Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mineralogical Characteristics of Collophane
3.2. Major Elements
3.3. Trace Elements
4. Discussion
4.1. Sources of Phosphorus
4.2. The Cycle of Phosphorus
4.3. The Formation Mechanism of Collophane
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, Y.; Zhang, W.Z.; Peng, P.A.; Zhou, Z.J. Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 member of Yanchang Formation, Ordos Basin. Acta Petrol. Sin. 2009, 25, 2469–2476. [Google Scholar]
- Ru, L.L.; Chen, T.H.; Zou, X.H.; Chen, D.; Liu, H.B.; Liu, Y.H.; Zhu, S.C. Effect of collophanite on removal of low-concentration phosphorus in water. J. Chin. Ceram. Soc. 2021, 49, 1776–1784. [Google Scholar]
- Follmi, K.B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 1996, 40, 55–124. [Google Scholar] [CrossRef]
- Dai, W.H. Construction characteristics of Xinji Formation and Sandao Collision Formation (Baishugou formation) in the southern margin of North China Platform and their uranium and phosphorus sedimentary mineralization. J. Sedimentol. 1988, 4, 52–61. [Google Scholar]
- Tomohiko, S.; Yukio, I.; Takahiko, H.; Shu, D.G. A unique condition for early diversification of small shelly fossils in the lowermost Cambrian in Chengjiang, South China: Enrichment of phosphorus in restricted embayments. Gondwana Res. 2014, 25, 1139–1152. [Google Scholar]
- Shi, C.H. Formation of Phosphorite Deposit, Breakup of Rodinia Supercontinent and Biology Explosion. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences (Institute of Geochemistry), Beijing, China, 2005. [Google Scholar]
- Chen, Q.Y.; Chen, M.G.; Li, J.Y. Microbial-organic effects on formation of the sedimentary apatite. Chin. J. Geol. 2000, 35, 316–324. [Google Scholar]
- Luo, X.Q. Sedimentary facies and sedimentary model of phosphomassive rocks in western Xiangxi. Lithofacies Paleogeography 1993, 13, 33–39. [Google Scholar]
- Ye, J. Phosphorus Formation Events of the Sinian-Cambrian Period in South China and Their Geodynamic Significance. Ph.D. Thesis, Geology and Earth, Chinese Academy of Sciences Institute of Physics, Beijing, China, 2002. [Google Scholar]
- Liu, B.J.; Xu, X.S.; Luo, A.P.; Kang, C.L. Cambrian storm events and phosphate rock deposition in the western margin of the Yangtze Plateau in China. J. Sedimentol. 1987, 3, 28–39+186. [Google Scholar]
- Liu, H.L.; Zou, C.N.; Qiu, Z.; Yin, S.; Yang, Z.; Wu, S.T.; Zhang, G.S.; Chen, Y.P.; Ma, F.; Li, S.X.; et al. Sedimentary depositional environment and organic matter enrichment mechanism of lacustrine black shales: A case study of the Chang 7 member in the Ordos Basin. J. Sedimentol. 2023, 41, 1810–1829. [Google Scholar]
- Qiu, X.W. Characteristics and dynamic settings of Yanchang period hydrocarbon-rich depression in Ordos Basin, China. Doctor’s Thesis, Northwest University, Kirkland, WA, USA, 2011. [Google Scholar]
- Zhang, W.Z.; Yang, H.; Xie, L.Q.; Yang, Y.H. Hydrothermal activity in lake basins and its impact on the development of high-quality source rocks: A case study of the Chang 7 source rock in the Ordos Basin. Pet. Explor. Dev. 2010, 4, 424–429, (In Chinese with English Abstract). [Google Scholar]
- Deng, X.Q. Research on the Accumulation Mechanism of Ultra-Low Permeability Large Lithologic Oil Reservoirs in the Triassic Yanchang Formation, Ordos Basin; Northwest University: Kirkland, WA, USA, 2011; (In Chinese with English Abstract). [Google Scholar]
- Liu, C.Y.; Zhao, H.G.; Gui, X.J.; Yue, L.P.; Zhao, J.F.; Wang, J.Q. Space-time coordinate of the evolution and treformation and mineralization response in Ordos Basin. Acta Geol. Sin. 2006, 5, 617–638. [Google Scholar]
- Li, S.X.; Niu, X.B.; Liu, G.D.; Li, J.H.; Sun, M.L.; You, F.L.; He, H.N. Formation and accumulation mechanism of shale oil in the Chang 7 member of Yanchang Formation, Ordos Basin. Oil Gas Geol. 2020, 41, 719–729. [Google Scholar]
- Fu, J.H.; Deng, X.Q.; Chu, M.J.; Zhang, H.; Li, S. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance. Acta Sedimentol. Sin. 2013, 31, 928–938. [Google Scholar]
- Zhang, J.Q.; Li, S.X.; Zhou, X.P.; Guo, R.L.; Chen, J.L.; Li, S.T. Gravity flow deposits in the distal lacustrine Basin of the Chang 7 reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: A case study of Chang 73 sublayer of Chengye horizontal well region. Acta Pet. Sin. 2021, 42, 570–587. [Google Scholar]
- Liu, H.; Qiu, Z.; Zou, C.; Fu, J.; Zhang, W.; Tao, H.; Li, S.; Zhou, S.; Wang, L.; Chen, Z.-Q. Environmental changes in the Middle Triassic lacustrine Basin (Ordos, North China): Implication for biotic recovery of freshwater ecosystem following the Permian-Triassic mass extinction. Glob. Planet. Chang. 2021, 204, 103559. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.Z. On the leading role of high-quality oil source rocks in the accumulation and enrichment of low permeability oil and gas in Chang 7 member of Ordos Basin: Geological and geochemical characteristics. Geochemistry 2005, 2, 147–154. [Google Scholar]
- Fu, J.H.; Li, S.X.; Xu, L.M.; Liu, X.B. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 936–946. [Google Scholar] [CrossRef]
- You, J.; Liu, Y.; Zhou, D.; Zheng, Q.; Vasichenko, K.; Chen, Z. Activity of hydrothermal fluid at the bottom of a lake and its influence on the development of high-quality source rocks: Triassic Yanchang Formation, southern Ordos Basin, China. Aust. J. Earth Sci. 2019, 67, 1–14. [Google Scholar] [CrossRef]
- Lü, Q.; Fu, J.; Luo, S.; Li, S.; Zhou, X.; Pu, Y.; Yan, H. Sedimentary characteristics and model of gravity flow channel-lobe complex in a Depression lake Basin: A case study of Chang 7 member of Triassic Yanchang Formation in southwestern Ordos Basin, NW China. Pet. Explor. Dev. 2022, 49, 1143–1156. [Google Scholar]
- Yang, R.C.; He, Z.L.; Qiu, G.Q.; Jin, Y.Z.; Sun, D.S.; Jin, X.H. Late Triassic gravity flow depositional systems in the southern Ordos Basin. Pet. Explor. Dev. 2014, 41, 661–670. [Google Scholar] [CrossRef]
- Sun, N.L.; Zhong, J.H.; Hao, B.; Ge, Y.Z.; Swennen, R. Sedimentological and diagenetic control on the reservoir quality of deep-lacustrine sedimentary gravity flow sand reservoirs of the Upper Triassic Yanchang Formation in Southern Ordos Basin. China Mar. Pet. Geol. 2019, 112, 104050. [Google Scholar] [CrossRef]
- Das, S.K.; Routh, J.; Roychoudhury, A.N.; Klump, J.V. Major and trace element geochemistry in Zeekoevlei, South Africa: A lawsetrine record of present and past processes. Appl. Geochem. 2008, 23, 2496–2511. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, C.; Mao, G.; Deng, Y.; Wang, F.; Wang, J. Major, trace and platinum-group element geochemistry of Upper Triassic nonmarine hot shales in Ordos Basin, Central China. Appl. Geochem. 2015, 53, 42–52. [Google Scholar] [CrossRef]
- Algeo, T.J.; Kuwahara, K.; Sano, H.; Bates, S.; Lyons, T.; Elswick, E.; Hinnov, L.; Ellwood, B.; Moser, J.; Maynard, J.B. Spatial variation in sediment fluxes, redox conditions, and productivity in the permian–triassic panthalassic ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 65–83. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Wu, K.; Li, S.; Qin, Y. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China. J. Asian Earth Sci. 2010, 39, 285–293. [Google Scholar] [CrossRef]
- Zhang, B.H. Geological and Geochemical Characteristics of Uranium Enrichment in the Chang 7 Source Rocks of the Ordos Basin and Its Genetic Discussion. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2011. (In Chinese with English Abstract). [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Science Inc.: Oxford, UK, 1985. [Google Scholar]
- Yuan, W.; Liu, G.D.; Luo, W.B.; Li, C.Z.; Xu, L.M.; Niu, X.B.; Ai, J.Y. Species and formation mechanism of apatites in the 7th member of Yanchang Formation organic-rich shale of Ordos Basin, China. Nat. Gas Geosci. 2016, 27, 1399–1408. [Google Scholar]
- Liu, C.Y.; Zhao, H.G.; Wang, F.; Chen, H. Tectonic attributes of the Mesozoic era in the western (part of the) Ordos Basin. Acta Geol. Sin. 2005, 6, 737–747, (In Chinese with English Abstract). [Google Scholar]
- Tyrrell, T. The relative influence of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. The Global Phosphorus Cycle. Treatise Geochem. 2003, 8, 682. [Google Scholar]
- Ruttenberg, K.C.; Berner, R.A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 1993, 57, 991–1007. [Google Scholar] [CrossRef]
- Pettersson, K.; Bostrom, B.; Jacobsen, O.S. Phosphorus in Sediments—Speciation and Analysis. Phosphorus Freshw. Ecosyst. 1988, 48, 91–101. [Google Scholar]
- Wu, X.H. A Model for Marine Phosphorus Cycling in the Late Precambrian of Guizhou. Guizhou Geol. 1996, 2, 172–176, (In Chinese with English Abstract). [Google Scholar]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Li, P.; Jin, Z.Y.; Sun, Y.W.; Hu, G.; Zhu, D.Y.; Liu, J.Y. Formation and hydrocarbon enrichment of organic-rich lacustrine shale series: A case study of Chang 7. Sci. China Earth Sci. 2022, 2, 270–290, (In Chinese with English Abstract). [Google Scholar]
- Zhao, H.C.; Wang, S.R.; Zhang, L.; Jiao, L.X.; Li, Y.P.; Liu, W.B. Effect of OM content and constituents on phosphorus adsorption-release of the sediment from Erhai Lake. Acta Sci. Circumstantiae 2014, 34, 2346–2354. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Katsev, S. Phosphorus recycling in deeply oxygenated sediments in Lake Superior controlled by organic matter mineralization. Limnol. Oceanogr. 2018, 63, 1372–1385. [Google Scholar] [CrossRef]
- Zhu, G.W.; Qin, B.Q.; Gao, G. Direct evidence of violent release of endogenous phosphorus from large shallow lakes caused by wind and waves disturbance. Chin. Sci. Bull. 2005, 50, 66–71. [Google Scholar] [CrossRef]
- McMahon, K.D.; Read, E.K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 2013, 67, 199–219. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, Y.; Zhou, J.; Wu, Y. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. J. Civ. Eng. 2014, 1, 323–329. [Google Scholar] [CrossRef]
- Yuan, W. Formation Mechanism of the Organic-Rich Shale in the 7th Member of the Yanchang Formation, Ordos Basin. Doctoral Dissertation, China University of Petroleum, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Algeo, T.J.; Ingall, E. Sedimentary corg:p ratios, paleocean ventilation, and phanerozoic atmospheric po2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 256, 130–155. [Google Scholar] [CrossRef]
- Wu, F.C.; Jin, X.C.; Zhang, R.Y.; Liao, H.Q.; Wang, S.R.; Jiang, X.; Wang, L.; Guo, J.; Li, W.; Zhao, X. Effects and significance of organic nitrogen and phosphorus in the lake aquatic environment. J. Lake Sci. 2010, 22, 1–7. [Google Scholar] [CrossRef]
- Chen, Q.W. Characteristics of Formed Authigenic Phosphorus Minerals in a Cold Seep Area of the Qiongdongnan Region of the South China Sea and Its Implications for Carbon Cycling in Methanogenic Environments. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. (In Chinese with English Abstract). [Google Scholar]
- Liu, K.W. Evolution of apatite minerals in diagenesis. Acta Geol. Sin. 1989, 4, 310–323+385–386. [Google Scholar]
- Zhang, Y.G.; Du, Y.S.; Chen, G.Y.; Liu, J.Z.; Chen, Q.G.; Zhao, Z.; Wang, Z.P.; Deng, C. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province. Acta Paleogeography 2019, 21, 351–368. [Google Scholar]
- Xu, M.H.; Wang, F.; Tian, J.C.; Ren, Z.C.; Meng, H.; Yu, W.; Wang, J.; Wu, J.Y.; Xiao, Y.X. Lithofacies division and sedimentary environment of lacustrine organic-rich shale: A case study of the Chang 73 sub-member of the Ordos Basin. J. Sedimentol. 2024, 46, 698–709. [Google Scholar] [CrossRef]
- Plint, A.G. Mud dispersal across a cretaceous prodelta:Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies. Sedimentology 2014, 61, 609–647. [Google Scholar] [CrossRef]
Sample Number | CaO | P2O5 | FeO | Al2O3 | MgO | Na2O | MnO | Cl | Else |
---|---|---|---|---|---|---|---|---|---|
Z40-3A-2 | 48.53 | 33.81 | 0.3 | 0.04 | 0.10 | 0.72 | 0.35 | 0.03 | 16.12 |
Z40-6A-3 | 48.64 | 33.59 | 0.72 | 0.38 | 0.10 | 0.46 | 0.13 | 0.05 | 15.93 |
Z40-9C-1 | 45.33 | 36.14 | 0.27 | 0.03 | 0.14 | 0.15 | 0.04 | 0.83 | 17.07 |
Z40-14A-3 | 49.15 | 33.85 | 0.50 | 0.03 | 0.10 | 1.06 | 0.22 | 0.05 | 15.04 |
Z40-16B-2 | 47.45 | 35.52 | 0.73 | 0.09 | 0.12 | 0.90 | 0.23 | 0.05 | 14.91 |
Z40-19B-2 | 34.86 | 27.20 | 0.20 | 0.25 | 0.06 | 0.85 | 0.11 | 0.03 | 36.44 |
Z40-24A-2 | 39.71 | 28.56 | 0.43 | 1.35 | 0.08 | 0.42 | 0.12 | 0.06 | 29.27 |
Z40-49A-3 | 44.27 | 32.37 | 0.71 | 0.06 | 0.06 | 0.48 | 0.03 | 0.08 | 21.94 |
Z40-55B-1 | 28.28 | 25.62 | 0.15 | 0.28 | 0.03 | 0.08 | 0.02 | 0.02 | 45.52 |
Sample Number and Lithology | SiO2 | Al2O3 | TFe2O3 | Na2O | K2O | CaO | MgO | P2O5 | TiO2 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
Z40-3 | 47.93 | 16.08 | 7.11 | 0.89 | 4.69 | 1.25 | 0.98 | 0.53 | 0.54 | 0.46 |
Z40-6 | 51.03 | 13.77 | 6.72 | 1.08 | 2.28 | 2.08 | 1.29 | 0.39 | 0.36 | 0.16 |
Z40-9 | 53.63 | 15.32 | 5.88 | 2.89 | 2.04 | 3.89 | 1.31 | 0.24 | 0.44 | 0.18 |
Z40-14 | 43.58 | 12.51 | 10.27 | 1.29 | 2.87 | 1.90 | 0.61 | 1.11 | 0.36 | 0.07 |
Z40-16 | 33.89 | 8.85 | 12.92 | 0.98 | 1.90 | 2.22 | 0.44 | 0.85 | 0.32 | 0.08 |
Z40-18 | 40.08 | 9.23 | 10.55 | 0.61 | 2.67 | 0.51 | 0.47 | 0.24 | 0.28 | 0.06 |
Z40-19 | 29.61 | 7.70 | 10.70 | 0.33 | 2.00 | 0.42 | 0.32 | 0.20 | 0.23 | 0.03 |
Z40-24 | 42.01 | 12.13 | 11.03 | 0.96 | 3.32 | 0.58 | 0.80 | 0.37 | 0.39 | 0.06 |
Z40-55 | 28.71 | 8.92 | 19.45 | 1.42 | 2.73 | 0.91 | 0.85 | 0.53 | 0.40 | 0.06 |
H317-9 | 38.95 | 14.88 | 8.90 | 1.71 | 3.92 | 1.54 | 1.52 | 0.79 | 0.70 | 0.14 |
H317-12 | 43.77 | 13.37 | 9.80 | 1.30 | 5.43 | 2.90 | 1.28 | 1.96 | 0.62 | 0.04 |
H317-14 | 53.39 | 19.51 | 5.63 | 1.62 | 5.96 | 1.22 | 2.72 | 0.20 | 0.90 | 0.07 |
H317-15 | 53.65 | 15.76 | 8.24 | 1.59 | 5.77 | 1.15 | 2.43 | 0.44 | 0.91 | 0.06 |
H317-17 | 58.02 | 15.27 | 5.30 | 1.65 | 6.12 | 1.11 | 1.74 | 0.22 | 0.69 | 0.06 |
H317-18 | 58.04 | 11.21 | 7.38 | 1.75 | 3.57 | 1.38 | 0.86 | 0.59 | 0.48 | 0.05 |
H317-20 | 33.40 | 14.02 | 14.67 | 1.14 | 4.14 | 1.31 | 1.59 | 0.70 | 0.60 | 0.17 |
B522-9 | 42.13 | 9.55 | 8.87 | 2.21 | 2.01 | 4.61 | 1.46 | 2.18 | 0.58 | 0.08 |
B522-10 | 39.77 | 11.20 | 7.73 | 1.95 | 2.26 | 1.15 | 1.15 | 0.50 | 0.47 | 0.05 |
B522-13 | 44.68 | 9.77 | 7.20 | 2.29 | 2.39 | 2.42 | 0.66 | 0.68 | 0.35 | 0.07 |
B522-16 | 46.33 | 8.70 | 7.95 | 1.40 | 4.17 | 1.04 | 0.60 | 0.52 | 0.30 | 0.13 |
B522-19 | 47.53 | 7.15 | 9.51 | 0.97 | 2.43 | 1.06 | 0.60 | 0.52 | 0.32 | 0.13 |
B522-21 | 28.71 | 5.88 | 11.22 | 0.60 | 2.57 | 2.00 | 0.55 | 1.04 | 0.22 | 0.16 |
B522-24 | 33.70 | 8.15 | 11.61 | 0.95 | 2.36 | 2.33 | 0.49 | 0.79 | 0.40 | 0.07 |
B522-27 | 34.64 | 10.25 | 10.44 | 0.65 | 5.12 | 8.45 | 0.44 | 0.37 | 0.51 | 0.23 |
B522-31 | 43.81 | 13.93 | 11.57 | 2.04 | 5.63 | 1.03 | 1.00 | 0.57 | 0.58 | 0.10 |
B522-40 | 42.98 | 15.07 | 7.81 | 1.28 | 3.96 | 2.08 | 1.29 | 0.82 | 0.44 | 0.05 |
B522-42-1 | 41.16 | 14.67 | 13.86 | 1.40 | 3.96 | 1.23 | 1.49 | 0.53 | 0.62 | 0.03 |
B522-45 | 38.38 | 12.71 | 12.25 | 1.35 | 3.90 | 1.66 | 1.25 | 0.65 | 0.49 | 0.04 |
AVERAGE | 42.63 | 11.98 | 9.81 | 1.37 | 3.58 | 1.91 | 1.08 | 0.66 | 0.48 | 0.10 |
Trace | PAAS/ppm | Mean of Sample Analysis Data Data/ppm | Standardization (Sample/PAAS) |
---|---|---|---|
Ba | 650 | 487.1 | 0.75 |
V | 150 | 196 | 1.31 |
Cr | 110 | 53.5 | 0.49 |
Co | 23 | 18.1 | 0.79 |
Ni | 55 | 26.4 | 0.48 |
Cu | 50 | 96 | 1.92 |
Zn | 85 | 118.9 | 1.4 |
Ga | 20 | 213.9 | 10.69 |
Pb | 20 | 2.7 | 0.14 |
Th | 14.6 | 8.9 | 0.61 |
Sr | 200 | 225.6 | 1.13 |
Zr | 210 | 75.7 | 0.36 |
Nb | 18 | 7.1 | 0.39 |
Y | 27 | 24.3 | 0.9 |
U | 3.1 | 40.5 | 13.06 |
Be | — | 7 | — |
Mo | 1 | 78 | 77.98 |
Sc | 16 | 13 | 0.81 |
Lithology | Major Element Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | P2O5 | |
North American Shale | 64.8 | 0.7 | 16.9 | 5.66 | 2.86 | 3.63 | 1.14 | 3.97 | 0.13 |
Chang 7 Organic-rich Shale | 42.63 | 0.48 | 11.98 | 9.81 | 1.91 | 1.91 | 1.37 | 3.58 | 0.66 |
Chang 7 Tuff | 42.09 | 0.3 | 10.67 | 2.02 | 1.17 | 3.43 | 1.81 | 1.79 | 0.1 |
Fresh volcanic ash | 62.11 | 0.65 | 15.98 | 5.6 | 1.98 | 4.81 | 4.32 | 1.83 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dai, C.; Bian, C.; Bai, B.; Jiang, X. Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China. Minerals 2024, 14, 1184. https://doi.org/10.3390/min14121184
Zhang Y, Dai C, Bian C, Bai B, Jiang X. Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China. Minerals. 2024; 14(12):1184. https://doi.org/10.3390/min14121184
Chicago/Turabian StyleZhang, Yu, Chaocheng Dai, Congsheng Bian, Bin Bai, and Xingfu Jiang. 2024. "Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China" Minerals 14, no. 12: 1184. https://doi.org/10.3390/min14121184
APA StyleZhang, Y., Dai, C., Bian, C., Bai, B., & Jiang, X. (2024). Characteristics and Genesis of Collophane in Organic-Rich Shale of Chang 7 Member in Ordos Basin, North China. Minerals, 14(12), 1184. https://doi.org/10.3390/min14121184