Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria
Abstract
:1. Introduction
2. Site Description
2.1. Local Geology
2.2. Relief, Climate and Historical Data on the Deposit
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Methods
4. Results
4.1. Hydrochemical Characteristics of Water
4.1.1. Seasonal Variations of Hydrochemical Characteristics of Water
4.1.2. Change in Hydrochemical Characteristics of Drainage Water After It Flows Out of the Gallery
4.2. Characteristics of Ochreous Precipitates
4.2.1. SEM and SEM-EDX Study of Microstructure and Composition of Ochreous Precipitates
4.2.2. Main Components and Trace Elements in Ochreous Precipitates
4.2.3. Phase Composition of Ochreous Precipitates According to XRD Analysis
4.2.4. Microstructure and Phase Composition of Ochreous Precipitates According to TEM Study
5. Discussion and Conclusions
5.1. Water
5.2. Bacteria Participation in the Ochreous Material Formation
5.3. Phase and Chemical Composition of Ochreous Precipitates
5.4. Local Environmental Hazards and Local Mine Drainage Management
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. J. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Iwuozor, K.O.; Aniagor, C.O.; Ajala, O.J.; Oba, S.N.; Iwuchukwu, F.U.; Ahmadi, S.; Igwegbe, C.A. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. [Google Scholar] [CrossRef]
- Larochelle, T.; Noble, A.; Ziemkiewicz, P.; Hoffman, D.; Constant, J. A fundamental economic assessment of recovering rare earth elements and critical minerals from acid mine drainage using a network sourcing strategy. Minerals 2021, 11, 1298. [Google Scholar] [CrossRef]
- Smith, K.S. Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits. In Reviews in Economic Geology, Volume 6A, The Environmental Geochemistry of Mineral Deposits; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: McLean, VA, USA, 1999; pp. 161–182. [Google Scholar]
- Carlson, L.; Bigham, J.M.; Schwertmann, U.; Kyek, A.; Wagner, F. Scavenging of As from Acid Mine Drainage by Schwertmannite and Ferrihydrite: A Comparison with Synthetic Analogues. Environ. Sci. Technol. 2002, 36, 1712–1719. [Google Scholar] [CrossRef]
- Murad, E.; Rojik, P. Iron mineralogy of mine-drainage precipitates as environmental indicators: Review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Miner. 2005, 40, 427–440. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, S.J.; Choo, C.O. Seasonal change of mineral precipitates from the coal mine drainage in the Taebaek coal field, South Korea. Geochem. J. 2003, 37, 109–121. [Google Scholar] [CrossRef]
- Kumpulainen, S.; Carlson, L.; Räisänen, M.L. Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl. Geochem. 2007, 22, 760–777. [Google Scholar] [CrossRef]
- Peretyazhko, T.; Zachara, J.M.; Boily, J.-F.; Xia, Y.; Gassman, P.L.; Arey, B.W.; Burgos, W.D. Mineralogical transformations controlling acid mine drainage chemistry. Chem. Geol. 2009, 262, 169–178. [Google Scholar] [CrossRef]
- Tarassov, M.; Benderev, A.; Trayanova, M.; Tarassova, E. Preliminary data on the content of W, As and U in the waters in the area of the Grantcharitsa deposit, Western Rhodopes. Rev. Bulg. Geol. Soc. 2019, 80, 239–241. [Google Scholar]
- Sarov, S.; Boinova, E.; Georgieva, I.; Nikolov, D.; Marinova, A.; Markov, N. Geological Map of Bulgaria in Scale 1:50 000; Map Sheet K-34-84-B (Tsvetino); Ministry of Environment and Water of the Republic of Bulgaria: Sofia, Bulgaria, 2010. (In Bulgarian) [Google Scholar]
- Kamenov, B.; Peytcheva, I.; Klain, L.; Arsova, K.; Kostitsin, Y.; Salnikova, E. Rila-West Rhodopes Batholith: Petrological and geochemical constraints for its composite character. Geochem. Mineral. Petrol. 1999, 36, 3–27. [Google Scholar]
- Tarassov, M.P.; Tarassova, E.D. Structural and chemical evolution of mineral forms of tungsten in the oxidation zone of the Grantcharitsa deposit (Western Rhodopes, Bulgaria). Bul. Chem. Commun. 2018, 50, 270–280. [Google Scholar]
- Tarassov, M.; Mihailova, B.; Tarassova, E.; Konstantinov, L. Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria. Eur. J. Miner. 2002, 14, 977–986. [Google Scholar] [CrossRef]
- Climatic Data for Selected Bulgarian Stations (“Climate Handbook”—Temperature 1931–1970, precipitation 1931–1985). Available online: https://www.stringmeteo.com/synop (accessed on 9 September 2024). (In Bulgarian).
- Lyubomirova, V.; Mihaylova, V.; Djingova, R. Chemical characterization of Bulgarian bottled mineral waters. J. Food Compos. Anal. 2020, 93, 103595. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ ver. 4.02; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2022. [Google Scholar]
- Guillong, M.; Meier, D.; Allan, M.; Heinrich, C.; Yardley, B. Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. In Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues; Sylvester, P., Ed.; Mineralogical Association of Canada, Short Course: Vancouver, BC, Canada, 2008; Volume 40, pp. 328–333. [Google Scholar]
- Sorensen, J.A.; Glass, G.E. Ion and temperature dependence of electrical conductance for natural waters. Anal. Chem. 1987, 59, 1594–1597. [Google Scholar] [CrossRef]
- Walton, N.R.G. Electrical Conductivity and Total Dissolved Solids-What is Their Precise Relationship? Desalination 1989, 72, 275–292. [Google Scholar] [CrossRef]
- Drinking Water Directive (Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN (accessed on 9 September 2024).
- Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. A review of tungsten: From environmental obscurity to scrutiny. J. Hazard. Mater. 2006, 136, 1–19. [Google Scholar] [CrossRef]
- Edwards, B.A.; Shirokova, V.L.; Enright, A.M.L.; Ferris, F.G. Dependence of In Situ Bacterial Fe(II)-Oxidation and Fe(III)-Precipitation on Sequential Reactive Transport. Geomicrobiol. J. 2018, 35, 503–510. [Google Scholar] [CrossRef]
- Benson, B.B.; Krause, D., Jr. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen. Limnol. Oceanogr. 1980, 25, 662–671. [Google Scholar] [CrossRef]
- Hallberg, R.; Ferris, F.G. Biomineralization by Gallionella. Geomicrobiol. J. 2004, 21, 325–330. [Google Scholar] [CrossRef]
- Jambor, J.L.; Dutrizac, J.E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem. Rev. 1998, 98, 2549–2585. [Google Scholar] [CrossRef] [PubMed]
- Cismasu, A.C.; Michel, F.M.; Tcaciuc, A.P.; Tyliszczak, T.; Brown, G.E., Jr. Composition and structural aspects of naturally occurring ferrihydrite. Comptes Rendus Geosci. 2011, 343, 210–218. [Google Scholar] [CrossRef]
- Cismasu, A.C.; Michel, F.M.; Tcaciuc, A.P.; Brown, G.E., Jr. Properties of impurity-bearing ferrihydrite III. Effects of Si on the structure of 2-line ferrihydrite. Geochim. Cosmochim. Acta 2014, 133, 168–185. [Google Scholar] [CrossRef]
- Lee, S.; Xu, H. One-Step Route Synthesis of Siliceous Six-Line Ferrihydrite: Implication for the Formation of Natural Ferrihydrite. ACS Earth Space Chem. 2019, 3, 503–509. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2003; 664p. [Google Scholar]
- Li, J.; Su, L.; Wang, F.; Yang, J.; Gu, L.; Sun, M.; Li, Q.; Zhou, H.; Fang, J. Elucidating the biomineralization of low-temperature hydrothermal precipitates with varying Fe, Si contents: Indication fromultrastructure and microbiological analyses. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 157, 103208. [Google Scholar] [CrossRef]
- Eggleton, R.A.; Fitzpatrick, R.W. New data and a revised structural model for ferrihydrite. Clays Clay Miner. 1988, 36, 111–124. [Google Scholar] [CrossRef]
- Chukhrov, F.V.; Zvyagin, B.B.; Gorshkov, A.I.; Yermilova, L.P.; Korovushkin, V.V.; Rudnitskaya, Y.S.; Yakubovskaya, N.Y. Feroxyhyte, a new modification of FeOOH. Int. Geol. Rev. 1977, 19, 873–890. [Google Scholar] [CrossRef]
- Harris, D.L.; Lottermoser, B.G.; Duchesne, J. Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Aust. J. Earth. Sci. 2003, 50, 797–809. [Google Scholar] [CrossRef]
- Chehel, L.P.; Zamana, L.V. Main geochemical types of drainage water of tungsten deposits of the Sourth-Eastern Transbaikalie. Vestn. Tomsk. Gosudartsvennogo Univ. 2009, 329, 271–277. (In Russian) [Google Scholar]
- Roden, E.E.; Urrutia, M.M. Influence of Biogenic Fe(II) on Bacterial Crystalline Fe(III) Oxide Reduction. Geomicrobiol. J. 2002, 19, 209–251. [Google Scholar] [CrossRef]
- Luef, B.; Fakra, S.C.; Csencsits, R.; Wrighton, K.C.; Williams, K.H.; Wilkins, M.J.; Wilkins, M.J.; Downing, K.H.; Long, P.E.; Comolli, L.R.; et al. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J. 2013, 7, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Emerson, D.; Fleming, E.J.; McBeth, J.M. Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective. Annu. Rev. Microbiol. 2010, 64, 561–583. [Google Scholar] [CrossRef] [PubMed]
- Fabisch, M.; Beuling, F.; Akob, D.M.; Kusel, K. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH4.4 or at high heavy metal concentrations. Front. Microbiol. 2013, 4, 390. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 2003, 200, 105–115. [Google Scholar] [CrossRef]
- Kasama, T.; Murakami, T. The effect of microorganisms on Fe precipitation rates at neutral pH. Chem. Geol. 2001, 180, 117–128. [Google Scholar] [CrossRef]
- Vempati, R.K.; Loeppert, R.H. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clays Clay Miner. 1989, 37, 273–279. [Google Scholar] [CrossRef]
- Payne, T.E.; Davis, J.A.; Waite, T.D. Uranium Adsorption on Ferrihydrite—Effects of Phosphate and Humic Acid. Radiochim. Acta 1996, 74, 239–243. [Google Scholar] [CrossRef]
- Ferris, F.G. Biogeochemical Properties of Bacteriogenic Iron Oxides. Geomicrobiol. J. 2005, 22, 79–85. [Google Scholar] [CrossRef]
- Kazamel, B.G.; Jamieson, H.E.; Leybourne, M.I.; Falck, H.; Johannesson, K.H. Aqueous geochemistry and mineralogy of tungsten with emphasis on mine wastes. Econ. Geol. 2023, 118, 659–674. [Google Scholar] [CrossRef]
t °C | pH | Eh, mV | EC µS/cm | DO, mg/L | Fe, mg/L | W, µg/L | S, mg/L | Si, mg/L | Na, mg/L | K, mg/L | Ca, mg/L | Mg, mg/L | Al, mg/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7–11.5 | 4.4–6.5 | 203–389 | 100–202 | 2.1–7.7 | 0.2–3.3 | 0.19–3.5 | 6–12 | 6–22 | 6–10 | 0.8–1.9 | 5.9–11.3 | 1.5–2 | 0.03–0.26 |
Samples | 2019-04 | 2019-09 | 2020-05 | 2020-10 | ||||
---|---|---|---|---|---|---|---|---|
Area | Light | Dark | Light | Dark | Light | Dark | Light | Dark |
Na2O | n/d | 0.27 | n/d | 0.16 | n/d | n/d | n/d | n/d |
MgO | 0.12 | 0.41 | 0.37 | 0.48 | 0.1 | 0.14 | 0.24 | 0.29 |
Al2O3 | 1.62 | 6.3 | 4.61 | 6.48 | 0.85 | 2.46 | 2.35 | 5.63 |
SiO2 | 9.42 | 20.59 | 16.83 | 20.42 | 14.4 | 11.71 | 11.77 | 15.82 |
P2O5 | 0.15 | 0.54 | 0.5 | 0.54 | 0.37 | 0.39 | 0.52 | 0.57 |
SO3 | 3.75 | 1.43 | 1.34 | 0.8 | 4.48 | 2.61 | 3.27 | 1.26 |
Cl | 0.12 | 0.1 | 0.1 | 0.14 | 0.07 | n/d | 0.05 | n/d |
K2O | n/d | 0.43 | 0.52 | 0.84 | n/d | 0.07 | n/d | 0.17 |
CaO | 0.22 | 0.33 | 0.34 | 0.52 | 0.1 | 0.14 | 0.11 | 0.26 |
TiO2 | n/d | n/d | 0.12 | n/d | n/d | n/d | n/d | n/d |
MnO | n/d | n/d | 0.07 | n/d | n/d | n/d | n/d | n/d |
Fe2O3 | 82.97 | 60.79 | 72.34 | 57.48 | 79.17 | 61.81 | 81.43 | 65.14 |
Total | 98.37 | 91.18 | 97.13 | 87.87 | 99.54 | 79.33 | 99.73 | 89.13 |
2020-05 | 2020-10 | 2021-01 | 2021-07 | 2022-04 | 2022-07 | 2023-04 | |
---|---|---|---|---|---|---|---|
Na2O | 0.05 | 0.05 | 0.05 | 0.17 | 0.05 | 0.05 | 0.16 |
MgO | 0.17 | 0.23 | 0.18 | 0.39 | 0.35 | 0.34 | 0.45 |
Al2O3 | 2.55 | 4.41 | 2.83 | 6.17 | 6.67 | 6.38 | 6.63 |
SiO2 | 11.98 | 14.8 | 13.5 | 13.58 | 15.16 | 16.02 | 18.81 |
P2O5 | 0.38 | 0.54 | 0.47 | 0.54 | 0.43 | 0.41 | 0.34 |
SO3 | 3.09 | 1.39 | 1.42 | 1.32 | 1.4 | 0.79 | 0.93 |
Cl | 0.07 | 0.11 | 0.09 | 0.11 | 0.08 | 0.06 | 0.08 |
K2O | 0.09 | 0.13 | 0.09 | 0.21 | 0.3 | 0.27 | 0.4 |
CaO | 0.07 | 0.21 | 0.18 | 0.33 | 0.47 | 0.47 | 0.51 |
TiO2 | 0 | 0 | 0 | 0.11 | 0.18 | 0.12 | 0.15 |
Fe2O3 | 64.1 | 62.72 | 57.71 | 51.07 | 51.3 | 50.6 | 44.21 |
Total | 82.55 | 84.59 | 76.52 | 74 | 76.39 | 75.51 | 72.67 |
W | 769 | 634 | 830 | 986 | 882 | 1106 | 660 |
Mo | 187 | 153 | 203 | 200 | 146 | 192 | 114 |
U | 9.7 | 9.1 | 10.2 | 15.8 | 14.6 | 17.1 | 17 |
As | 13.1 | 15.1 | 19.8 | 10.4 | 9.4 | 10.7 | 8.4 |
Pb | 64 | 100 | 91.4 | 110 | 111 | 97 | 74 |
Bi | 9.4 | 12 | 13.8 | 14.2 | 11.5 | 12.1 | 8.4 |
Cu | 9.9 | 12.7 | 11.5 | 21.3 | 12.4 | 16.6 | 13.5 |
Zn | 32 | 52 | 65 | 78 | 70 | 65 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarassov, M.; Tarassova, E.; Lyubomirova, V.; Stavrev, M.; Tacheva, E.; Benderev, A. Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria. Minerals 2024, 14, 1090. https://doi.org/10.3390/min14111090
Tarassov M, Tarassova E, Lyubomirova V, Stavrev M, Tacheva E, Benderev A. Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria. Minerals. 2024; 14(11):1090. https://doi.org/10.3390/min14111090
Chicago/Turabian StyleTarassov, Mihail, Eugenia Tarassova, Valentina Lyubomirova, Milen Stavrev, Elena Tacheva, and Aleksey Benderev. 2024. "Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria" Minerals 14, no. 11: 1090. https://doi.org/10.3390/min14111090
APA StyleTarassov, M., Tarassova, E., Lyubomirova, V., Stavrev, M., Tacheva, E., & Benderev, A. (2024). Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria. Minerals, 14(11), 1090. https://doi.org/10.3390/min14111090