Xue, K.; Jing, L.; Meng, J. Selective flotation separation of spodumene from feldspar using a novel mixed anionic/cationic collector NaOL/ND13. Miner. Eng. 2023, 201, 108152. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Xu, L.; Xue, K.; Zhang, X.; Shi, X.; Liu, C.; Meng, J. Synthesis and utilization of a novel oleate hydroxamic acid collector for the flotation separation of bastnaesite from barite. Miner. Eng. 2023, 204, 108405. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Wang, W.; Deng, J.; Chen, B.; Yan, W.; Xiong, S.; Huang, Y.; Liu, J. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector. Miner. Eng. 2015, 72, 1–9. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Z.; Yang, B.; Yin, W.; Drelich, J.W. Nano-scaled roughness effect on air bubble-hydrophilic surface adhesive strength. Colloids Surf. A 2020, 603, 125228. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Y.; Zhu, Z.; Yin, W.; Asawa, K.; Choi, C.H.; Drelich, J.W. Contact Line and Adhesion Force of Droplets on Concentric Ring-Textured Hydrophobic Surfaces. Langmuir 2020, 36, 2622–2628. [Google Scholar] [CrossRef]
- Yin, W.; Wang, D.; Drelich, J.W.; Yang, B.; Li, D.; Zhu, Z.; Yao, J. Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation. Miner. Eng. 2019, 139, 105873. [Google Scholar] [CrossRef]
Sample | TiO2 | Fe2O3 | CaO | SiO2 | Al2O3 | MgO |
---|---|---|---|---|---|---|
Ilmenite | 50.64 | 46.48 | 0.19 | 0.56 | 0.30 | 4.13 |
Forsterite | 0.01 | 9.89 | 0.13 | 40.00 | 0.14 | 49.30 |
Minerals | Ilmenite | Forsterite | ||
---|---|---|---|---|
Without NaOL | With NaOL | Without NaOL | With NaOL | |
DI water | 30.22 | 88.15 | 34.72 | 87.63 |
Glycerin | 39.72 | 51.93 | 27.70 | 46.97 |
Minerals | A (10−20 J) | (mJ/m2) | (mJ/m2) | ||
---|---|---|---|---|---|
Without NaOL | With NaOL | Without NaOL | With NaOL | ||
Ilmenite | 13.56 | 89.80 | 162.07 | 198.49 | 0.780 |
Forsterite | 18.59 | 123.14 | 180.85 | 145.77 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yang, Y.; Wang, D.; Yan, W.; Li, W. Influence of Particle Size on Flotation Separation of Ilmenite and Forsterite. Minerals 2024, 14, 1041. https://doi.org/10.3390/min14101041
Zhang S, Yang Y, Wang D, Yan W, Li W. Influence of Particle Size on Flotation Separation of Ilmenite and Forsterite. Minerals. 2024; 14(10):1041. https://doi.org/10.3390/min14101041
Chicago/Turabian StyleZhang, Senpeng, Yaohui Yang, Donghui Wang, Weiping Yan, and Weishi Li. 2024. "Influence of Particle Size on Flotation Separation of Ilmenite and Forsterite" Minerals 14, no. 10: 1041. https://doi.org/10.3390/min14101041
APA StyleZhang, S., Yang, Y., Wang, D., Yan, W., & Li, W. (2024). Influence of Particle Size on Flotation Separation of Ilmenite and Forsterite. Minerals, 14(10), 1041. https://doi.org/10.3390/min14101041