Trace Element Geochemical Characteristics of Plants and Their Role in Indicating Concealed Ore Bodies outside the Shizhuyuan W–Sn Polymetallic Deposit, Southern Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Geology of the Study Area
2.3. Sample Collection and Preparation
2.4. Analysis of Samples
2.5. Quality Control and Assessment
2.6. Data Analysis
3. Results
3.1. Trace Element Characteristics in Plants
3.1.1. Optimal Sampling Position for Different Plants
3.1.2. Characteristics of Soil Trace Element Uptake by Different Plants
3.1.3. Trace Element Indicator Characteristics of Different Plants
3.1.4. Statistics on Indicator Plant Geochemical Parameters
3.2. Multivariate Statistical Analyses
3.2.1. R-Type Cluster Analysis
3.2.2. Factor Analysis
4. Discussion
4.1. Factors Influencing Trace Element Content in Plants
4.2. Result Validation Based on Mineralization and Geological Evidence
4.3. Limitations of the Study and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, P.; Yuan, S.; Mao, J.; Yuan, Y.; Zhao, H.; Zhang, D.; Shuang, Y. Constraints on the Timing and Genetic Link of the Large-Scale Accumulation of Proximal W–Sn–Mo–Bi and Distal Pb–Zn–Ag Mineralization of the World-Class Dongpo Orefield, Nanling Range, South China. Ore Geol. Rev. 2018, 95, 1140–1160. [Google Scholar] [CrossRef]
- Yan, J.; Lü, Q.; Luo, F.; Cheng, S.; Zhang, K.; Zhang, Y.; Xu, Y.; Zhang, C.; Liu, Z.; Ruan, S.; et al. A Gravity and Magnetic Study of Lithospheric Architecture and Structures of South China with Implications for the Distribution of Plutons and Mineral Systems of the Main Metallogenic Belts. J. Asian Earth Sci. 2021, 221, 104938. [Google Scholar] [CrossRef]
- Wang, K.; Zhai, D.; Williams-Jones, A.E.; Li, D.; Liu, J. Discrete Late Jurassic Sn Mineralizing Events in the Xianghualing Ore District, South China: Constraints from Cassiterite and Garnet U-Pb Geochronology. Am. Miner. 2023, 108, 1384–1398. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, K.; Zhang, G.; Ding, R.; Wang, J.; Cheng, Y.; Jiang, G. A New Method of Searching for Concealed Au Deposits by Using the Spectrum of Arid Desert Plant Species. J. Arid Land 2021, 13, 1183–1198. [Google Scholar] [CrossRef]
- Krasavtseva, E.; Maksimova, V.; Slukovskaya, M.; Ivanova, T.; Mosendz, I.; Elizarova, I. Accumulation and Translocation of Rare Trace Elements in Plants near the Rare Metal Enterprise in the Subarctic. Toxics 2023, 11, 898. [Google Scholar] [CrossRef] [PubMed]
- Rasti, S.; Rajabzadeh, M.A.; Khosravi, A.R. Controlling Factors on Nickel Uptake by Plants Growing on Ni-Laterites: A Case Study in Biogeochemical Exploration from the Mazayejan Area, SW Iran. J. Geochem. Explor. 2020, 217, 106594. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, K.; Ding, R.; Wang, J.; Cheng, Y.; Jiang, G.; Ma, K. Absorption and Aggregation Characteristics and Changes in the Reflectance Spectrum of an Arid Desert Plant under Gold, Copper, Zinc and Nickel Stress. Nat. Resour. Res. 2021, 30, 2715–2731. [Google Scholar] [CrossRef]
- Dunn, C.E.; Christie, A.B. Tree Ferns and Tea Trees in Biogeochemical Exploration for Epithermal Au and Ag in New Zealand. GEEA 2020, 20, 299–314. [Google Scholar] [CrossRef]
- Prathap, A.; Shaikh, W.A.; Baudhh, K.; Chakraborty, S. Phyto-Management Potential of Naturally Thriving Plants on the Metal Contaminated Overburden Dump of Coal Mines: A Study from Jharkhand, India. Bioremediation J. 2023, 27, 290–300. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kereszturi, G.; Pullanagari, R.; Durance, P.; Ashraf, S.; Anderson, C. Mineral Prospecting from Biogeochemical and Geological Information Using Hyperspectral Remote Sensing-Feasibility and Challenges. J. Geochem. Explor. 2022, 232, 106900. [Google Scholar] [CrossRef]
- Anand, R.R.; Cornelius, M.; Phang, C. Use of Vegetation and Soil in Mineral Exploration in Areas of Transported Overburden, Yilgarn Craton, Western Australia: A Contribution towards Understanding Metal Transportation Processes. GEEA 2007, 7, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.; Torppa, J.; Wäli, P.R.; Sutinen, R. Biogeochemical Anomaly Response of Circumboreal Shrubs and Juniper to the Juomasuo Hydrothermal Au-Co Deposit in Northern Finland. Appl. Geochem. 2018, 98, 141–151. [Google Scholar] [CrossRef]
- Wolff, K.; Hill, S.M.; Tiddy, C.; Giles, D.; Smernik, R.J. Biogeochemical Expression of Buried Iron-Oxide-copper-gold (IOCG) Mineral Systems in Mallee Eucalypts on the Yorke Peninsula, Southern Olympic Domain; South Australia. J. Geochem. Explor. 2018, 185, 139–152. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Gholizadeh, F.; Casali, J.; Hao, C.; Cavallin, H.E.; Van Loon, L.L.; Banerjee, N.R. Application of Multivariate Data Analysis to Biogeochemical Exploration at the Twin Lakes Deposit, Monument Bay Gold Project, Manitoba, Canada. Chem. Geol. 2022, 593, 120739. [Google Scholar] [CrossRef]
- Reimann, C.; Englmaier, P.; Flem, B.; Eggen, O.A.; Finne, T.E.; Andersson, M.; Filzmoser, P. The Response of 12 Different Plant Materials and One Mushroom to Mo and Pb Mineralization along a 100-Km Transect in Southern Central Norway. GEEA 2018, 18, 204–215. [Google Scholar] [CrossRef]
- Mou, N.; Wang, G.; Sun, X. Identification of Geochemical Anomalies Related to Mineralization: A Case Study from Porphyry Copper Deposits in the Qulong-Jiama Mining District of Tibet, China. J. Geochem. Explor. 2023, 244, 107126. [Google Scholar] [CrossRef]
- Liu, T.; Liang, B.; Duan, J.; Xu, Z.; Jiang, H.; Wang, Q. Geochemical characteristics of Rhododendron nivale Hook. f. and its indication forconcealed Lithium deposits in Jiajikarare metal mining area. Geol. J. China Univ. 2022, 28, 32–39. [Google Scholar]
- Song, C.; Song, W.; Ding, R.; Lei, L. Phytogeochemical characteristics of Seriphidium terrae-albae (Krasch) Poljak in the Metallic ore deposits in North part of East Junggar Desert Area, Xinjiang and their prospecting significance. Geotecton. Metallog. 2017, 41, 122–132. [Google Scholar]
- Johnsen, A.R.; Thomsen, T.B.; Thaarup, S.M. Test of Vegetation-Based Surface Exploration for Detection of Arctic Mineralizations: The Deep Buried Kangerluarsuk Zn-Pb-Ag Anomaly. J. Geochem. Explor. 2021, 220, 106665. [Google Scholar] [CrossRef]
- Mukube, P.; Hitzman, M.; Machogo-Phao, L.; Syampungani, S. Geochemistry of Terrestrial Plants in the Central African Copperbelt: Implications for Sediment Hosted Copper-Cobalt Exploration. Minerals 2024, 14, 294. [Google Scholar] [CrossRef]
- Ma, S.; Cao, J.; Liang, H. A Study of Au-Bearing-Nanoparticle-Enriched Plants from the Concealed Gold Deposits and Their Prospecting Significance. Ore Geol. Rev. 2024, 165, 105910. [Google Scholar] [CrossRef]
- Wu, S.; Mao, J.; Yuan, S.; Dai, P.; Wang, X. Mineralogy, Fluid Inclusion Petrography, and Stable Isotope Geochemistry of Pb–Zn–Ag Veins at the Shizhuyuan Deposit, Hunan Province, Southeastern China. Miner. Depos. 2018, 53, 89–103. [Google Scholar] [CrossRef]
- Yuan, J.; Hou, Q.; Yang, Z.; Hu, Z.; Yu, T. LA-ICP-MS Analysis of Minerals from the Shizhuyuan W-Polymetallic Deposit, South China: Implications for Mineralization of Pb, W, Mo and Bi. Minerals 2020, 10, 748. [Google Scholar] [CrossRef]
- Du, Y.; Tian, Z.; Zhao, Y.; Wang, X.; Ma, Z.; Yu, C. Exploring the Accumulation Capacity of Dominant Plants Based on Soil Heavy Metals Forms and Assessing Heavy Metals Contamination Characteristics near Gold Tailings Ponds. J. Environ. Manag. 2024, 351, 119838. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-L.; Wang, R.-C.; Yuan, S.-D.; Wu, S.-H.; Yin, B. Geochronological and Geochemical Constraints on the Petrogenesis and Geodynamic Setting of the Qianlishan Granitic Pluton, Southeast China. Miner. Petrol. 2015, 109, 253–282. [Google Scholar] [CrossRef]
- Chen, B.; Ma, X.; Wang, Z. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. J. Asian Earth Sci. 2014, 93, 301–314. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Sun, W.; Ireland, T.; Tian, X.; Hu, Y.; Yang, W.; Chen, C.; Xu, D. Generation of Late Mesozoic Qianlishan A 2 -Type Granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn Mineralization and Tectonic Evolution. Lithos 2016, 266–267, 435–452. [Google Scholar] [CrossRef]
- Dunn, C.E. New Perspectives on Biogeochemical Exploration. In Proceedings of the Exploration 07, Toronto, ON, Canada, 9–12 September 2007; Milkereit, B., Ed.; Volume 7, pp. 249–261. [Google Scholar]
- Adamo, P.; Iavazzo, P.; Albanese, S.; Agrelli, D.; De Vivo, B.; Lima, A. Bioavailability and Soil-to-Plant Transfer Factors as Indicators of Potentially Toxic Element Contamination in Agricultural Soils. Sci. Total Environ. 2014, 500–501, 11–22. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Liu, B.; Wu, Q.-H.; Chen, S.-F.; Kong, H.; Li, H.; Elatikpo, S.M. Trace Element Geochemistry, Oxygen Isotope and U–Pb Geochronology of Multistage Scheelite: Implications for W-Mineralization and Fluid Evolution of Shizhuyuan W–Sn Deposit, South China. J. Geochem. Explor. 2023, 248, 107192. [Google Scholar] [CrossRef]
- McMartin, I.; Dredge, L.A.; Grunsky, E.; Pehrsson, S. Till Geochemistry in West-Central Manitoba: Interpretation of Provenance and Mineralization Based on Glacial History and Multivariate Data Analysis. Econ. Geol. 2016, 111, 1001–1020. [Google Scholar] [CrossRef]
- Ding, G.; Ji, G.; Yan, G.; Xu, Y.; Wang, K.; Xiao, C.; Wang, Q.; Guo, D. Three-dimensional Modeling of Ore-forming Elements and Mineralization Prognosis for the Yechangping Mo Deposit, Henan Province, China. Acta Geol. Sin. Engl. Ed. 2024, 98, 736–752. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Khah, N.K.F.; Kianoush, P.; Afzal, P.; Ebrahimabadi, A.; Shirinabadi, R. Integration of Fractal Modeling and Correspondence Analysis Reconnaissance for Geochemically High-Potential Promising Areas, NE Iran. Results Geochem. 2023, 11, 100026. [Google Scholar] [CrossRef]
- Kuang, L.; Wang, Z.; Zhang, J.; Li, H.; Xu, G.; Li, J. Factor Analysis and Cluster Analysis of Mineral Elements Contents in Different Blueberry Cultivars. J. Food Compos. Anal. 2022, 109, 104507. [Google Scholar] [CrossRef]
- Fan, X.; Lü, X.; Wang, X. Textural, Chemical, Isotopic and Microthermometric Features of Sphalerite from the Wunuer Deposit, Inner Mongolia: Implications for Two Stages of Mineralization from Hydrothermal to Epithermal. Geol. J. 2020, 55, 6936–6958. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, Y.; Liu, Z.; Chen, K. Sphalerite as a Record of Metallogenic Information Using Multivariate Statistical Analysis: Constraints from Trace Element Geochemistry. J. Geochem. Explor. 2022, 232, 106883. [Google Scholar] [CrossRef]
- Akbarpour, A.; Gholami, N.; Azizi, H.; Torab, F.M. Cluster and R-Mode Factor Analyses on Soil Geochemical Data of Masjed-Daghi Exploration Area, Northwestern Iran. Arab. J. Geosci. 2013, 6, 3397–3408. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Tang, C.; Mao, J.; Chang, Z. Discriminate between Magmatic- and Magmatic-Hydrothermal Ore Deposits Using Fe Isotopes. Ore Geol. Rev. 2021, 130, 103946. [Google Scholar] [CrossRef]
- Gao, S.; Zou, X.; Hofstra, A.H.; Qin, K.; Marsh, E.E.; Bennett, M.M.; Li, G.; Jiang, J.; Su, S.; Zhao, J.; et al. Trace Elements in Quartz: Insights into Source and Fluid Evolution in Magmatic-Hydrothermal Systems. Econom. Geol. 2022, 117, 1415–1428. [Google Scholar] [CrossRef]
- Varnavas, S.P.; Papavasiliou, C. Submarine Hydrothermal Mineralization Processes and Insular Mineralization in the Hellenic Volcanic Arc System: A Review. Ore Geol. Rev. 2020, 124, 103541. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a Multifaceted Signalling Molecule in Plant Responses to Abiotic Stress: Understanding the Physiological Mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Erofeeva, E.A. Environmental Hormesis of Non-Specific and Specific Adaptive Mechanisms in Plants. Sci. Total Environ. 2022, 804, 150059. [Google Scholar] [CrossRef] [PubMed]
- Ayari, J.; Barbieri, M.; Barhoumi, A.; Belkhiria, W.; Braham, A.; Dhaha, F.; Charef, A. A Regional-Scale Geochemical Survey of Stream Sediment Samples in Nappe Zone, Northern Tunisia: Implications for Mineral Exploration. J. Geochem. Explor. 2022, 235, 106956. [Google Scholar] [CrossRef]
- Li, K.; Lu, H.; Nkoh, J.N.; Hong, R. Aluminum Mobilization as Influenced by Soil Organic Matter during Soil and Mineral Acidification: A Constant pH Study. Sci. Total Environ. 2022, 418, 115853. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Zhu, J.-M.; Bu, H.; Tong, H.; Chen, M.; Tan, D.; Gao, T.; Liu, Y. Adsorption of Cadmium on Clay-Organic Associations in Different pH Solutions: The Effect of Amphoteric Organic Matter. Ecotoxicol. Environ. Saf. 2022, 236, 113509. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of Heavy Metals in Soils and Their Immobilization at Micro-Scale Interfaces among Diverse Soil Components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Zhao, H.-D.; Zhao, K.-D.; Palmer, M.R.; Jiang, S.-Y.; Chen, W. Magmatic-Hydrothermal Mineralization Processes at the Yidong Tin Deposit, South China: Insights from In Situ Chemical and Boron Isotope Changes of Tourmaline. Econ. Geol. 2021, 116, 1625–1647. [Google Scholar] [CrossRef]
- Liao, Y.; Zhao, B.; Zhang, D.; Danyushevsky, L.V.; Li, T.; Wu, M.; Liu, F. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W–Sn–Mo–Bi Deposit, SE China. Sci. Rep. 2021, 11, 5828. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, D.; Li, T.; Lu, C.; Liu, F. Mineralized Zones of the Shizhuyuan Ore Field and Their Genetic Relationship with the Qianlishan Granite Complex, NE China: Evidence from Pyrite in Situ Geochemistry. Minerals 2022, 12, 489. [Google Scholar] [CrossRef]
Element | Plants (N = 20) | XBAC | σ | Element | Plants (N = 20) | XBAC | σ |
---|---|---|---|---|---|---|---|
Ni | A. argyi | 1.8~39.7 (11.9) * | 15.8 | Sb | A. argyi | 0.4~138.1 (18.1) | 45.9 |
M. japonica | 1.1~38.3 (9.1) | 7.3 | M. japonica | 1.0~104.9 (16.3) | 20.9 | ||
D. dichotoma | 0.35~47.8 (12.0) | 2.9 | D. dichotoma | 0.5~262.2 (23.3) | 87.2 | ||
Cu | A. argyi | 6.6~189.8 (53.6) | 61.1 | Pb | A. argyi | 0.1~13.4 (2.7) | 3.4 |
M. japonica | 2.9~83.5 (19.1) | 16.1 | M. japonica | 0.1~13.8 (2.3) | 2.7 | ||
D. dichotoma | 4.8~111.1 (23.1) | 26.6 | D. dichotoma | 0.1~13.3 (2.9) | 3.1 | ||
Zn | A. argyi | 9.3~146.4 (45.9) | 45.7 | Bi | A. argyi | 0.7~602.2 (75.8) | 200.5 |
M. japonica | 4.0~44.1 (15.1) | 8.0 | M. japonica | 1.2~172 (42.4) | 34.2 | ||
D. dichotoma | 6.3~65.2 (27.3) | 14.7 | D. dichotoma | 0.5~692 (83.7) | 230.5 | ||
Mo | A. argyi | 1.7~144.8 (41.0) | 80.1 | Th | A. argyi | 0.03~1.13 (0.3) | 3.3 |
M. japonica | 0.84~52.3 (13.2) | 10.3 | M. japonica | 0.007~0.162 (0.06) | 0.03 | ||
D. dichotoma | 2.7~54.69 (18.7) | 16.8 | D. dichotoma | 0.02~0.21 (0.06) | 0.05 | ||
Cd | A. argyi | 2.5~242.8 (65.9) | 76.7 | U | A. argyi | 0.07~0.6 (0.24) | 0.16 |
M. japonica | 0.744~12.37 (6.6) | 2.3 | M. japonica | 0.029~0.24 (0.1) | 0.03 | ||
D. dichotoma | 1.3~141.8 (26.2) | 35.1 | D. dichotoma | 0.04~0.28 (0.15) | 0.06 | ||
Sn | A. argyi | 6.9~237.0 (50.0) | 36.0 | ||||
M. japonica | 10.6~118.5 (33.7) | 21.6 | |||||
D. dichotoma | 5.6~284.4 (54.2) | 92.9 |
Element | Plants | ωo (ug·g−1) | σ | KCD | Element | Plants | ωo (ug·g−1) | σ | KCD |
---|---|---|---|---|---|---|---|---|---|
(N = 20) | (N = 20) | ||||||||
Ag | A. argyi | 0.029~0.093 (0.059) * | 0.016 | 1.33 | Mo | A. argyi | 0.62~3.36 (1.67) | 0.69 | 3.41 |
M. japonica | 0.011~0.088 (0.048) | 0.019 | 1.07 | M. japonica | 0.34~0.76 (0.513) | 0.11 | 1.05 | ||
D. dichotoma | 0.028~1.33 (0.137) | 0.65 | 3.50 | D. dichotoma | 0.28~2.47 (0.963) | 1.10 | 3.70 | ||
As | A. argyi | 2.12~9.44 (4.22) | 1.83 | 2.20 | Ni | A. argyi | 0.82~7.73 (3.87) | 2.30 | 2.39 |
M. japonica | 0.609~4.34 (2.357) | 0.93 | 1.23 | M. japonica | 1.56~5.03 (2.47) | 0.87 | 1.36 | ||
D. dichotoma | 0.636~1525 (86.1) | 762.18 | 51.3 | D. dichotoma | 0.36~9.71 (3.79) | 3.12 | 2.43 | ||
B | A. argyi | 20~70 (43.5) | 25.0 | 4.35 | Pb | A. argyi | 4.92~20.7 (9.91) | 3.95 | 1.77 |
M. japonica | 10~29.9 (15.5) | 4.98 | 1.55 | M. japonica | 3.62~13.1 (7.60) | 2.37 | 1.36 | ||
D. dichotoma | 10~29.9 (12) | 4.98 | 1.33 | D. dichotoma | 1.94~70.8 (15.4) | 6.18 | 2.76 | ||
Bi | A. argyi | 0.83~3.98 (1.91) | 1.05 | 2.18 | Sb | A. argyi | 0.328~1.19 (0.06) | 0.26 | 1.47 |
M. japonica | 0.59~2.55 (1.55) | 0.49 | 1.77 | M. japonica | 0.278~1.315 (0.695) | 0.39 | 1.71 | ||
D. dichotoma | 0.16~5.54 (1.11) | 2.69 | 2.03 | D. dichotoma | 0.107~1.67 (0.46) | 0.72 | 2.03 | ||
Cd | A. argyi | 0.32~12.6 (4.45) | 6.14 | 9.43 | Se | A. argyi | 0.39~1.31 (0.758) | 0.26 | 1.76 |
M. japonica | 0.24~0.78 (0.509) | 0.14 | 1.08 | M. japonica | 0.36~1.4 (0.966) | 0.14 | 1.86 | ||
D. dichotoma | 0.14~7.46 (2.06) | 0.23 | 4.36 | D. dichotoma | 0.16~1.74 (0.547) | 0.29 | 2.10 | ||
Co | A. argyi | 0.07~1.64 (0.601) | 0.12 | 4.52 | Sn | A. argyi | 0.18~0.65 (0.327) | 0.12 | 1.63 |
M. japonica | 0.05~0.15 (0.107) | 0.03 | 0.81 | M. japonica | 0.06~0.5 (0.273) | 0.05 | 1.37 | ||
D. dichotoma | 0.049~2.03 (0.504) | 0.5 | 3.80 | D. dichotoma | 0.13~0.78 (0.282) | 0.33 | 2.66 | ||
Cr | A. argyi | 0.28~2.3 (0.942) | 0.41 | 3.36 | Th | A. argyi | 0.015~0.668 (0.143) | 0.22 | 7.50 |
M. japonica | 0.16~0.95 (0.354) | 0.20 | 1.27 | M. japonica | 0.006~0.066 (0.03) | 0.02 | 1.57 | ||
D. dichotoma | 0.07~1.6 (0.48) | 0.38 | 1.71 | D. dichotoma | 0.013~0.058 (0.026) | 0.01 | 1.38 | ||
Cu | A. argyi | 10.8~33.7 (22.0) | 7.63 | 3.60 | Tl | A. argyi | 0.031~0.224 (0.084) | 0.05 | 2.88 |
M. japonica | 4.76~8.26 (6.74) | 0.88 | 1.02 | M. japonica | 0.028~0.09 (0.053) | 0.02 | 1.56 | ||
D. dichotoma | 4.95~17.3 (8.73) | 3.09 | 1.32 | D. dichotoma | 0.012~0.493 (0.063) | 0.16 | 1.96 | ||
Fe | A. argyi | 99~1402 (495.9) | 434.33 | 4.63 | U | A. argyi | 0.023~0.148 (0.076) | 0.03 | 2.09 |
M. japonica | 38~275 (139) | 59.25 | 1.30 | M. japonica | 0.005~0.051 (0.032) | 0.01 | 0.94 | ||
D. dichotoma | 74~222 (124.5) | 42.33 | 1.16 | D. dichotoma | 0.029~0.089 (0.049) | 0.02 | 1.35 | ||
Hg | A. argyi | 0.037~0.08 (0.055) | 0.08 | 1.19 | Zn | A. argyi | 24~202 (84.8) | 44.5 | 2.70 |
M. japonica | 0.008~0.403 (0.18) | 0.08 | 3.92 | M. japonica | 18.5~48 (24.6) | 7.38 | 0.99 | ||
D. dichotoma | 0.018~0.098 (0.05) | 0.02 | 1.11 | D. dichotoma | 22.2~91.3 (46.15) | 23.03 | 2.86 | ||
Mn | A. argyi | 153.5~1980 (696.0) | 608.83 | 1.18 | |||||
M. japonica | 152~1120 (856.4) | 252.5 | 1.45 | ||||||
D. dichotoma | 57.3~1860 (995.7) | 469.2 | 1.68 |
Element (N = 42) | ωo (ug/g) | ωmax (ug/g) | ωmin (ug/g) | σ | KNJ | KCD | CV | ωb (ug/g) |
---|---|---|---|---|---|---|---|---|
Ag | 0.286 | 1.585 | 0.028 | 0.463 | 14.30 | 7.526 | 1.618 | 0.038 |
As | 146.6 | 1970 | 0.636 | 417.370 | 1466 | 89.390 | 2.847 | 1.640 |
B | 14.88 | 40.00 | 10.00 | 9.404 | 0.372 | 1.667 | 0.632 | 8.926 |
Bi | 1.053 | 5.540 | 0.065 | 1.076 | 1053 | 1.932 | 1.022 | 0.545 |
Cd | 1.693 | 7.460 | 0.134 | 1.757 | 33.86 | 3.657 | 1.038 | 0.463 |
Co | 0.463 | 2.030 | 0.043 | 0.469 | 2.317 | 3.534 | 1.014 | 0.131 |
Cr | 0.494 | 1.600 | 0.060 | 0.371 | 0.329 | 1.777 | 0.752 | 0.278 |
Cu | 9.786 | 22.70 | 4.150 | 5.891 | 0.979 | 1.493 | 0.602 | 6.555 |
Fe | 129.6 | 254.0 | 74.00 | 130.378 | 0.864 | 1.217 | 1.006 | 106.5 |
Hg | 0.055 | 0.130 | 0.018 | 0.026 | 2.745 | 1.196 | 0.481 | 0.046 |
Mn | 847.3 | 2070 | 55.60 | 597.347 | 4.236 | 1.438 | 0.705 | 589.2 |
Mo | 1.130 | 2.940 | 0.170 | 1.161 | 2.260 | 4.431 | 1.427 | 0.255 |
Ni | 4.171 | 12.40 | 0.350 | 4.963 | 0.278 | 2.726 | 1.19 | 1.530 |
Pb | 14.71 | 70.80 | 1.940 | 8.105 | 14.71 | 2.679 | 0.551 | 5.491 |
Sb | 0.454 | 1.670 | 0.056 | 0.568 | 4.537 | 2.000 | 1.252 | 0.227 |
Se | 0.550 | 1.740 | 0.160 | 0.279 | 27.49 | 2.124 | 0.507 | 0.259 |
Sn | 0.228 | 0.780 | 0.030 | 0.144 | 1.139 | 2.621 | 0.631 | 0.087 |
Th | 0.026 | 0.058 | 0.008 | 0.011 | 5.127 | 1.368 | 0.416 | 0.019 |
Tl | 0.052 | 0.493 | 0.010 | 0.073 | 0.010 | 1.625 | 1.411 | 0.032 |
U | 0.051 | 0.115 | 0.027 | 0.021 | 5.054 | 1.342 | 0.407 | 0.038 |
Zn | 49.98 | 97.10 | 22.20 | 19.292 | 1.250 | 2.029 | 0.386 | 24.63 |
Element | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Ag | 0.194 | 0.035 | 0.698 | 0.557 |
As | 0.818 | 0.240 | 0.107 | 0.318 |
B | 0.447 | 0.318 | −0.061 | 0.640 |
Bi | 0.674 | 0.139 | 0.450 | 0.465 |
Cd | 0.550 | 0.731 | −0.184 | −0.011 |
Co | 0.622 | 0.650 | 0.033 | −0.094 |
Cr | 0.773 | 0.335 | 0.102 | −0.088 |
Cu | 0.335 | 0.831 | −0.022 | 0.156 |
Fe | 0.894 | 0.378 | 0.086 | 0.072 |
Hg | 0.259 | 0.371 | 0.559 | 0.443 |
Mn | 0.199 | 0.546 | 0.512 | −0.157 |
Mo | −0.071 | −0.302 | 0.144 | 0.706 |
Ni | 0.056 | 0.823 | 0.196 | −0.078 |
Pb | 0.696 | 0.545 | 0.218 | 0.162 |
Sb | 0.654 | 0.158 | 0.476 | 0.507 |
Se | 0.281 | 0.631 | 0.280 | 0.401 |
Sn | 0.709 | 0.150 | 0.502 | 0.407 |
Th | 0.892 | 0.361 | 0.105 | 0.026 |
Tl | 0.105 | −0.101 | 0.921 | 0.028 |
U | 0.736 | 0.106 | 0.407 | 0.219 |
Zn | 0.407 | 0.852 | −0.105 | 0.000 |
% of Variance (rotated) | 31.819 | 23.359 | 14.437 | 11.752 |
Cumulative % of variance (rotated) | 31.819 | 55.177 | 69.614 | 81.366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, L.; Tan, K.; Li, Y.; Liu, Z.; Zhou, H.; Li, C.; Xie, Y.; Han, S. Trace Element Geochemical Characteristics of Plants and Their Role in Indicating Concealed Ore Bodies outside the Shizhuyuan W–Sn Polymetallic Deposit, Southern Hunan Province, China. Minerals 2024, 14, 967. https://doi.org/10.3390/min14100967
Ouyang L, Tan K, Li Y, Liu Z, Zhou H, Li C, Xie Y, Han S. Trace Element Geochemical Characteristics of Plants and Their Role in Indicating Concealed Ore Bodies outside the Shizhuyuan W–Sn Polymetallic Deposit, Southern Hunan Province, China. Minerals. 2024; 14(10):967. https://doi.org/10.3390/min14100967
Chicago/Turabian StyleOuyang, Le, Kaixuan Tan, Yongmei Li, Zhenzhong Liu, Hao Zhou, Chunguang Li, Yanshi Xie, and Shili Han. 2024. "Trace Element Geochemical Characteristics of Plants and Their Role in Indicating Concealed Ore Bodies outside the Shizhuyuan W–Sn Polymetallic Deposit, Southern Hunan Province, China" Minerals 14, no. 10: 967. https://doi.org/10.3390/min14100967
APA StyleOuyang, L., Tan, K., Li, Y., Liu, Z., Zhou, H., Li, C., Xie, Y., & Han, S. (2024). Trace Element Geochemical Characteristics of Plants and Their Role in Indicating Concealed Ore Bodies outside the Shizhuyuan W–Sn Polymetallic Deposit, Southern Hunan Province, China. Minerals, 14(10), 967. https://doi.org/10.3390/min14100967