Effect of Selective Milling on the Concentration Process of Critical Raw Materials from MSW Incinerator Bottom Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. pr.IBA as the Primary Investigated Sample
2.2. Selective Milling Procedure Using a Vertical Roller Mill
2.3. Characterization Methods
3. Experimental Results
3.1. Initial Characterization of pr.IBA
3.2. Mass Balance and Size Distribution After the Milling Process
3.3. Chemical Composition Development of Milling Products
4. Applicability of Selective Milling as a Concentration Process
5. Conclusions
- Despite already undergoing separation processes using state-of-the-art methods, the pr.IBA still holds immense and significant potential for metal and mineral recovery. In this case, a concentration process is successfully performed by selective milling to produce three different products with distinct chemical compositions: fine, middle, and coarse fractions. This outcome is the primary benefit of selective milling compared to conventional fine grinding, which can only reduce the particle size without any concentration mechanism and separation process.
- It is substantiated that the chemical composition of the resulting fine fraction and the concentration tendency between all milling products can remain relatively constant regardless of the input materials if the milling parameter can be adjusted within a tolerable fluctuation, indicating the reliability of the selective milling.
- This study demonstrated that by taking advantage of the hardness characteristics of various compounds in pr.IBA, an enrichment of calcium-bearing materials can be produced in the fine fraction. Based on the analysis results, the phases include CaSO4, Ca2SiO4, and CaCO3, which are chemically necessary and, thus, possess potential as alternative materials for cement clinker production, both from the perspective of substituting natural resources and reducing carbon emissions.
- A similar application in cement production can also be foreseen from the middle fraction, considering its silicon enrichment and, interestingly, a lower copper content. In this instance, in contrast to the fine fraction, an enhancement in quality is still possible for the middle fraction. Specifically, due to its particle size, another separation process can still be carried out, which opens an opportunity to increase its value and produce an additional material stream.
- A significant segregation of metallic particles or metal-containing fractions (Fe and Cu) is expected within the coarse fraction, which is separated from the mineral fraction. Besides enhancing the valorizing potential of the fine and middle fractions in the cement industry, this coarse fraction can be further processed to recover the metal for conventional metal recycling operations and, as a byproduct, yield a coarse mineral fraction that might benefit another purpose in the construction sector.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
The Concentrations of the Major Elements in All the Milling Products
Appendix B
The Concentration of the Minor Elements in All the Milling Products
References
- Umfrage—Aufbereitung von HMV-Schlacken; German Association of Waste-to-Energy Plants (ITAD) and German Association of Incinerator Bottom Ash Processing Plants (IGAM): Duesseldorf and Berlin, Germany, 2022.
- Flamme, S.; Hanewinkel, J.; Quicker, P.; Weber, K. Energieerzeugung aus Abfällen: Stand und Potenziale in Deutschland bis 2030; German Environment Agency: Dessau-Roßlau, Germany, 2018. [Google Scholar]
- Chen, B.; Perumal, P.; Illikainen, M.; Ye, G. A Review on the Utilization of Municipal Solid Waste Incineration (MSWI) Bottom Ash as a Mineral Resource for Construction Materials. J. Build. Eng. 2023, 71, 106386. [Google Scholar] [CrossRef]
- Verbinnen, B.; Billen, P.; Van Caneghem, J.; Vandecasteele, C. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valorization 2017, 8, 1453–1466. [Google Scholar] [CrossRef]
- Kinnaman, T.C. Determining the Socially Optimal Recycling Rate. Resour. Conserv. Recycl. 2014, 85, 5–10. [Google Scholar] [CrossRef]
- Hesse, M.; Popov, O.; Lieberwirth, H. Increasing Efficiency by Selective Comminution. Miner. Eng. 2017, 103–104, 112–126. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI Ashes as Mineral Additions in Concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.; Spiesz, P.; Brauwers, H. Application of Thermally Activated Municipal Solid Waste Incineration (MSWI) Bottom Ash Fines as Binder Substitute. Cem. Concr. Compos. 2016, 70, 194–205. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Li, Z.; Chen, J.; Song, Y. Eco-friendly Treatment for MSWI Bottom Ash Applied to Supplementary Cementing: Mechanical Properties and Heavy Metal Leaching Concentration Evaluation. Constr. Build. Mater. 2022, 327, 127012. [Google Scholar] [CrossRef]
- Malaiškienė, J.; Spudulis, E.; Stonys, R. The Effect of Milled Municipal Solid Waste Incineration Bottom Ash on Cement Hydration and Mortar Properties. Materials 2023, 16, 2528. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, H.; Wu, Y.; Ren, Y.; Liu, J.; Xing, F. Influence of Municipal Solid Waste Incineration Bottom Ash Particle Size on Cement Hydration and Performance. Constr. Build. Mater. 2024, 432, 136516. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, G.; Chen, L.; Du, W.; Mu, W.; Yan, Y.; Sun, H. Physical and Mechanical Study of Municipal Solid Waste Incineration (MSWI) Bottom Ash with Different Particle Size Distribution. Constr. Build. Mater. 2024, 416, 135137. [Google Scholar] [CrossRef]
- Deike, R.; Adhiwiguna, I.; Ruhkamp, W.; Warnecke, R. Einsatz von Rostasche-Feinfraktion < 10 mm als Rohstoff für die Herstellung von Zement und Beton. In Mineralische Nebenprodukte und Abfälle 11, Neuruppin; Thomé-Kozmiensky Verlag GmbH: Neuruppin, Germany, 2024; pp. 192–209. [Google Scholar]
- Loesche GmbH. Loesche Mills for Industrial Minerals. August 2017. Available online: https://www.loesche.com/solutions/industrial-minerals (accessed on 26 July 2024).
- Wei, Y.; Shimaoka, T.; Saffarzadeh, A.; Takahashi, F. Mineralogical Characterization of Municipal Solid Waste Incineration Bottom Ash with an Emphasis on Heavy Metal-bearing Phases. J. Hazard. Mater. 2011, 187, 534–543. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Van Reeuwijk, L.P.; Bradley, J.P.; Comans, R.N.J.; Schuiling, R.D. Weathering of MSWI Bottom Ash with Emphasis on the Glassy Constituents. J. Geochem. Explor. 1998, 62, 293–298. [Google Scholar] [CrossRef]
- Piantone, P.; Bodenan, F.; Chatelet-Snidaro, L. Mineralogical Study of Secondary Mineral Phases from Weathered MSWI Bottom Ash: Implications for the Modelling and Trapping of Heavy Metals. Appl. Geochem. 2004, 19, 1891–1904. [Google Scholar] [CrossRef]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the Chemical and Mineralogical Properties of the Inorganic Portion of MSWI Bottom Ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/17; European Union: Brussels, Belgium, 2024. [Google Scholar]
- European Commission. Study on the Critical Raw Materials for the EU 2023–Final Report; European Union: Brussels, Belgium, 2023. [Google Scholar]
- Flores, G.A.; Risopatron, C.; Pease, J. Processing of Complex Materials in the Copper Industry: Challenges and Opportunities Ahead. JOM 2020, 72, 3447–3461. [Google Scholar] [CrossRef] [PubMed]
- BHP Group Limited. Technical Report Summary—Minera Escondida Limitada; BHP: Shanghai, China, 2022. [Google Scholar]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef]
- Magnuson, J.K.; Weiksnar, K.D.; Patel, A.D.; Clavier, K.A.; Ferraro, C.C.; Townsend, T.G. Processing Municipal Solid Waste Incineration Bottom Ash for Integration into Cement Product Manufacture. Resour. Conserv. Recycl. 2023, 198, 107139. [Google Scholar] [CrossRef]
- Vilarinho, I.S.; Guimarães, G.; Labrincha, J.A.; Seabra, M.P. Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash. Materials 2023, 16, 6933. [Google Scholar] [CrossRef] [PubMed]
- Deike, R.; Ebert, D.; Schubert, D.; Ulum, R.; Warnecke, R.; Vogell, M. Recovery of Metals and Minerals from Ash: Characteristics of Metals in the Fine Fraction of Bottom Ash & How can Metal Recycling be Profitable in Volatile Global Raw Materials Markets. In Proceedings of the International VDI Workshop, Amsterdam, The Netherlands, 16–20 June 2014. [Google Scholar]
- Broz, M.E.; Cook, R.F.; Whitney, D.L. Microhardness, Toughness, and Modulus of Mohs Scale Minerals. Am. Mineral. 2006, 91, 135–142. [Google Scholar] [CrossRef]
- Stephan, D.; Dikoundou, S.N.; Raudaschl-Sieber, G. Influence of Combined Doping of Tricalcium Silicate with MgO, Al2O3 and Fe2O3: Synthesis, Grindability, X-ray Diffraction and 29Si NMR. Mater. Struct. 2008, 41, 1729–1740. [Google Scholar] [CrossRef]
- Abouzeid, A.; Seifelnassr, A.; Ghorashi, A.; Mustafa, Y.; Ibrahim, A.F.M. Comparative Studies on the Grindability of Some Ore Minerals. J. Pet. Min. Eng. 2022, 24, 66–71. [Google Scholar] [CrossRef]
- Ulum, R.M. Copper Recovery from Fine Particle Grain Size Fraction of Bottom Ash from Waste to Energy Plants; Universität Duisburg Essen: Duisburg, Germany, 2017. [Google Scholar]
- Kolovos, K.; Tsivilis, S.; Kakali, G. The Effect of Foreign Ions on the Reactivity of the CaO-SiO2-Al2O3-Fe2O3 System Part II: Cations. Cem. Concr. Res. 2002, 32, 463–469. [Google Scholar] [CrossRef]
- Pan, J.R.; Huang, C.; Kuo, J.-J.; Lin, S.-H. Recycling MSWI Bottom and Fly Ash as Raw Materials for Portland Cement. Waste Manag. 2008, 28, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.H.K.; Barford, J.P.; McKay, G. Utilization of Incineration Waste Ash Residues in Portland Cement Clinker. Chem. Eng. Trans. 2010, 21, 757–762. [Google Scholar]
Major Components (wt.%) of pr.IBA | Minor Components (ppm) of pr.IBA | ||||
---|---|---|---|---|---|
Elements | 0–10 mm | 10–32 mm | Elements | 0–10 mm | 10–32 mm |
Silicon (Si) | 22.55 | 19.96 | Strontium (Sr) | 390 | 396 |
Calcium (Ca) | 13.87 | 10.99 | Nickel (Ni) | 292 | 485 |
Iron (Fe) | 7.66 | 6.92 | Tin (Sn) | 235 | 146 |
Aluminum (Al) | 3.86 | 4.17 | Antimony (Sb) | 174 | 130 |
Sodium (Na) | 2.36 | 2.43 | Cobalt (Co) | 75 | 45 |
Magnesium (Mg) | 1.31 | 1.04 | Molybdenum (Mo) | 45 | 37 |
Potassium (K) | 0.83 | 0.93 | Vanadium (V) | 43 | 75 |
Copper (Cu) | 0.56 | 0.47 | Arsenic (As) | 11 | 24 |
Zinc (Zn) | 0.54 | 0.27 | |||
Phosphorus (P) | 0.33 | 0.26 | |||
Barium (Ba) | 0.26 | 0.17 | |||
Manganese (Mn) | 0.15 | 0.11 | |||
Lead (Pb) | 0.14 | 0.34 | |||
Chromium (Cr) | 0.08 | 0.11 |
Major Components (wt.%) of pr.IBA | Minor Components (ppm) of pr.IBA | ||||
---|---|---|---|---|---|
Elements | var.Af | var.Bf | Elements | var.Af | var.Bf |
Silicon (Si) | 29.40 | 27.17 | Strontium (Sr) | 268 | 320 |
Calcium (Ca) | 9.77 | 10.13 | Nickel (Ni) | 88 | 82 |
Iron (Fe) | 1.60 | 1.88 | Tin (Sn) | 423 | 128 |
Aluminum (Al) | 3.28 | 4.28 | Antimony (Sb) | 74 | 69 |
Sodium (Na) | 3.41 | 4.22 | Cobalt (Co) | 44 | 29 |
Magnesium (Mg) | 0.95 | 1.05 | Molybdenum (Mo) | 5 | 7 |
Potassium (K) | 1.23 | 0.97 | Vanadium (V) | 39 | 42 |
Copper (Cu) | 0.47 | 0.35 | Arsenic (As) | 13 | 13 |
Zinc (Zn) | 0.45 | 0.35 | |||
Phosphorus (P) | 0.48 | 0.30 | |||
Barium (Ba) | 0.15 | 0.19 | |||
Manganese (Mn) | 0.08 | 0.08 | |||
Lead (Pb) | 0.38 | 0.38 | |||
Chromium (Cr) | 0.03 | 0.04 |
Selective Milling Product Variation | pr.IBA 0–10 mm | pr.IBA 10–32 mm | pr.IBA var.Af | pr.IBA var.Bf |
---|---|---|---|---|
F: Fine Fraction | 20–39 | 20–30 | 13–15 | 22–25 |
M: Middle Fraction | 41–61 | 45–55 | 37–38 | 62–66 |
C: Coarse Fraction | 16–25 | 18–34 | 47–50 | 12–13 |
Elements (wt.% Unless Stated) | pr.IBA 0–10 mm | pr.IBA 10–32 mm | pr.IBA var.Af | pr.IBA var.Bf |
---|---|---|---|---|
Silicon (Si) | 14.92–17.21 | 15.41–19.72 | 11.65–14.03 | 12.71–13.24 |
Calcium (Ca) | 17.60–20.14 | 13.60–14.75 | 11.15–11.58 | 17.94–18.16 |
Iron (Fe) | 5.94–6.32 | 4.97–5.34 | 2.61–2.78 | 3.76–3.81 |
Aluminum (Al) | 3.66–4.10 | 4.35–4.77 | 3.64–4.10 | 3.65–4.27 |
Sodium (Na) | 1.72–2.02 | 1.89–2.02 | 1.50–1.70 | 1.70–1.78 |
Magnesium (Mg) | 1.30–1.40 | 1.01–1.12 | 1.13–1.27 | 1.13–1.24 |
Potassium (K) | 0.92–0.98 | 1.05–1.10 | 0.90–1.36 | 0.89–1.31 |
Copper (Cu) | 0.33–0.38 | 0.20–0.36 | 0.15–0.17 | 0.27–0.28 |
Zinc (Zn) | 0.54–0.58 | 0.28–0.43 | 0.22–0.25 | 0.45–0.46 |
Phosphorus (P) | 0.40–0.45 | 0.24–0.30 | 0.42–1.00 | 0.42–0.97 |
Barium (Ba) | 0.31–0.33 | 0.19–0.38 | 0.15–0.16 | 0.20–0.21 |
Manganese (Mn) | 0.17–0.19 | 0.11–0.28 | 0.04–0.05 | 0.03–0.04 |
Lead (Pb) | 0.11–0.14 | 0.07–0.14 | 0.12–0.28 | 0.19–0.20 |
Chromium (Cr) | 0.08–0.09 | 0.05–0.14 | 0.03–0.04 | 0.04–0.05 |
Sulfur (S) | 1.93–2.34 | 1.07–1.49 | 0.75–0.86 | 1.82–2.13 |
ppm–Strontium (Sr) | 494–576 | 362–742 | 389–409 | 581–595 |
ppm–Nickel (Ni) | 304–315 | 222–436 | 88–119 | 115–119 |
ppm–Tin (Sn) | 163–180 | 99–206 | 112–114 | 240–246 |
ppm–Antimony (Sb) | 216–242 | 131–201 | 76–81 | 139–145 |
ppm–Cobalt (Co) | 45–55 | 45–159 | 69–80 | 99–103 |
ppm–Molybdenum (Mo) | 59–66 | 30–63 | 16–18 | 21–22 |
ppm–Vanadium (V) | 48–54 | 67–133 | 54–56 | 70–72 |
ppm–Arsenic (As) | 3–24 | 15–35 | 1–18 | 1–2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhiwiguna, I.B.G.S.; Sahbudin, S.H.; Ruhkamp, W.; Warnecke, R.; Deike, R. Effect of Selective Milling on the Concentration Process of Critical Raw Materials from MSW Incinerator Bottom Ash. Minerals 2024, 14, 1174. https://doi.org/10.3390/min14111174
Adhiwiguna IBGS, Sahbudin SH, Ruhkamp W, Warnecke R, Deike R. Effect of Selective Milling on the Concentration Process of Critical Raw Materials from MSW Incinerator Bottom Ash. Minerals. 2024; 14(11):1174. https://doi.org/10.3390/min14111174
Chicago/Turabian StyleAdhiwiguna, Ida B. G. S., S. Humaira Sahbudin, Winfried Ruhkamp, Ragnar Warnecke, and Rüdiger Deike. 2024. "Effect of Selective Milling on the Concentration Process of Critical Raw Materials from MSW Incinerator Bottom Ash" Minerals 14, no. 11: 1174. https://doi.org/10.3390/min14111174
APA StyleAdhiwiguna, I. B. G. S., Sahbudin, S. H., Ruhkamp, W., Warnecke, R., & Deike, R. (2024). Effect of Selective Milling on the Concentration Process of Critical Raw Materials from MSW Incinerator Bottom Ash. Minerals, 14(11), 1174. https://doi.org/10.3390/min14111174