Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inline Polymer Addition
2.3. Determination of Physical Properties
2.4. Synchrotron-Sourced X-Ray Tomography
2.5. Consolidation Test
2.6. Determination of Hydraulic Properties
3. Results and Discussions
3.1. Distribution of Applied Stress and Settling Behaviours
3.2. Void Ratio and Dry Density Changes
3.3. Rate of Consolidation and Hydraulic Conductivity
3.4. Water Retention Curve (WRC) Anaysis
4. Conclusions
- Polymer treatment increased the average rate of consolidation from 0.0009 to 0.005 cm2/s and enhanced hydraulic conductivity from 3.24 × 10−10 to 1.99 × 10−7 m/s, supporting faster water drainage and more effective consolidation under lower loads.
- PAT samples displayed a higher void ratio, permeability, and hydraulic conductivity, leading to a ~50% increase in free water drainage at field capacity compared to the raw slurry. The air entry suction also decreased from 8 to 2 hPa, indicative of improved aggregate formation and a non-homogeneous structure even under saline conditions.
- Synchrotron X-Ray tomography confirmed that PAT has discrete, non-interconnected micropores, which could facilitate additional water release through new flow paths under mild shear.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arjmand, R.; Massinaei, M.; Behnamfard, A. Improving flocculation and dewatering performance of iron tailings thickeners. J. Water Process Eng. 2019, 31, 100873. [Google Scholar] [CrossRef]
- Grabsch, A.F.; Fawell, P.D.; Adkins, S.J.; Beveridge, A. The impact of achieving a higher aggregate density on polymer-bridging flocculation. Int. J. Miner. Process. 2013, 124, 83–94. [Google Scholar] [CrossRef]
- Liu, D.; Edraki, M.; Berry, L. Investigating the settling behaviour of saline tailing suspensions using kaolinite, bentonite, and illite clay minerals. Powder Technol. 2018, 326, 228–236. [Google Scholar] [CrossRef]
- Dwari, R.K.; Mishra, B.K. Evaluation of flocculation characteristics of kaolinite dispersion system using guar gum: A green flocculant. Int. J. Min. Sci. Technol. 2019, 29, 745–755. [Google Scholar] [CrossRef]
- Qi, C.; Ly, H.-B.; Chen, Q.; Le, T.-T.; Le, V.M.; Pham, B.T. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere 2020, 244, 125450. [Google Scholar] [CrossRef]
- Anstey, D.; Guang, R. Relationship between In-line polymer dose and tailings index. In Proceedings of the Tailings and Mine Waste Conference, Banff, Alberta, 7–10 November 2017; pp. 1–10. [Google Scholar]
- Fawell, P.; Adkins, S.; Costine, A. Chapter 6: Reagents. In Paste and Thickened Tailings—A Guide; Australian Centre for Geomechanics: Perth, Australia, 2015; pp. 87–108. [Google Scholar]
- Poncet, F. Method for Treating Mineral Sludge Above Ground Using Polymers. CA Patent 02682542, 23 October 2008. [Google Scholar]
- McColl, P.; Scammell, S. Treatment of Mineral Material, Especially Waste Mineral Slurries Transferring Material with Dispersed Particulatesolids Asfluid to Deposition Area by Combining with Material Aqueous Solution of Water-Soluble Polymer. U.S. Patent 7901583B2, 2004. [Google Scholar]
- Gaillard, N.; Poncet, F. Treating Sludge from Mining or Mineral Industry Before Spreading out into Soil, Comprises Contacting the Sludge with a Branched flocculant Such as a Water Soluble Organic Polymer Having a Specified Anionicity for a Specified Duration. U.S. Patent 2010/0105976 A1, 30 August 2010. [Google Scholar]
- Costine, A.; Benn, F.; Fawell, P.; Edraki, M.; Baumgartl, T.; Bellwood, J. Understanding factors affecting the stability of inline polymer-amended tailings. In Proceedings of the 21st International Seminar on Paste and Thickened Tailings, Perth, Australia, 11–12 April 2018; pp. 103–116. [Google Scholar]
- Avadiar, L.; Leong, Y.K.; Fourie, A. Effects of polyethylenimine dosages and molecular weights on flocculation, rheology and consolidation behaviors of kaolin slurries. Powder Technol. 2014, 254, 364–372. [Google Scholar] [CrossRef]
- Islam, S.; Williams, D.J.; Llano-Serna, M.; Zhang, C. Settling, consolidation and shear strength behaviour of coal tailings slurry. Int. J. Min. Sci. Technol. 2020, 30, 849–857. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Undrained shear strength-water content relationship for sewage sludge. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 576–588. [Google Scholar] [CrossRef]
- Riley, T.; Reid, D.; Utting, L. Polymer-modified tailings deposition—Ongoing testing and potential storage efficiency opportunities. In Proceedings of the Paste 2015: Proceedings of the 18th International Seminar on Paste and Thickened Tailings, Cairns, Australia, 5–7 May 2015; pp. 139–152. [Google Scholar] [CrossRef]
- Zhu, L.; Lyu, W.; Yang, P.; Wang, Z. Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason. Sonochem. 2020, 66, 104984. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Edraki, M.; Fawell, P.; Berry, L. Improved water recovery: A review of clay-rich tailings and saline water interactions. Powder Technol. 2020, 364, 604–621. [Google Scholar] [CrossRef]
- Guang, R.; Longo, S. Application of in-line polymer addition for tailings disposal-learning and challenges part II. In Proceedings of the 20th International Seminar on Paste and Thickened Tailings, Beijing, China, 18 June 2017; pp. 371–379. [Google Scholar]
- Ghirian, A.; Fall, M. Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. Part I: Physical, hydraulic and thermal processes and characteristics. Eng. Geol. 2013, 164, 195–207. [Google Scholar] [CrossRef]
- Rankine, R.M.A. The Geotechnical Characterisation and Stability Analysis of BHP Billiton’s Cannington Mine Paste Fill. Ph.D. Thesis, James Cook University, Townsville, Australia, 2004. [Google Scholar]
- Komljenovic, D.; Stojanovic, L.; Malbasic, V.; Lukic, A. A resilience-based approach in managing the closure and abandonment of large mine tailing ponds. Int. J. Min. Sci. Technol. 2020, 30, 737–746. [Google Scholar] [CrossRef]
- Watson, P.; Farinato, R.; Fenderson, T.; Hurd, M.; Macy, P.; Mahmoudkhani, A. Novel polymeric additives to improve oil sands tailings consolidation. In Proceedings of the Proceedings—SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 11–13 April 2011; Volume 2, pp. 703–709. [Google Scholar]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J.; Shaw, W.; Wang, N. Sedimentation and consolidation of in-line thickened fine tailings. In Proceedings of the International Oil Sands Tailings Conference, Edmonton, AB, Canada, 7–10 December 2008; pp. 1–14. [Google Scholar]
- Rodríquez, R.; Sánchez, M.; Ledesma, A.; Lloret, A. Experimental and numerical analysis of desiccation of a mining waste. Can. Geotech. J. 2007, 44, 644–658. [Google Scholar] [CrossRef]
- Gibson, R.E.; England, G.L.; Hussey, M.J.L. The theory of one-dimensional consolidation of saturated clays. Geotechnique 1967, 17, 261–273. [Google Scholar] [CrossRef]
- Qin, J.; Zheng, J.; Li, L. An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation. Int. J. Min. Sci. Technol. 2021, 31, 463–471. [Google Scholar] [CrossRef]
- Shokouhi, A.; Zhang, C.; Williams, D.J. Settling, consolidation and desiccation behaviour of coal tailings slurry. Min. Technol. Trans. Inst. Min. Metall. 2018, 127, 1–11. [Google Scholar] [CrossRef]
- Shokouhi, A.; Williams, D.J. Volume change behaviour of mixtures of coarse coal reject and tailings. Trans. Institutions Min. Metall. Sect. A Min. Technol. 2017, 126, 163–176. [Google Scholar] [CrossRef]
- Indraratna, B. Geotechnical characterization of blended coal tailings for construction and rehabilitation work. Q. J. Eng. Geol. 1994, 27, 353–361. [Google Scholar] [CrossRef]
- Rujikiatkamjorn, C.; Indraratna, B.; Chiaro, G. Compaction of coal wash to optimise its utilisation as water-front reclamation fill. Geomech. Geoengin. 2013, 8, 36–45. [Google Scholar] [CrossRef]
- Li, R.; Zhou, G.; Mo, P.-Q.; Hall, M.R.; Chen, J.; Chen, D.; Cai, S. Behaviour of granular matter under gravity-induced stress gradient: A two-dimensional numerical investigation. Int. J. Min. Sci. Technol. 2021, 31, 439–450. [Google Scholar] [CrossRef]
- Shukla, S.K.; Sivakugan, N.; Das, B.M. Methods for determination of the coefficient of consolidation and field observations of time rate of settlement—An overview. Int. J. Geotech. Eng. 2009, 3, 89–108. [Google Scholar] [CrossRef]
- Bo, M.W.; Choa, V.; Wong, K.S. Compression tests on a slurry using a small-scale consolidometer. Can. Geotech. J. 2002, 39, 388–398. [Google Scholar] [CrossRef]
- Li, R.; Zhou, G.; Yan, K.; Chen, J.; Chen, D.; Cai, S.; Mo, P.Q. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation. Int. J. Min. Sci. Technol. 2021, 32, 1–15. [Google Scholar] [CrossRef]
- Bo, M.W.; Wong, K.S.; Choa, V. Constant rate of displacement test on ultra-soft soil. Proc. Inst. Civ. Eng.-Geotech. Eng. 2008, 161, 129–135. [Google Scholar] [CrossRef]
- Islam, S.; Shang, J.Q. Coagulation enhanced electrokinetic settling of mature fine oil sands tailings. Int. J. Min. Sci. Technol. 2019, 29, 199–208. [Google Scholar] [CrossRef]
- Boshrouyeh Ghandashtani, M.; Costine, A.; Edraki, M.; Baumgartl, T. The impacts of high salinity and polymer properties on dewatering and structural characteristics of flocculated high-solids tailings. J. Clean. Prod. 2022, 342, 130726. [Google Scholar] [CrossRef]
- Boshrouyeh Ghandashtani, M.; Edraki, M.; Baumgartl, T.; Costine, A.; Amari, S. Investigation of the Attenuation and Release of Cu2+ Ions by Polymer-Treated Tailings. Minerals 2022, 12, 846. [Google Scholar] [CrossRef]
- Lee, B.J.; Schlautman, M.A. Effects of Polymer Molecular Weight on Adsorption and Flocculation in Aqueous Kaolinite Suspensions Dosed with Nonionic Polyacrylamides. Water 2015, 7, 5896–5909. [Google Scholar] [CrossRef]
- Jeldres, R.; Yang, T.; Costine, A.; Fawell, P.; Bellwood, J. The impact of high salinity and seawater on aggregate structures in clay tailings flocculation. In Proceedings of the Paste 2020: 23rd International Conference on Paste, Thickened and Filtered Tailings, Santiago, Chile, 2–6 November 2020; Quelopana, H., Ed.; Gecamin Publications PP: Santiago, Chile, 2020; pp. 1–8. [Google Scholar]
- Reid, D.; Fourie, A. Laboratory assessment of the effects of polymer treatment on geotechnical properties of low-plasticity soil slurry. Can. Geotech. J. 2016, 53, 1718–1730. [Google Scholar] [CrossRef]
- Bray, J.D. and R.B.S. Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. J. Geotech. Geoenvironmental Eng. 2006, 132, 1165–1177. [Google Scholar] [CrossRef]
- Seed, R.B.; Cetin, K.O.; Moss, R.E.; Kammerer, A.M.; Wu, J.; Pestana, J.M.; Riemer, M.F.; Sancio, R.B.; Bray, J.D.; Kayen, R.E.; et al. Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Long Beach, CA, USA, 30 April 2003. [Google Scholar]
- Owen, A.T.; Fawell, P.D.; Swift, J.D.; Farrow, J.B. The impact ofpolyacrylamide flocculant solution age on flocculation performance. Int. J. Miner. Process. 2002, 67, 123–144. [Google Scholar] [CrossRef]
- Costine, A.; Fawell, P.; Chryss, A.; Dahl, S.; Bellwood, J. Development of test procedures based on chaotic advection for assessing polymer performance in high-solids tailings applications. Processes 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Fawell, P.D.; Costine, A.D.; Grabsch, A.F. Why small-scale testing of reagents goes wrong. In Proceedings of the Paste 2015: 18th International Seminar on Paste and Thickened Tailings, Cairns, Australia, 5–7 May 2015; Jewell, R., Jewell, R., Fourie, A.B., Fourie, A.B., Eds.; Australian Centre for Geomechanics PP: Crawley, Australia, 2015; pp. 153–165. [Google Scholar]
- Hillel, D. Introduction to Soil Physics; Academic Press: New York, NY, USA, 1982; ISBN 0123485207. [Google Scholar]
- ASTM D4959; Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Roshani, A.; Fall, M.; Kennedy, K. A column study of the hydro-mechanical behavior of mature fine tailings under atmospheric drying. Int. J. Min. Sci. Technol. 2017, 27, 203–209. [Google Scholar] [CrossRef]
- ASTM D7263; Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Wu, S.; Zhu, W.; Min, F.; Fan, X. A Test Method for Measuring Floc Size of Slurry. Geotech. Test. J. 2018, 41, 20170168. [Google Scholar] [CrossRef]
- AS 1289.3.6.1; Methods of Testing Soils for Engineering Purposes: Soil Strength and Consolidation Tests—Determination of the Particle Size Distribution of a Soil—Standard Method of Analysis by Dry Sieving. Standards Australia: Sydney, Australia, 2009.
- AS 1289.3.6.3; Methods of Testing Soils for Engineering Purposes: Soil Strength and Consolidation Tests—Determination of the Particle Size Distribution of a Soil—Standard Method of Analysis by Wet Sieving. Standards Australia: Sydney, Australia, 2009.
- Scarlett, N.V.Y.; Tyson, P.; Fraser, D.; Mayo, S.; Maksimenko, A. Synchrotron X-Ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects. J. Synchrotron Radiat. 2016, 23, 1015–1023. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, P. Large-scale colloidal self-assembly by doctor blade coating. Langmuir 2010, 26, 13173–13182. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Baumgartl, T. Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma 2017, 292, 96–110. [Google Scholar] [CrossRef]
- Kim, K.Y.; Chae, K.J.; Choi, M.J.; Yang, E.T.; Hwang, M.H.; Kim, I.S. High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell. Chem. Eng. J. 2013, 218, 19–23. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons, Inc: New York, NY, USA, 1993. [Google Scholar]
- de Oliveira, R.A.; Ramos, M.M.; de Aquino, L.A. Irrigation Management; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780128022399. [Google Scholar]
- Assouline, S.; Or, D. The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics. Water Resour. Res. Res. 2014, 50, 4787–4802. [Google Scholar] [CrossRef]
- Hilton, M.; Shaygan, M.; McIntyre, N.; Baumgartl, T.; Edraki, M. The effect of weathering on salt release from coal mine spoils. Minerals 2019, 9, 760. [Google Scholar] [CrossRef]
- Zurmühl, T.; Durner, W. Determination of Parameters for Bimodal Hydraulic Functions by Inverse Modeling. Soil Sci. Soc. Am. J. 1998, 62, 874–880. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Mineral. Methods 2018, 9, 687–734. [Google Scholar] [CrossRef]
- Reading, L.P.; Baumgartl, T.; Bristow, K.L.; Lockington, D.A. Hydraulic conductivity increases in a sodic clay soil in response to gypsum applications: Impacts of bulk density and cation exchange. Soil Sci. 2012, 177, 165–171. [Google Scholar] [CrossRef]
- Marshall, T.J.; Holmes, J.W.; Rose, C.W. Soil Physics, 3rd ed.; Cambridge University Press: Cambridge, UK, 1996; ISBN 9780521451512. [Google Scholar]
- Monte, J.L.; Krizek, R.J. One-dimensional mathematical model for large-strain consolidation. Géotechnique 1976, 26, 495–510. [Google Scholar] [CrossRef]
- Horn, R.; Smucker, A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 2005, 82, 5–14. [Google Scholar] [CrossRef]
- Bo, M.W.; Sin, W.K.; Choa, V.; Ing, T.C. Compression tests of ultra-soft soil using an hydraulic consolidation cell. Geotech. Test. J. 2003, 26, 310–319. [Google Scholar] [CrossRef]
- Bo, M.W.; Choa, V.; Wong, K.S. Constant rate of loading test on ultra-soft soil. Geotech. Test. J. 2010, 33, 192–200. [Google Scholar] [CrossRef]
- He, W.; Williams, D.; Shokouhi, A. Numerical study of slurry consolidometer tests taking into account the influence of wall friction. Comput. Geotech. 2017, 91, 39–47. [Google Scholar] [CrossRef]
- Yao, Y.; Van Tol, F.; Van Paassen, L. The effect of Flocculant on the Geotechnical Properties of Mature Fine Tailimgs: An Experimental study. In Proceedings of the 3rd International Oil Sands Conference, Edmonton, AB, Canada, 3–5 December 2012; pp. 391–398. [Google Scholar]
- Al-Tarhouni, M.; Simms, P.; Sivathayalan, S. Cyclic behaviour of reconstituted and desiccated–rewet thickened gold tailings in simple shear. Can. Geotech. J. 2011, 48, 1044–1060. [Google Scholar] [CrossRef]
- Nocilla, A.; Coop, M.R.; Colleselli, F. The mechanics of an Italian silt: An example of ‘transitional’ behaviour. Géotechnique 2006, 56, 261–271. [Google Scholar] [CrossRef]
- Wong, R.C.; Mills, B.N.; Liu, Y.B. Mechanistic Model for One-Dimensional Consolidation Behavior of Nonsegregating Oil Sands Tailings. J. Geotech. Geoenvironmental Eng. 2008, 134, 195–202. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Yao, J.; Wu, Y.; Tran, Q.C.; Vu, Q.V. Insight into conditioning landfill sludge with ferric chloride and a Fenton reagent: Effects on the consolidation properties and advanced dewatering. Chemosphere 2020, 252, 126528. [Google Scholar] [CrossRef]
- Akayuli, C.F.A.; Ofosu, B. Empirical Model for Estimating Compression Index from Physical Properties of Weathered Birimian Phyllites. Electron. J. Geotech. Eng. 2014, 18, 6135–6144. [Google Scholar]
- Widodo, S.; Ibrahim, A.; Strasse, G.Z.; Sn, F.; Freiberg-germany, T.U.B.; University-sudan, A.N.; Clay, S. Estimation of Primary Compression Index (Cc) Using Physical Properties of Pontianak Soft Clay. Int. J. Eng. Res. Appl. 2012, 2, 2232–2236. [Google Scholar]
- Michael, P.R.; Richmond, M.W.; Superfesky, M.J.; Stump, D.E.; Chavel, L.K. Potential of breakthroughs of impounded coal refuse slurry into underground mines. In Proceedings of the Environmental and Engineering Geoscience, Keystone, CO, USA, 11–15 April 2010; Volume 16, pp. 299–314. [Google Scholar]
- Kang, J.; Sowers, T.D.; Duckworth, O.W.; Amoozegar, A.; Heitman, J.L.; McLaughlin, R.A. Turbidimetric Determination of Anionic Polyacrylamide in Low Carbon Soil Extracts. J. Environ. Qual. 2013, 42, 1902–1907. [Google Scholar] [CrossRef]
- Azam, S. Large Strain Settling Behavior of Polymer-Amended Laterite Slurries. Int. J. Geomech. 2011, 11, 105–112. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. Geotechnical Properties of Mine Tailings. J. Mater. Civ. Eng. 2017, 29, 04016220. [Google Scholar] [CrossRef]
- Geremew, A.M.; Yanful, E.K. Dynamic Properties and Influence of Clay Mineralogy Types on the Cyclic Strength of Mine Tailings. Int. J. Geomech. 2013, 13, 441–453. [Google Scholar] [CrossRef]
- Das, B.M. Advanced Soil Mechanics, 4th ed.; CRC Press; Taylor and Francis Group: Boca Raton, FL, USA, 2013; ISBN 9781482234831. [Google Scholar]
- Yu, H. Geotechnical Properties and Flow Behavior of Coal Refuse Under Static and Impact Loading; Case Western Reserve University: Cleveland, OH, USA, 2015. [Google Scholar]
- Beveridge, A.; Mutz, P.; Reid, D. Tailings co-disposal case study—Art or science? In Proceedings of the Paste 2015: Proceedings of the 18th International Seminar on Paste and Thickened Tailings, Cairns, Australia, 5–7 May 2015; pp. 505–520. [Google Scholar] [CrossRef]
- Chiapponi, L. Water retention curves of multicomponent mixtures of spherical particles. Powder Technol. 2017, 320, 646–655. [Google Scholar] [CrossRef]
- Rai, R.K.; Singh, V.P.; Upadhyay, A. Chapter 17—Soil Analysis; Academic Press: Cambridge, MA, USA, 2017; pp. 505–523. ISBN 978-0-12-811748-4. [Google Scholar]
SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | TiO2 (%) | |
---|---|---|---|---|
Kaolinite-NY prestige | 49.2 | 35 | 0.94 | 0.96 |
Silica 200G | 99.6 | 0.17 | 0.02 | 0.03 |
Silica fine sand | 98.5 | 0.1 | 0.3 | 0.9 |
Sample | Cc | Cv (cm2/s) | Mv (1/kPa) | K (m/s) |
---|---|---|---|---|
Raw slurry | 1.05 | 0.0009 | 1.57 × 10−3 | 3.24 × 10−10 |
PAT | 0.74 | 0.005 | 8.61 × 10−3 | 1.99 × 10−7 |
Sample | α1 (kPa−1) | α2 (kPa−1) | n1 | n2 | w | θs | θr | θFC | θWP | Macropore Volume (cm3/cm3) | Mesopore Volume (cm3/cm3) |
---|---|---|---|---|---|---|---|---|---|---|---|
Raw Slurry | 0.099 | - | 1.083 | - | - | 0.52 | 0 | 0.43 | 0.28 | 0.09 | 0.15 |
PAT | 0.07 | 0.2 | 3 | 1.04 | 0.1 | 0.6 | 0 | 0.48 | 0.39 | 0.12 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boshrouyeh, B.; Edraki, M.; Baumgartl, T.; Costine, A.; Quintero Olaya, S.; Lepková, K.; Dwivedi, D. Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings. Minerals 2024, 14, 1180. https://doi.org/10.3390/min14111180
Boshrouyeh B, Edraki M, Baumgartl T, Costine A, Quintero Olaya S, Lepková K, Dwivedi D. Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings. Minerals. 2024; 14(11):1180. https://doi.org/10.3390/min14111180
Chicago/Turabian StyleBoshrouyeh, Bob, Mansour Edraki, Thomas Baumgartl, Allan Costine, Sebastian Quintero Olaya, Kateřina Lepková, and Deepak Dwivedi. 2024. "Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings" Minerals 14, no. 11: 1180. https://doi.org/10.3390/min14111180
APA StyleBoshrouyeh, B., Edraki, M., Baumgartl, T., Costine, A., Quintero Olaya, S., Lepková, K., & Dwivedi, D. (2024). Impact of Inline Polyacrylamide Polymer Flocculation on the Mechanical and Hydrological Properties of Saline Tailings. Minerals, 14(11), 1180. https://doi.org/10.3390/min14111180