Effect of Curing Time and Ferric Chloride on a Copper Concentrate with a High Arsenic Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Procedure
2.2. Experimental Design
2.3. Curing Experiments
3. Results and Discussion
3.1. Characteristics of Initial Ore Samples
3.2. Pretreatment and ANOVA Analysis
3.3. Characteristics of Cured Ore Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochilco. Proyección de la Producción de Cobre en Chile 2023–2034; Comunicaciones Cochilco: Santiago, Chile, 2024. [Google Scholar]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Melo, E.; Hernández, M. Pretreatment to Leaching for a Primary Copper Sulphide Ore in Chloride Media. Metals 2021, 11, 1260. [Google Scholar] [CrossRef]
- Lattanzi, P.; Da Pelo, S.; Musu, E.; Atzei, D.; Elsener, B.; Fantauzzi, M.; Rossi, A. Enargite oxidation: A review. Earth-Sci. Rev. 2008, 86, 62–88. [Google Scholar] [CrossRef]
- Cochilco. Exportación de Concentrados de Cobre: Caracterización de Condiciones Comerciales; Comunicaciones Cochilco: Santiago, Chile, 2021. [Google Scholar]
- Rivera-Vasquez, B.F.; Dixon, D. Rapid atmospheric leaching of enargite in acidic ferric sulfate media. Hydrometallurgy 2015, 152, 149–158. [Google Scholar] [CrossRef]
- Jahromi, F.G.; Cowan, D.H.; Ghahreman, A. Lanxess Lewatit® AF 5 and activated carbon catalysis of enargite leaching in chloride media; a parameters study. Hydrometallurgy 2017, 174, 184–194. [Google Scholar] [CrossRef]
- Herreros, O.; Quiroz, R.; Hernandez, M.C.; Viñals, J. Dissolution kinetics of enargite in dilute Cl2/Cl− media. Hydrometallurgy 2002, 64, 153–160. [Google Scholar] [CrossRef]
- Viñals, J.; Roca, A.; Hernández, M.C.; Benavente, O. Topochemical transformation of enargite into copper oxide by hypochlorite leaching. Hydrometallurgy 2003, 68, 183–193. [Google Scholar] [CrossRef]
- Riveros, P.A.; Dutrizac, J.E. The leaching of tennantite, tetrahedrite and enargite in acidic sulphate and chloride media. Can. Metall. Q. 2008, 47, 235–244. [Google Scholar] [CrossRef]
- Hernández, M.C.; Benavente, O.; Roca, A.; Melo, E.; Quezada, V. Selective Leaching of Arsenic from Copper Concentrates in Hypochlorite Medium. Minerals 2023, 13, 1372. [Google Scholar] [CrossRef]
- Cerda, C.P.; Taboada, M.E.; Jamett, N.E.; Ghorbani, Y.; Hernández, P.C. Effect of pretreatment on leaching primary copper sulfide in acid-chloride media. Minerals 2018, 8, 1. [Google Scholar] [CrossRef]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating copper leaching from sulfide ores in acid-nitrate-chloride media using agglomeration and curing as pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Keith, B.; Melo, E. Effect of pretreatment prior to leaching on a chalcopyrite mineral in acid media using NaCl and KNO3. J. Mater. Res. Technol. 2020, 9, 10316–10324. [Google Scholar] [CrossRef]
- Copur, M.; Kizilca, M.; Kocakerim, M.M. Determination of the optimum conditions for copper leaching from chalcopyrite concentrate ore using taguchi method. Chem. Eng. Com. 2015, 202, 927–935. [Google Scholar] [CrossRef]
- Melo, E.; Hernández, M.C.; Benavente, O.; Quezada, V. Selenium Dissolution from Decopperized Anode Slimes in ClO−/OH− Media. Minerals 2022, 12, 1228. [Google Scholar] [CrossRef]
- Topçu, M.; Rüşen, A.; Yıldızel, S.A. High efficiency copper recovery from anode slime with 1-butyl-3-methyl imidazolium chloride by hybrid Taguchi/Box–Behnken optimization method. J. Ind. Eng. Chem. 2023, 120, 261–270. [Google Scholar] [CrossRef]
- Hamzaçebi, C. Taguchi method as a robust design tool. In Quality Control in Intelligent Manufacturing; IntechOpen: London, UK, 2020. [Google Scholar]
- Padilla, R.; Girón, D.; Ruiz, M.C. Leaching of enargite in H2SO4–NaCl–O2 media. Hydrometallurgy 2005, 80, 272–279. [Google Scholar] [CrossRef]
- Gajam, S.; Raghavan, S. A kinetic study of enargite dissolution in ammoniacal solutions. Int. J. Miner. Process. 1983, 10, 113–129. [Google Scholar] [CrossRef]
- Lee, J.; Acar, S.; Doerr, D.L.; Brierley, J.A. Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 2011, 105, 213–221. [Google Scholar] [CrossRef]
- Senanayake, G. A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations. Hydrometallurgy 2009, 98, 21–32. [Google Scholar] [CrossRef]
- Senanayake, G. Chloride assisted leaching of chalcocite by oxygenated sulphuric acid via Cu(II)-OH-Cl. Miner. Eng. 2007, 20, 1075–1088. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Lawson, F. The kinetics of leaching chalcocite in acidic oxygenated sulphate-chloride solutions. Hydrometallurgy 1991, 27, 249–268. [Google Scholar] [CrossRef]
Sample | Matrix L16 (43) | ||
---|---|---|---|
A | B | C | |
Curing Time (days) | H2SO4(kg/t) | FeCl3 (M) | |
1 | 1 | 3 | 2 |
2 | 4 | 4 | 4 |
3 | 1 | 2 | 4 |
4 | 2 | 2 | 2 |
5 | 3 | 4 | 2 |
6 | 4 | 3 | 1 |
7 | 3 | 3 | 3 |
8 | 1 | 1 | 1 |
9 | 3 | 2 | 1 |
10 | 4 | 2 | 3 |
11 | 2 | 4 | 1 |
12 | 2 | 3 | 4 |
13 | 2 | 1 | 3 |
14 | 1 | 4 | 3 |
15 | 4 | 1 | 2 |
16 | 3 | 1 | 4 |
Parameters | Levels | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
A | Curing time (days) | 0 | 5 | 10 | 15 |
B | H2SO4 (kg/t) | 0 | 70 | 140 | 210 |
C | FeCl3 (M) | 0 | 0.5 | 1 | 1.5 |
Mineral | % Mass | Mineral | % Mass |
---|---|---|---|
Chalcocite–digenite | 16.6 | Alunite | 0.32 |
Covellite | 3.98 | Quartz | 2.11 |
Chalcopyrite | 4.66 | Kaolinite group | 1.09 |
Bornite | 6.01 | White Micas (Muscovite) | 1.17 |
Tetrahedrite/tennantite/enargite | 35.9 | Smectite group (Montmorillonite/Nontronite) | 0.05 |
Other copper minerals | 2.15 | Pyrophyllite/Andalusite | 0.22 |
Pyrite | 22.4 | Others | 1.11 |
Sphalerite | 2.27 | ||
Copper oxides/hydroxides | 0.02 | Total | 100 |
(1) Pyrite | (2) Enargite | (3) Quartz | (4) Chalcopyrite | (5) Digenite | |
---|---|---|---|---|---|
O | --- | --- | 70.1 | --- | --- |
Si | --- | --- | 29.6 | --- | --- |
S | 65.9 | 49.2 | --- | 49.5 | 37.0 |
Cl | --- | --- | --- | --- | --- |
Fe | 33.8 | 0.40 | 0.10 | 25.1 | 3.10 |
Cu | 0.30 | 37.4 | 0.20 | 25.4 | 59.9 |
Zn | --- | --- | --- | --- | --- |
As | --- | 13.0 | --- | --- | --- |
Sb | --- | 0.10 | --- | --- | --- |
Total | 100 | 100 | 100 | 100 | 100 |
No. | Curing Time (Days) | H2SO4 (kg/t) | FeCl3 (M) | Copper Extraction (%) | No. | Curing Time (Days) | H2SO4 (kg/t) | FeCl3 (M) | Copper Extraction (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 140 | 0.50 | 4.66 | 9 | 10.0 | 70.0 | 0.00 | 10.5 |
2 | 15.0 | 210 | 1.50 | 9.57 | 10 | 15.0 | 70.0 | 1.00 | 20.8 |
3 | 0.00 | 70.0 | 1.50 | 6.45 | 11 | 5.00 | 210 | 0.00 | 5.05 |
4 | 5.00 | 70.0 | 0.50 | 8.22 | 12 | 5.00 | 140 | 1.50 | 10.0 |
5 | 10.0 | 210 | 0.50 | 6.48 | 13 | 5.00 | 0.00 | 1.00 | 8.58 |
6 | 15.0 | 140 | 0.00 | 15.4 | 14 | 0.00 | 210 | 1.00 | 4.66 |
7 | 10.0 | 140 | 1.00 | 6.59 | 15 | 15.0 | 0.00 | 0.50 | 6.04 |
8 | 0.00 | 0.00 | 0.00 | 3.36 | 16 | 10.0 | 0.00 | 1.50 | 12.1 |
Parameters | df | SSE | MSE | F Value | Contribution | p-Value | |
---|---|---|---|---|---|---|---|
A | Curing time (days) | 3 | 265.349 | 88.45 | 14.07 | 45.76% | 0.00002447 |
B | Acid concentration (kg/t) | 3 | 117.779 | 39.26 | 6.245 | 20.31% | 0.00313200 |
C | Ferric chloride concentration (M) | 3 | 58.446 | 19.482 | 3.099 | 10.08% | 0.04764300 |
Error | 22 | 138.303 | |||||
Total | 31 | 579.877 |
Analyzed Element | BP (%) | AP (%) |
---|---|---|
Copper (Cu) | 36.260 | 28.860 |
Arsenic (As) | 6.4400 | 7.9548 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quezada, V.; Zepeda, S.; Benavente, O.; Hernández, M.C.; Melo, E. Effect of Curing Time and Ferric Chloride on a Copper Concentrate with a High Arsenic Content. Minerals 2024, 14, 1063. https://doi.org/10.3390/min14111063
Quezada V, Zepeda S, Benavente O, Hernández MC, Melo E. Effect of Curing Time and Ferric Chloride on a Copper Concentrate with a High Arsenic Content. Minerals. 2024; 14(11):1063. https://doi.org/10.3390/min14111063
Chicago/Turabian StyleQuezada, Víctor, Stephano Zepeda, Oscar Benavente, María Cecilia Hernández, and Evelyn Melo. 2024. "Effect of Curing Time and Ferric Chloride on a Copper Concentrate with a High Arsenic Content" Minerals 14, no. 11: 1063. https://doi.org/10.3390/min14111063
APA StyleQuezada, V., Zepeda, S., Benavente, O., Hernández, M. C., & Melo, E. (2024). Effect of Curing Time and Ferric Chloride on a Copper Concentrate with a High Arsenic Content. Minerals, 14(11), 1063. https://doi.org/10.3390/min14111063