The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range
Abstract
:1. Introduction
2. Occurrence
3. Materials and Methods
3.1. Chemical Composition
3.2. Low-Temperature Single-Crystal X-Ray Diffraction Analysis (LT SCXRD)
3.3. High-Temperature In Situ Powder X-Ray Diffraction Analysis (HTXRD)
3.4. Infrared Spectroscopy
3.5. Raman Spectroscopy
4. Results
4.1. Chemical Composition
4.2. Crystal Structure
4.3. Phase Evolution upon Temperature
4.4. Thermal Expansion
4.5. Infrared Spectroscopy
4.6. Raman Spectroscopy
Boussingaultite | Ammonium Leonite | Amor- Phous | Efremovite | MgSO4 | Phase | ||||
---|---|---|---|---|---|---|---|---|---|
Raman Band Maxima (cm−1) at Temperatures (°C) | |||||||||
−190 | −110 | 10 | 80 | 95 | 110 | 120 | 155 | 200 | Band Assignment |
3432 | 3444 | 3436 | 3438 | 3439 | 3439 | – | – | – | ν(H2O) |
3390 | 3388 | 3389 | 3391 | 3396 | 3405 | – | – | – | |
3364 | 3363 | 3364 | 3364 | 3363 | 3372 | – | – | – | |
3339 | 3338 | 3339 | 3339 | n.i.* | n.i. | – | – | – | |
3309 | 3308 | 3309 | 3309 | 3319 | n.i. | – | – | – | |
3279 | 3278 | 3273 | 3276 | 3279 | 3268 | – | – | – | |
3239 | 3239 | 3236 | 3237 | 3241 | n.i. | – | – | – | ν(NH4) |
3202 | 3199 | 3200 | 3199 | 3204 | n.i. | – | – | – | |
3152 | 3150 | 3151 | 3152 | 3155 | 3166 | – | – | – | ν(H2O) |
3130 | 3128 | 3127 | 3127 | 3131 | n.i. | – | – | – | ν(NH4) |
3109 | 3110 | 3111 | 3110 | 3118 | n.i. | – | – | – | ν(H2O) |
3091 | 3091 | 3089 | 3090 | 3085 | 3076 | – | – | – | |
3063 | 3068 | 3067 | 3066 | n.i. | n.i. | – | – | – | ν(NH4) |
3014 | 3024 | 3022 | 3021 | n.i. | n.i. | – | – | – | |
2925 | n.i. | n.i. | n.i. | n.i. | n.i. | – | – | – | |
2872 | n.i. | n.i. | n.i. | n.i. | n.i. | – | – | – | |
2844 | n.i. | n.i. | n.i. | n.i. | n.i. | – | – | – | |
1766 | 1766 | 1769 | 1770 | 1765 | n.i. | – | – | – | ν4(NH4) + δ(HOH) |
1714 | 1712 | 1713 | 1706 | 1698 | 1701 | – | – | – | |
1678 | 1676 | 1679 | 1679 | n.i. | n.i. | – | – | – | |
1423 | 1429 | 1431 | 1433 | n.i. | n.i. | – | n.i. | – | ν4(NH4) |
1144 | 1139 | 1139 | 1136 | 1200 | n.i. | – | n.i. | n.i. | ν3(SO4) |
1091 | 1091 | 1093 | 1094 | 1102 | 1100 | – | n.i. | n.i. | |
1070 | 1069 | 1071 | 1070 | n.i. | n.i. | – | n.i. | n.i. | |
1059 | 1062 | 1062 | 1060 | n.i. | n.i. | – | n.i. | n.i. | |
982 | 982 | 983 | 982 | 981 | 996 | 1010 | 1045 | 1053 | ν1(SO4) |
803 | 797 | 800 | 798 | n.i. | – | – | – | – | ν(H2O) |
722 | 719 | 717 | 716 | n.i. | – | – | – | – | |
630 | 627 | 627 | 626 | 639 | n.i. | 642 | n.i. | n.i. | ν4(SO4) |
617 | 617 | 617 | 618 | 612 | 610 | 617 | n.i. | n.i. | |
610 | 610 | 610 | 610 | n.i. | n.i. | – | n.i. | n.i. | |
592 | 583 | 583 | 583 | n.i. | n.i. | – | n.i. | n.i. | |
552 | 557 | 558 | 556 | n.i. | n.i. | – | – | – | ν(H2O) |
465 | 463 | 461 | 459 | 464 | 463 | 479 | n.i. | n.i. | ν2(SO4) |
451 | 451 | 451 | 450 | 446 | 446 | 448 | n.i. | n.i. | |
391 | 387 | n.i. | n.i. | n.i. | n.i. | – | – | – | ν(H2O) |
368 | 367 | 365 | 361 | n.i. | n.i. | – | – | – | |
322 | 320 | n.i. | n.i. | n.i. | n.i. | – | – | – | |
301 | 306 | 306 | 306 | n.i. | n.i. | – | – | – | |
256 | 255 | 254 | 253 | n.i. | n.i. | – | n.i. | n.i. | Lattice mode |
227 | 226 | 224 | 221 | n.i. | n.i. | – | n.i. | n.i. | |
201 | 195 | 191 | 189 | n.i. | n.i. | – | n.i. | n.i. | |
191 | 191 | 185 | 183 | n.i. | n.i. | – | n.i. | n.i. | |
172 | 174 | 172 | 173 | n.i. | n.i. | – | n.i. | n.i. | |
164 | 163 | 159 | 158 | n.i. | n.i. | – | n.i. | n.i. | |
137 | 133 | 128 | 127 | n.i. | n.i. | – | n.i. | n.i. | |
129 | 129 | 125 | 122 | n.i. | n.i. | – | n.i. | n.i. |
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosi, F.; Belardi, G.; Ballirano, P. Structural features in Tutton’s salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn. Am. Mineral. 2009, 94, 74–82. [Google Scholar] [CrossRef]
- Nalbandyan, V.B. Thallium manganese sulfate hexahydrate, a missing Tutton’s salt, and a brief review of the entire family. Powder Diffr. 2008, 23, 52–55. [Google Scholar] [CrossRef]
- Shimobayashi, N.; Ohnishi, M.; Miura, H. Ammonium sulfate minerals from Mikasa, Hokkaido, Japan: Boussingaultite, godovikovite, efremovite and tschermigite. J. Mineral. Petrol. Sci. 2011, 106, 158–163. [Google Scholar] [CrossRef]
- Bechi, E. Lavori eseguiti nel laboratorio di Chimica del R. Istituto Tecnico di Forenze. Continuazione degli Atti Della R. Accad. Econ.–Agrar. Georg. Firenze 1863, 10, 201–206. [Google Scholar]
- Gatta, G.D.; Guastella, G.; Guastoni, A.; Gagliardi, V.; Cañadillas–Delgado, L.; Fernandez-Diaz, M.T. A neutron diffraction study of boussingaultite, (NH4)2Mg(H2O)6(SO4)2. Am. Mineral. 2023, 108, 354–361. [Google Scholar] [CrossRef]
- Garavelli, A.; Grasso, M.F.; Vurro, F. Mineral occurrence and depositional processes at Baia di Levante area (Vulcano Island, Italy). Mineral. Petrogr. Acta 1996, 39, 251–261. [Google Scholar]
- Ciesielczuk, J.; Żaba, J.; Bzowska, G.; Gaidzik, K.; Głogowska, M. Sulphate efflorescences at the geyser near Pinchollo, southern Peru. J. S. Am. Earth Sci. 2013, 42, 186–193. [Google Scholar] [CrossRef]
- Balić–Žunić, T.; Garavelli, A.; Jakobsson, S.P.; Jonasson, K.; Katerinopoulos, A.; Kyriakopoulos, K.; Acquafredda, P. Fumarolic minerals: An overview of active European volcanoes. In Updates in Volcanology—From Volcano Modelling to Volcano Geology; InTech: London, UK, 2016; pp. 267–322. [Google Scholar]
- Zhitova, E.S.; Siidra, O.I.; Shilovskikh, V.V.; Belakovsky, D.I.; Nuzhdaev, A.A.; Ismagilova, R.M. Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, a new mineral from the Severo–Kambalny geothermal field, Kamchatka, Russia. Mineral. Mag. 2018, 82, 1057–1077. [Google Scholar] [CrossRef]
- Chesnokov, B.; Kotrly, M.; Nisanbajev, T. Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken-eine reiche Mineralienküche. Mineralien-Welt 1998, 9, 54–63. [Google Scholar]
- Parafiniuk, J.; Kruszewski, Ł. Ammonium minerals from burning coal–dumps of the Upper Silesian Coal Basin (Poland). Geol. Quart. 2009, 53, 341–356. [Google Scholar]
- Kruszewski, Ł. Secondary sulphate minerals from Bhanine Valley coals (South Lebanon): A crystallochemical and geochemical study. Geol. Quart. 2019, 63, 65–87. [Google Scholar] [CrossRef]
- Mysen, B. Nitrogen in the Earth: Abundance and transport. Prog. Earth Planet. Sci. 2019, 6, 38. [Google Scholar] [CrossRef]
- Nachlas, W.O.; Bushmaker, S.; Sasson, E. X-ray Spectroscopy of Nitrogen in Jarosite, Ammoniojarosite, and other NH4-Bearing Sulfate Minerals. Microsc. Microanal. 2023, 29, 862–864. [Google Scholar] [CrossRef]
- Britvin, S.N.; Vereshchagin, O.; Vlasenko, N.; Krzhizhanovskaya, M.; Ivanova, M. Meteoritic Tutton salt, a naturally inspired reservoir of cometary and asteroidal ammonium. arXiv 2024, arXiv:2407.20997. [Google Scholar]
- Todd, Z.R. Sources of Nitrogen–, Sulfur–, and Phosphorus–containing feedstocks for prebiotic chemistry in the planetary environment. Life 2022, 12, 1268. [Google Scholar] [CrossRef]
- Johnson, B.; Goldblatt, C. The nitrogen budget of Earth. Earth Sci. Res. 2015, 148, 150–173. [Google Scholar] [CrossRef]
- Zolotarev, A.A.; Zhitova, E.S.; Krzhizhanovskaya, M.G.; Rassomakhin, M.A.; Shilovskikh, V.V.; Krivovichev, S.V. Crystal chemistry and high–temperature behaviour of ammonium phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk Coal Basin. Minerals 2019, 9, 486. [Google Scholar] [CrossRef]
- Stern, J.C.; Sutter, B.; Freissinet, C.; Navarro–González, R.; McKay, C.P.; Archer, P.D., Jr.; Buch, A.; Brunner, A.E.; Coll, P.; Eigenbrode, J.L.; et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl. Acad. Sci. USA 2015, 112, 4245–4250. [Google Scholar] [CrossRef]
- Culka, A.; Jehlička, J.; Němec, I. Raman and infrared spectroscopic study of boussingaultite and nickelboussingaultite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 420–423. [Google Scholar] [CrossRef]
- Sergeeva, A.V.; Zhitova, E.S.; Bocharov, V.N. Infrared and Raman spectroscopy of tschermigite, (NH4)Al(SO4)2·12H2O. Vib. Spectrosc. 2019, 105, 102983. [Google Scholar] [CrossRef]
- Sergeeva, A.V.; Zhitova, E.S.; Nuzhdaev, A.A.; Zolotarev, A.A.; Bocharov, V.N.; Ismagilova, R.M. Infrared and Raman spectroscopy of ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12·(H2O)18. Minerals 2020, 10, 781. [Google Scholar] [CrossRef]
- Culka, A.; Košek, F.; Drahota, P.; Jehlička, J. Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states–Significance for Mars studies. Icarus 2014, 243, 440–453. [Google Scholar] [CrossRef]
- Košek, F.; Culka, A.; Jehlička, J. Field identification of minerals at burning coal dumps using miniature Raman spectrometers. J. Raman Spectrosc. 2017, 48, 1494–1502. [Google Scholar]
- Košek, F.; Culka, A.; Rousaki, A.; Vandenabeele, P.; Jehlička, J. Raman spectroscopy of anhydrous and hydrated aluminum sulfates: Experience from burning coal heaps. J. Raman Spectrosc. 2022, 53, 1959–1973. [Google Scholar] [CrossRef]
- Kosova, D.A.; Druzhinina, A.I.; Tiflova, L.A.; Monayenkova, A.S.; Uspenskaya, I.A. Thermodynamic properties of ammonium magnesium sulfate hexahydrate (NH4)2Mg(SO4)2·6H2O. J. Chem. Thermodyn. 2018, 118, 206–214. [Google Scholar] [CrossRef]
- Shcherbakova, Y.P.; Bazhenova, L.F.; Chesnokov, B.V. Godovikovite—NH4(Al,Fe)(SO4)2 a new ammonium–bearing sulfate. Zap. RMO (Proc. Russ. Mineral. Soc.) 1988, 117, 208–211. (In Russian) [Google Scholar]
- Shcherbakova, Y.P.; Bazhenova, L.F. Efremovite (NH4)2Mg2(SO4)3—Ammonium analogue of langbeinite—A new mineral. Zap. RMO (Proc. Russ. Mineral. Soc.) 1989, 118, 84–87. (In Russian) [Google Scholar]
- Chesnokov, B.V.; Shcherbakova, E.P. Mineralogy of the Burnt Dumps of the Chelyabinsk Coal Basin (an Experience in Technogenic Mineralogy); Nauka: Moscow, Russia, 1991; pp. 1–152. (In Russian) [Google Scholar]
- Shcherbakova, Y.P. Ammonium-Containing Sulfates from the Kopeisk Coal Basin. New and Poorly Studied Minerals and Mineral Associations of the Urals; UC USSR Academy of Sciences: Sverdlovsk, Russia, 1986; pp. 209–211. (In Russian) [Google Scholar]
- Chesnokov, B.V.; Shcherbakova, E.P.; Nishanbaev, T.P. Minerals of Burnt Dumps of the Chelyabinsk Coal Basin; Ural Branch of RAS: Miass, Russia, 2008; pp. 1–139. (In Russian) [Google Scholar]
- CrysAlisPro Software System, version 1.171.39.44; Rigaku Oxford Diffraction: Oxford, UK, 2015.
- Sheldrick, G.M. Crystal Structure Refinement with It SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. It OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three–dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- BRUKER-AXS Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker-AXS: Karlsruhe, Germany, 2009.
- Bubnova, R.S.; Firsova, V.A.; Filatov, S.K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Phys. Chem. 2013, 39, 347–350. [Google Scholar] [CrossRef]
- Shendrik, R.Y.; Plechov, P.Y.; Smirnov, S.Z. ArDI—The system of mineral vibrational spectroscopy data processing and analysis. New Data Miner. 2024, 58, 26–35. (In Russian) [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–16. [Google Scholar]
- Zhitova, E.S.; Sergeeva, A.V.; Nuzhdaev, A.A.; Krzhizhanovskaya, M.G.; Chubarov, V.M. Tschermigite from thermal fields of Southern Kamchatka: High-temperature transformation and peculiarities of IR-spectrum. Zap. RMO (Proc. Russ. Mineral. Soc.) 2019, 148, 100–116. [Google Scholar]
- Smith, D.H.; Seshadri, K.S. Infrared spectra of Mg2Ca(SO4)3, MgSO4, hexagonal CaSO4, and orthorhombic CaSO4. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1999, 55, 795–805. [Google Scholar] [CrossRef]
- Kroumova, E.; Aroyo, M.I.; Perez-Mato, J.M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondratschek, H. Bilbao crystallographic server: Useful databases and tools for phase-transition studies. Phase Transit. 2003, 76, 155–170. [Google Scholar] [CrossRef]
- Wang, F.; Shou, J.; Zhang, Y. Micro–Raman investigations on the structures of the surface and the inner of MgSO4 droplets. Chin. Sci. Bull. 2008, 53, 2414–2416. [Google Scholar] [CrossRef]
- Pankrushina, E.A.; Votyakov, S.L.; Shchapova, Y.V. Statistical approaches in the analysis of in situ thermo-Raman spectroscopic data for gypsum as a basis for studying dehydration and phase transformations in crystalline hydrates. J. Raman Spectrosc. 2021, 52, 877–889. [Google Scholar] [CrossRef]
Constituent | Mean | Range | Atoms per Formula Unit for S = 2 | Probe Standard |
---|---|---|---|---|
(NH4)2Omeas (1) | 12.90 | 11.97–15.39 | 1.77 | BN (N) |
[(NH4)2Ocalc] (2) | 14.55 | – | 2.00 | – |
MgO | 11.47 | 11.29–12.64 | 1.02 | MgO (Mg) |
MnO | 0.26 | 0.19–0.37 | 0.01 | Mn (Mn) |
FeO | 0.30 | 0.27–0.34 | 0.01 | FeS2 (Fe) |
SO3 | 44.85 | 44.64–45.95 | 2.00 | FeS2 (S) |
H2O (3) | 30.27 | – | 6.00 | – |
Total | 100.05 [101.70] |
Crystal System | Monoclinic | |
Space group | P21/a | |
Temperature, °C | –173 | 52 |
a, Å | 9.1992(5) | 9.2964(12) |
b, Å | 12.4049(7) | 12.5825(9) |
c, Å | 6.2590(3) | 6.1942(7) |
β, ° | 107.026(6) | 107.106(13) |
Volume, Å3 | 682.94(7) | 692.50(14) |
Z | 2 | |
ρcalc, g/cm3 | 1.754 | 1.883 |
μ, mm−1 | 0.508 | 0.520 |
F(000) | 380.0 | 412.0 |
Radiation | MoKα (λ = 0.71073) | |
2Θ range for data collection, ° | from 6.57 to 65.228 | from 7.608 to 65.046 |
Index ranges | −13 ≤ h ≤ 8, −16 ≤ k ≤ 18, −19 ≤ l ≤ 9 | −13 ≤ h ≤ 11, −18 ≤ k ≤ 17, −8 ≤ l ≤ 8 |
Reflections collected | 4772 | 4880 |
Independent reflections [Rint, Rsigma] | 2227 [Rint = 0.0362, Rsigma = 0.0548] | 2162 [Rint = 0.0700, Rsigma = 0.1102] |
Data/restraints/parameters | 2227/0/128 | 2162/0/128 |
Goodness-of-fit on F2 | 1.082 | 1.053 |
Final R indexes [I ≥ 2σ(I)] | R1 = 0.0392, wR2 = 0.0824 | R1 = 0.0626, wR2 = 0.1232 |
Final R indexes [all data] | R1 = 0.0556, wR2 = 0.0920 | R1 = 0.1378, wR2 = 0.1794 |
Largest diff. peak/hole/e Å−3 | 0.55/−0.61 | 0.48/−0.69 |
Parameter | −173 °C | 52 °C |
---|---|---|
<Mg–O>, Å | 2.068 | 2.063 |
<S–O>, Å | 1.479 | 1.468 |
<N–H>, Å | 0.887 | 0.852 |
VMg, Å3 | 11.78 | 11.70 |
Vsulf, Å3 | 1.66 | 1.62 |
Vamm, Å3 | 0.36 | 0.31 |
Distortion index for Mg(H2O)6 | 0.0057 | 0.0066 |
Distortion index for SO4 | 0.0059 | 0.0055 |
Distortion index for NH4 | 0.0357 | 0.0640 |
T, °C | α11 | α22 | α33 | αV |
---|---|---|---|---|
–123 | 52(2) | 68(2) | –89(3) | 31(3) |
60 | 53(2) | 67(2) | 15(1) | 136(3) |
IR Band Maxima (cm−1) at Temperatures (°C) | Band Assignment | |||||
---|---|---|---|---|---|---|
Boussingaultite | Efremovite | MgSO4 | ||||
RT | 150 | 200 | 250 | 300 | 400 | |
3464 | 3464 ↓ | - | - | - | - | O–H stretching |
3350 | 3350 ↓ | - | - | - | - | O–H stretching |
3272 | 3271 | 3267 | 3266 | 3265 ↓ | - | N–H stretching |
3233 | 3233 ↓ | - | - | - | - | O–H stretching |
3189 | 3189 | 3189 | 3188 | 3187 ↓ | - | N–H stretching |
3155 | 3155 ↓ | - | - | - | - | O–H stretching |
3124 | 3125 | 3125 | 3127 | 3130 ↓ | - | N–H stretching |
3077 | 3075 | 3075 | 3074 | 3071 ↓ | - | N–H stretching |
3040 | 3040 ↓ | - | - | - | - | O–H stretching |
3012 | 3012 ↓ | - | - | - | - | O–H stretching |
2980 | 2980 | 2980 | 2980 | 2980 ↓ | - | N–H stretching |
2920 | 2922 | 2920 | 2920 | 2920 ↓ | - | N–H stretching |
2839 | 2840 | 2842 | 2844 | 2846 ↓ | - | N–H stretching |
1660 | 1660 ↓ | - | - | - | - | H–O–H bending |
1468 | 1468 ↓ | - | - | - | - | H–N–H bending * |
1423 | 1420 | 1418 ↓ | 1418 ↓ | 1414 ↓ | - | H–N–H bending |
- | - | - | - | 1167 w | 1167 | v3 (SO4) |
1140 | 1140 | 1140 | 1140 | 1140 | 1140 | v3 (SO4) |
1060 | 1083 1125 w | 1125 | 1125 | 1125 | - | v3 (SO4) |
981 | 981 1040 w | 1040 | 1040 | 1040 | 1062 | v1 (SO4) |
- | - | - | - | - | 1012 | v1 (SO4) |
- | 880 | 880 | - | - | - | H–O–H libration |
- | - | 892 | - | - | - | H–O–H libration |
- | - | 657 | 657 | 657 | 680 700 | v4 (SO4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitova, E.S.; Sheveleva, R.M.; Zolotarev, A.A.; Shendrik, R.Y.; Pankrushina, E.A.; Turovsky, K.A.; Avdontceva, M.S.; Krzhizhanovskaya, M.G.; Vlasenko, N.S.; Zolotarev, A.A.; et al. The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range. Minerals 2024, 14, 1052. https://doi.org/10.3390/min14101052
Zhitova ES, Sheveleva RM, Zolotarev AA, Shendrik RY, Pankrushina EA, Turovsky KA, Avdontceva MS, Krzhizhanovskaya MG, Vlasenko NS, Zolotarev AA, et al. The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range. Minerals. 2024; 14(10):1052. https://doi.org/10.3390/min14101052
Chicago/Turabian StyleZhitova, Elena S., Rezeda M. Sheveleva, Andrey A. Zolotarev, Roman Yu. Shendrik, Elizaveta A. Pankrushina, Konstantin A. Turovsky, Margarita S. Avdontceva, Maria G. Krzhizhanovskaya, Natalia S. Vlasenko, Anatoly A. Zolotarev, and et al. 2024. "The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range" Minerals 14, no. 10: 1052. https://doi.org/10.3390/min14101052
APA StyleZhitova, E. S., Sheveleva, R. M., Zolotarev, A. A., Shendrik, R. Y., Pankrushina, E. A., Turovsky, K. A., Avdontceva, M. S., Krzhizhanovskaya, M. G., Vlasenko, N. S., Zolotarev, A. A., Rassomakhin, M. A., & Krivovichev, S. V. (2024). The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range. Minerals, 14(10), 1052. https://doi.org/10.3390/min14101052