Extraction of Lanthanides(III) from Nitric Acid Solutions with N,N′-dimethyl-N,N′-dicyclohexyldiglycolamide into Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Their Mixtures with Molecular Organic Diluents
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis
3. Results and Discussion
3.1. Interaction of DMDCHDGA with Components of Ionic Liquid [C4mim][Tf2N]
3.1.1. Distribution of Tf2N− Ions in the DMDCHDGA—[C4mim][Tf2N]—1,2-dichloroethane (DCE)—Water System
[C4mimTf2N](org) (1 + β[L]n(org))/[Tf2N−] = Do(1 + β[L]n(org))
3.1.2. Extraction of HTf2N Acid with DMDCHDGA into DCE
3.1.3. Distribution of Tf2N− Ions in the DMDCHDGA–[C4mim][Tf2N]–DCE//Aqueous HNO3 Solutions System
3.1.4. Distribution of Tf2N− Ions in the DMDCHDGA—Undiluted [C4mim][Tf2N]//Aqueous HNO3 Solutions System
3.2. Efficiency and Selectivity of Ln(III) Extraction with DMDCHDGA and TODGA into C4mimTf2N Ionic Liquid and Molecular Organic Solvent
3.3. Effect of the Composition of the Aqueous Phase on the Extraction of Ln(III) with DMDCHDGA into [C4mim][Tf2N]
3.4. Stoichiometry of Extracted Ln(III) Complexes
3.5. IR Spectra Study of the Extracted Species
3.6. Effect of the Cationic Part of the Ionic Liquid on the Extraction of Ln(III) with DMDCHDGA
3.7. Extraction of Lanthanides(III) from Aqueous Nitric Acid Solutions with Mixtures of DMDCHDGA and Ionic Liquids in Molecular Organic Diluent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environment impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Rho, B.-J.; Sun, P.-P.; Cho, S.-Y. Recovery of neodymium and praseodymium from nitrate-based leachate of permanent magnet by solvent extraction with trioctylphosphine oxide. Sep. Purif. Technol. 2020, 238, 116429. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Wang, B.; Wang, K.; Wu, R.; Ekberg, C.; Volinsky, A.A. Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass. J. Clean Prod. 2019, 238, 117998. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J. Extraction and separation of heavy of rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
- Wei, H.; Li, Y.; Zhang, Z.; Liao, W. Synergistic solvent extraction of heavy rare earth from chloride media using mixture of HEHHAP and Cyanex272. Hydrometallurgy 2020, 191, 105242. [Google Scholar] [CrossRef]
- Leonchini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar] [CrossRef]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Miner. Eng. 2018, 121, 146–157. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sugo, Y.; Suzuki, S.; Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3—n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91–103. [Google Scholar] [CrossRef]
- Tachimori, S.; Sasaki, Y.; Suzuki, S. Modification of TODGA—n-dodecane solvent with monoamide for high loading of lanthanides(III) and actinides(III). Solvent Extr. Ion Exch. 2002, 20, 687–699. [Google Scholar] [CrossRef]
- Ansari, S.A.; Pathak, P.N.; Manchanda, V.K.; Husain, M.; Prasad, A.K.; Parmar, V.S. N,N,N′,N′-tetraoctyldiglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr. Ion Exch. 2005, 23, 463–479. [Google Scholar] [CrossRef]
- Sasaki, Y.; Rapold, P.; Arisaka, M.; Hirata, M.; Kimura, T. An additional insight into the correlation between the distribution ratios and the aqueous acidity of the TODGA system. Solvent Extr. Ion Exch. 2007, 25, 187–204. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sugo, N.; Morita, Y.; Nash, K.L. The effect of alkyl substituents on actinide and lanthanide extraction by diglycolamide compounds. Solvent Extr. Ion Exch. 2015, 33, 625–641. [Google Scholar] [CrossRef]
- Mowafy, E.A.; Mohamed, D. Extraction behavior of trivalent lanthanides from nitric acid medium by selected structurally related diglycolamides as novel extractants. Sep. Purif. Technol. 2014, 128, 18–24. [Google Scholar] [CrossRef]
- Ansari, S.A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K. Chemistry of diglycolamides: Promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751–1772. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, X.; Song, L.; Wang, X.; Xiao, Q.; Feng, Q.; Ding, S. Extraction and complexation of trivalent rare earth elements with tetralkyl diglycolamides. Inorg. Chim. Acta 2020, 513, 119928. [Google Scholar] [CrossRef]
- Mowafy, E.A.; Alshammari, A.; Mohamed, D. Extraction behavior of critical trivalent rare earth elements with novel selected structurally related diglycolamides. Solvent Extr. Ion Exch. 2022, 40, 387–411. [Google Scholar] [CrossRef]
- Sasaki, Y.; Choppin, R. Solvent extraction of Eu, th, U, Np and Am with N,N′-dimethyl-N,N′-dihexyl-3-oxapentanediamide and its analogous compounds. Anal. Sci. 1996, 12, 225–230. [Google Scholar] [CrossRef]
- Sun, G.X.; Liu, M.; Cui, Y.; Yuan, M.L.; Yin, S.H. Synthesis of N,N′-dimethyl-N,N′-dioctyl-3-oxadiglycolamide and its extraction properties for lanthanides. Solvent Extr. Ion Exch. 2010, 28, 482–494. [Google Scholar] [CrossRef]
- Venkatesan, K.A.; Antony, M.P.; Srinivasan, T.G.; Rao, P.R.V. New unsymmetrical diglycolamide ligands for trivalent actinide separation. Radiochim. Acta 2014, 102, 609–617. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Gao, Y.; Wei, Z.; Zhou, Y.; Zhang, M.; Hou, H.G.; Tian, G.X.; He, H. Extraction behavior and third phase formation of neodymium from nitric acid medium in N,N′-dimethyl-N,N′-dioctyl-3-oxadiglycolamide. J. Radioanal. Nucl. Chem. 2018, 318, 2087–2096. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Liu, Z.; Zhou, Y.; Jiao, C.; Zhang, M.; Hou, H.; Gao, Y.; He, H.; Tian, G. Extraction and stripping behaviors of 14 lanthanides from nitric acid medium by N,N′-dimethyl-N,N′-dioctyl-3-oxadiglycolamide. J. Radioanal. Nucl. Chem. 2020, 325, 409–416. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem. Commun. 1998, 16, 1765–1766. [Google Scholar] [CrossRef]
- Dai, S.; Yu, Y.H.; Barnes, C.E. Solvent extraction of strontium nitrate by a crown ether using room temperature ionic liquids. J. Chem. Soc. Dalton Trans. 1999, 8, 1201–1202. [Google Scholar] [CrossRef]
- Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Feasibility of ionic liquids as alternative for industrial solvent extraction processes. Ind. Eng. Chem. Res. 2005, 44, 4368–4372. [Google Scholar] [CrossRef]
- Luo, H.; Dai, S.; Bonnesen, P.V.; Haverlock, T.J.; Moyer, B.A.; Buchanan, A.C., III. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6. Solvent Extr. Ion Exch. 2006, 24, 19–31. [Google Scholar] [CrossRef]
- Dietz, M.L. Ionic liquids as extraction solvents: Where do we stand? Sep. Sci. Technol. 2006, 41, 2047–2063. [Google Scholar] [CrossRef]
- Billard, I.; Ouadi, A.; Gaillard, C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: From discovery to understanding. Anal. Bioanal. Chem. 2011, 400, 1555–1566. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Marin, T.W.; Jensen, M.P. Ionic liquid based separation of trivalent lanthanide and actinide ions. Ind. Eng. Chem. Res. 2014, 53, 3641–3653. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent extraction chemistry in ionic liquids: An overview of f-ions. J. Mol. Liq. 2021, 343, 117530. [Google Scholar] [CrossRef]
- Iqbal, M.; Waheed, K.; Rahat, S.B.; Mehmood, T.; Lee, M.S. An overview of molecular extractants in room temperature ionic liquids and task specific ionic liquids for the partitioning of actinides/lanthanides. J. Radioanal. Nucl. Chem. 2020, 325, 1–31. [Google Scholar] [CrossRef]
- Wang, K.; Adidharma, H.; Radosz, M.; Wang, P.; Xu, X.; Russell, C.K.; Tian, H.; Fan, M.; Yu, J. Recovery of rare earth elements with ionic liquids. Green Chem. 2017, 19, 4469–4493. [Google Scholar] [CrossRef]
- Arrachart, G.; Couturier, J.; Dourdain, S.; Levard, C.; Pellet-Rostaing, S. Recovery of rare earth elements (REEs) using ionic liquids. Processes 2021, 9, 1202. [Google Scholar] [CrossRef]
- Prusty, S.; Pradhan, S.; Mishra, S. Ionic liquids as an emerging alternative for the separation and recovery of Nd, Sm and Eu using solvent extraction technique—A review. Sustain. Chem. Pharm. 2021, 21, 100434. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Romero, J. Solvent extraction of rare-earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements. Curr. Opin. Green Sustain. Chem. 2021, 27, 100428. [Google Scholar] [CrossRef]
- Parmentier, D.; Hoogestraete, T.V.; Metz, S.J.; Binnemans, K.; Kroon, M.C. Selective extraction of metals from chloride solutions with the tetraoctylphosphonium oleate ionic liquid. Ind. Eng. Chem. Res. 2015, 54, 5149–5158. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Robla, J.I.; Largo, O.R. Recent uses of ionic liquids in the recovery and utilization of the rare earth elements. Minerals 2024, 14, 734. [Google Scholar] [CrossRef]
- Shimojo, K.; Kurahashi, K.; Naganawa, H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans. 2008, 37, 5083–5088. [Google Scholar] [CrossRef]
- Mincher, M.E.; Quach, D.L.; Liao, Y.J.; Mincher, B.J.; Wai, C.M. The partitioning of americium and lanthanides using tetrabutyldiglycolamide (TBDGA) in octanol and ionic liquid solution. Solvent Extr. Ion Exch. 2012, 30, 735–747. [Google Scholar] [CrossRef]
- Panja, S.; Mohapatra, P.K.; Tripathi, S.C.; Gandhi, P.M.; Janardan, P. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 2012, 96, 289–295. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, C.; Hu, Y.; Liu, Y.; Zhou, Y.; Jiao, C.; Zhang, M.; Hou, H. Extraction behavior of several lanthanides from nitric acid with DMDODGA in [C4mim][NTf2] ionic liquid. J. Radioanal. Nucl. Chem. 2021, 327, 565–573. [Google Scholar] [CrossRef]
- Mohapatra, P.K. Diglycolamide-based solvent systems in room temperature ionic liquids for actinide ion extraction: A review. Chem. Prod. Process Model. 2015, 10, 135–145. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Effect of anions on the extraction of lanthanides(III) by N,N′-dimethyl-N,N′-diphenyl-3-oxapentanediamide. Solvent Extr. Ion Exch. 2008, 26, 77–99. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extraction of alkaline earth metal ions with TODGA in the presence of ionic liquids. Solvent Extr. Ion Exch. 2010, 28, 367–387. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Khvostikov, V.A. Synergistic extraction of lanthanides(III) with mixtures of TODGA and hydrophobic ionic liquid into molecular diluent. Solvent Extr. Ion Exch. 2017, 35, 461–479. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Boltoeva, M.; Gaillard, C.; Mazan, V. Synergistic extraction of uranium(VI) with TODGA and hydrophobic ionic liquid mixtures in molecular diluent. Sep. Purif. Technol. 2016, 164, 97–106. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Sharova, E.V.; Genkina, G.K.; Artyushin, O.I.; Baimukhanova, A. Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole-modified carbamoylmethylphosphine oxide from nitric acid solutions. Radiochim. Acta 2018, 106, 355–362. [Google Scholar] [CrossRef]
- Gan, Q.; Cai, Y.; Fu, K.; Yuan, L.; Feng, W. Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions. Radiochim. Acta 2020, 108, 239–247. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extraction of lanthanides(III) from aqueous nitric acid solutions with tetra(n-octyl)diglycolamide into methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ionic liquid and its mixtures with molecular organic diluents. Minerals. 2023, 13, 736. [Google Scholar] [CrossRef]
- Leoncini, A.; Huskens, J.; Verboom, W. Preparation of diglycolamides via schotten-baumann approach and direct amidation of esters. Synlett. 2016, 27, 2463–2466. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Khvostikov, V.A.; Baulin, V.E.; Baulin, D.V. Extraction of REE(III) from nitric acid media with solutions of tetraoctyldiglycolamide in trioctylammonium bis[(trifluoromethyl)sulfonyl]imide. Rus. J. Gen. Chem. 2023, 93, 2041–2047. [Google Scholar] [CrossRef]
- Li, C.; He, H.; Hou, C.; He, M.; Jiao, C.; Pan, Q.; Zhang, M. A quantum-chemistry and molecular-dynamic study of non-covalent interaction between tri-n-butyl phosphate and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. J. Mol. Liq. 2022, 360, 119430. [Google Scholar] [CrossRef]
- Smith, A.L. Applied Infrared Spectroscopy: Fundamentals, Techniques, and Analytical Problem-Solving; John Wiley & Sons: Chichester, UK, 1979. [Google Scholar]
- Höfft, O.; Bahr, S.; Kempter, V. Investigations with Infrared Spectroscopy on Films of the Ionic Liquid [EMIM]Tf2N. Langmuir 2008, 24, 11562–11566. [Google Scholar] [CrossRef] [PubMed]
- Sobota, M.; Nikiforidis, I.; Hieringer, W.; Paape, N.; Happel, M.; Steinrück, H.-P.; Görling, A.; Wasserscheid, P.; Laurin, M.; Libuda, J. Toward Ionic-Liquid-Based Model Catalysis: Growth, Orientation, Conformation, and Interaction Mechanism of the [Tf2N]−Anion in [BMIM][Tf2N] Thin Films on a Well-Ordered Alumina Surface. Langmuir 2010, 26, 7199–7207. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cheng, Z. Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes 2021, 9, 337. [Google Scholar] [CrossRef]
- Endres, F.; El Abedin, S.Z. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 2006, 8, 2101–2116. [Google Scholar] [CrossRef]
- Gaillard, C.; Boltoeva, M.; Billard, I.; Georg, S.; Mazan, V.; Ouadi, A.; Ternova, D.; Henning, C. Insights into the mechanism of extraction of uranium (VI) from nitric acid solution into an ionic liquid by using tri-n-butyl phosphate. ChemPhysChem 2015, 16, 2653–2662. [Google Scholar] [CrossRef]
- Tolstikova, L.L.; Bel’skikh, A.V.; Shainyan, B.A. Protonation and alkylation of organophosphorus compounds with trifluoromethanesulfonic acid derivatives. Russ. J. Gen. Chem. 2011, 81, 474–480. [Google Scholar] [CrossRef]
- Foropoulos, J.; DesMarteau, D.D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH. Inorg. Chem. 1984, 23, 3720–3723. [Google Scholar] [CrossRef]
- Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J.C.; Grondin, J.; Servant, L. Spectroscopic and Theoretical Study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A 1998, 102, 3249–3258. [Google Scholar] [CrossRef]
- Tu, M.-H.; DesMarteau, D.D. NMR and IR studies of bis((perfluoroalkyl)sulfonyl)imides. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Peroutka, A.A.; Galley, S.S.; Shafer, J.C. Elucidating the speciation of extracted lanthanides by diglycolamides. Coord. Chem. Rev. 2023, 482, 215071. [Google Scholar] [CrossRef]
- Binnemans, K. Lanthanides and actinides in ionic liquids. Chem. Rev. 2007, 107, 2592–2614. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Matsumiya, M.; Yamada, T.; Tsunashima, K. Extraction of Pr(III), Nd(III), and Dy(III) from HTFSA Aqueous Solution by TODGA/Phosphonium-Based Ionic Liquids. Solvent Extr. Ion Exch. 2016, 34, 172–187. [Google Scholar] [CrossRef]
- Atanassova, M.; Kurteva, V. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes. RSC Adv. 2016, 6, 11303–11324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turanov, A.N.; Karandashev, V.K.; Baulin, V.E.; Shulga, Y.M.; Baulin, D.V. Extraction of Lanthanides(III) from Nitric Acid Solutions with N,N′-dimethyl-N,N′-dicyclohexyldiglycolamide into Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Their Mixtures with Molecular Organic Diluents. Minerals 2024, 14, 1167. https://doi.org/10.3390/min14111167
Turanov AN, Karandashev VK, Baulin VE, Shulga YM, Baulin DV. Extraction of Lanthanides(III) from Nitric Acid Solutions with N,N′-dimethyl-N,N′-dicyclohexyldiglycolamide into Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Their Mixtures with Molecular Organic Diluents. Minerals. 2024; 14(11):1167. https://doi.org/10.3390/min14111167
Chicago/Turabian StyleTuranov, Alexander N., Vasilii K. Karandashev, Vladimir E. Baulin, Yury M. Shulga, and Dmitriy V. Baulin. 2024. "Extraction of Lanthanides(III) from Nitric Acid Solutions with N,N′-dimethyl-N,N′-dicyclohexyldiglycolamide into Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Their Mixtures with Molecular Organic Diluents" Minerals 14, no. 11: 1167. https://doi.org/10.3390/min14111167
APA StyleTuranov, A. N., Karandashev, V. K., Baulin, V. E., Shulga, Y. M., & Baulin, D. V. (2024). Extraction of Lanthanides(III) from Nitric Acid Solutions with N,N′-dimethyl-N,N′-dicyclohexyldiglycolamide into Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Their Mixtures with Molecular Organic Diluents. Minerals, 14(11), 1167. https://doi.org/10.3390/min14111167