Research on the Adsorption Performance of Zeolites for Dimethyl Ether
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Samples Preparation
2.2.1. Preparation of Na-Type Ultra-Stable Y Zeolite (NaUSY) Powder
2.2.2. Preparation of Magnesium Ion Exchange X Zeolite Powder
2.2.3. Extrusion Molding of Adsorbent
2.3. Adsorption Capacity Evaluation
2.4. Sample Characterization
3. Results and Discussion
3.1. Preliminary Screening of Zeolite Adsorption Materials
3.2. Ion Exchange Modification of the NaX Zeolite
3.3. FAU Zeolite Molding
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.H. Comprehensive utilization of C4 hydrocarbon. Petrochem. Technol. 2003, 32, 808–814. [Google Scholar] [CrossRef]
- Boulamanti, A.; Moya, J.A. Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renew. Sustain. Energy Rev. 2017, 68, 1205–1212. [Google Scholar] [CrossRef]
- Gholami, Z.; Gholami, F.; Tišler, Z.; Vakili, M. A Review on the production of light olefins using steam cracking of hydrocarbons. Energies 2021, 14, 8190. [Google Scholar] [CrossRef]
- Almuqati, N.S.; Aldawsari, A.M.; Alharbi, K.N.; González-Cortés, S.; Alotibi, M.F.; Alzaidi, F.; Dilworth, J.R.; Edwards, P.P. Catalytic production of light olefins: Perspective and prospective. Fuel 2024, 366, 131270. [Google Scholar] [CrossRef]
- Singh, O.; Khairun, H.S.; Joshi, H.; Sarkar, B.; Gupta, N.K. Advancing light olefin production: Exploring pathways, catalyst development, and future prospects. Fuel 2024, 379, 132992. [Google Scholar] [CrossRef]
- Chernyak, S.A.; Corda, M.; Dath, J.-P.; Ordomsky, V.V.; Khodakov, A.Y. Light olefin synthesis from a diversity of renewable and fossil feedstocks: State-of the-art and outlook. Chem. Soc. Rev. 2022, 51, 7994–8044. [Google Scholar] [CrossRef]
- Standl, S.; Hinrichsen, O. Kinetic modeling of catalytic olefin cracking and methanol-to-olefins (MTO) over zeolites: A Review. Catalysts 2018, 8, 626. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Zhao, S.; Zhang, L. A molecular kinetic model for heavy gas oil catalytic pyrolysis to light olefins. AIChE J. 2023, 69, e18116. [Google Scholar] [CrossRef]
- Deng, J.; Chen, P.; Xia, S.; Zheng, M.; Song, D.; Lin, Y.; Liu, A.; Wang, X.; Zhao, K.; Zheng, A. Advances in oxidative coupling of methane. Atmosphere 2023, 14, 1538. [Google Scholar] [CrossRef]
- Ni, H.; Hsu, C.S.; Ma, C.; Shi, Q.; Xu, C. Separation and characterization of olefin/paraffin in coal tar and petroleum coker oil. Energy Fuels 2013, 27, 5069–5075. [Google Scholar] [CrossRef]
- Xu, Y.; Zuo, Y.; Yang, W.; Shu, X.; Chen, W.; Zheng, A. Targeted catalytic cracking to olefins (TCO): Reaction mechanism, production scheme, and process perspectives. Engineering 2023, 11, 100–109. [Google Scholar] [CrossRef]
- Sher, J.; Van Egmond, C.F.; Martens, L.R.M.; Janssen, M.J.; Lattner, J.R.; Xu, T. Controlling the Ratio of Ethylene to Propylene Produced in an Oxygenate to Olefin Conversion Process. U.S. Patent 7,199,276B2, 4 March 2007. [Google Scholar]
- Lattner, J.R.; Lumgair, D.R. Method of Removing Oxygenate Contaminants from an Olefin Stream. U.S. Patent 6,838,587B2, 4 January 2005. [Google Scholar]
- Egmond, C.F.V.; Wilson, D.J. Method for Contaminants Removal in the Olefin Production Process. U.S. Patent 8,309,776B2, 13 November 2012. [Google Scholar]
- Nieskens, D.L.S.; Ferrari, D.; Liu, Y.; de Putter, S.A. Effect of oxygenate impurities on the conversion of alcohols to olefins. Ind. Eng. Chem. Res. 2014, 53, 10892–10898. [Google Scholar] [CrossRef]
- Amsler, J.; Plessow, P.N.; Studt, F. Effect of impurities on the initiation of the methanol-to-olefins process: Kinetic modeling based on Ab Initio rate constants. Catal. Lett. 2021, 151, 2595–2602. [Google Scholar] [CrossRef]
- Vogt, C.; Weckhuysen, B.M.; Ruiz-Martínez, J. Effect of feedstock and catalyst impurities on the methanol-to-olefin reaction over H-SAPO-34. ChemCatChem 2017, 9, 183–194. [Google Scholar] [CrossRef]
- Amin Hedayati, M. Simulation and optimization of separation section in methanol to olefin (MTO) process based on statistical approach. Chem. Pap. 2022, 76, 4787–4794. [Google Scholar] [CrossRef]
- Takehiro, Y.; Motomu, S.; Masahiko, M.; Susumu, T.; Naoyuki, S.; Nobuo, T.; Sho, K. Impact of process configuration on energy consumption and membrane area in hybrid separation process using olefin-selective zeolite membrane. Sep. Purif. Technol. 2022, 294, 121208. [Google Scholar] [CrossRef]
- Wang, Y.; Peh, S.B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058. [Google Scholar] [CrossRef]
- Grande, C.A.; Cavenati, S.; Da Silva, F.A.; Rodrigues, A.E. Carbon molecular sieves for hydrocarbon separations by adsorption. Ind. Eng. Chem. Res. 2005, 44, 7218–7227. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Siquet, C.; Ribeiro, A.M.; Ferreira, A.F.P.; Rodrigues, A.E. From carbon molecular sieves to VOCs filters: Carbon gels with tailored porosity for hexane isomers adsorption and separation. Microporous Mesoporous Mater. 2018, 270, 161–167. [Google Scholar] [CrossRef]
- Yu, H.; Zang, J.; Guo, C.; Li, B.; Li, B.; Zhang, X.; Chen, T. Research progress on adsorption and separation of petroleum hydrocarbon molecules by porous materials. Separations 2023, 10, 17. [Google Scholar] [CrossRef]
- Dolan, W.; Speronello, B.; Maglio, A.; Reinertsen, D.; Mooney, D.R. Lower Reactivity Adsorbent and Higher Oxygenate Capacity for Removal of Oxygenates from Olefin Streams. U.S. Patent 8,147,588B2, 3 April 2012. [Google Scholar]
- Bellat, J.F. Selective adsorption of formaldehyde and water vapors in NaY and NaX zeolites. Microporous Mesoporous Mater. 2019, 288, 109563. [Google Scholar] [CrossRef]
- Bellat, J.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J.; Lamonier, J. Capture of formaldehyde by adsorption on nanoporous materials. J. Hazard. Mater. 2015, 300, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Muñoz, G.; Calero-Berrocal, R.; Larriba, M.; Águeda, V.I.; Delgado, J.A. Influence of sodium and potassium proportion on the adsorption of methanol and water on LTA zeolites at high temperature. Microporous Mesoporous Mater. 2023, 360, 112669. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Zhang, J.; Cheng, Y.Y.; Wu, X.Y.; Mai, Y.Y.; Chen, B.H.; Xu, J.A. Preparation of Zinc-modified Adsorbent and Research on Adsorption Performance for Removing Carbon-oxygen Compounds. Shanghai Chem. Ind. 2017, 42, 15–19. [Google Scholar] [CrossRef]
- Zhou, G.L.; Wu, Q.G.; Li, X.J.; Zhou, H.J. Industrial application of removing oxygenated contaminants for post-MTBE C4 in liquid state at normal temperature. Chem. Ind. Eng. Prog. 2012, 31, 2353–2356. [Google Scholar] [CrossRef]
- Li, H.F.; Xu, H.; Zhao, Q.; Shen, H.B. Adsorption Performance of Formaldehyde on Molecular Sieve. Bull. Chin. Ceram. Soc. 2014, 33, 122–126. [Google Scholar] [CrossRef]
- Liu, X.F.; Li, B.; Liu, Q. Base-Metal-Catalyzed Olefin Isomerization Reactions. Synthesis 2019, 51, 1293–1310. [Google Scholar] [CrossRef]
- Bai, B.K.; Meng, Y.; Chen, S.P. Adsorption performance and pore structure of 4A Molecular Sieve. Bull. Chin. Ceram. Soc. 2020, 39, 3367–3372. [Google Scholar] [CrossRef]
- Yu, M.X.; Li, Z.; Ji, Q.N.; Wang, S.W.; Su, D.G. Effect of thermal oxidation of activated carbon surface on its adsorption towards dibenzothiophene. Chem. Eng. J. 2009, 148, 242–247. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, X.; Sun, W.; Zhou, H. Adsorption removal of dimethyl ether from low carbon hydrocarbons by modified NaY zeolite. Acta Pet. Sin. (Pet. Process. Sect.) 2014, 30, 421–427. [Google Scholar] [CrossRef]
- Fan, S.; Wang, H.; Wang, S.; Dong, M.; Fan, W. Recent progress in the deactivation mechanism of zeolite catalysts in methanol to olefins. Sci. China Chem. 2024, 67. [Google Scholar] [CrossRef]
- Hwang, A.; Bhan, A. Deactivation of zeolites and zeotypes in methanol-to-hydrocarbons catalysis: Mechanisms and circumvention. Acc. Chem. Res. 2019, 52, 2647–2656. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2/g) | SExt (m2/g) | VTotal (cm3/g) | VMicro (cm3/g) | Si/Al β | Mn+ | Na+/Al | Adsorption Capacity qb (mg/g) γ |
---|---|---|---|---|---|---|---|---|
3A | --α | -- | -- | -- | 0.89 | Na+/K+ | 0.58 | 0 |
4A | --α | -- | -- | -- | 0.89 | Na+ | 1.15 | 100.9 |
5A | 619.4 | 19.8 | 0.30 | 0.28 | 0.89 | Na+/Ca2+ | 0.25 | 95.1 |
NaX | 726.7 | 26.6 | 0.34 | 0.33 | 1.09 | Na+ | 1.13 | 154.3 |
NaY | 752.4 | 38.7 | 0.36 | 0.33 | 2.33 | Na+ | 1.16 | 116.2 |
NaUSY | 654.0 | 34.0 | 0.37 | 0.24 | 4.80 | Na+ | 0.09 | 10.9 |
Sample | Crystallinity % | Si/Al α | Na/Al | SBET (m2/g) | SMicro β (m2/g) | VTotal (cm3/g) | Radial Compressive Strength (N/cm) |
---|---|---|---|---|---|---|---|
NaX | 100 | 1.09 | 1.13 | 726.7 | 700.1 | 0.34 | -- |
MgNaX | 93 | 1.10 | 0.78 | 666.0 | 639.3 | 0.32 | -- |
wMgNaX | 93 | 1.10 | 0.68 | 645.0 | 611.1 | 0.33 | -- |
NaX-Al2O3 | -- | 0.32 | 0.31 | 503.1 | 312.4 | 0.36 | 25.5 |
MgNaX-Al2O3 | -- | 0.30 | 0.20 | 499.4 | 312.2 | 0.35 | 31.8 |
wMgNaX-Al2O3 | -- | 0.31 | 0.19 | 459.1 | 274.3 | 0.36 | 27.7 |
Al2O3 | -- | 0 | 0 | 279.2 | 0 | 0.39 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, X.; Xue, Z.; Jiao, W.; Dong, J.; Liu, S.; Mao, D. Research on the Adsorption Performance of Zeolites for Dimethyl Ether. Minerals 2024, 14, 1141. https://doi.org/10.3390/min14111141
Nie X, Xue Z, Jiao W, Dong J, Liu S, Mao D. Research on the Adsorption Performance of Zeolites for Dimethyl Ether. Minerals. 2024; 14(11):1141. https://doi.org/10.3390/min14111141
Chicago/Turabian StyleNie, Xiaoqing, Zhaoteng Xue, Wenqian Jiao, Jing Dong, Su Liu, and Dongsen Mao. 2024. "Research on the Adsorption Performance of Zeolites for Dimethyl Ether" Minerals 14, no. 11: 1141. https://doi.org/10.3390/min14111141
APA StyleNie, X., Xue, Z., Jiao, W., Dong, J., Liu, S., & Mao, D. (2024). Research on the Adsorption Performance of Zeolites for Dimethyl Ether. Minerals, 14(11), 1141. https://doi.org/10.3390/min14111141