Integrated Stochastic Underground Mine Planning with Long-Term Stockpiling: Method and Impacts of Using High-Order Sequential Simulations
Abstract
:1. Introduction
2. Methodology
2.1. Mathematical Formulation of the Stochastic Long-Term Underground Mine Production Scheduling with Stockpiling
2.2. Mineral Deposit Modeling Using Sequential Simulations
2.2.1. High-Order Simulation Using Legendre-like Orthogonal Splines
- Define a random path for visiting all unsampled nodes on the simulation grid.
- For each node in the path:
- Find the closest neighbor nodes .
- Obtain the spatial template configuration by calculating the lag vectors .
- Scan the TI and find values given the spatial template configuration.
- Calculate the spatial Legendre coefficients using Equation (5).
- Build the cpdf by calculating the joint probability density function as in Equation (3) and normalizing it as shown in Equation (2).
- Draw a uniform random value in [0, 1] to sample from the cumulative cpdf derived on the previous step.
- Add to the set of conditioning data and move to the next node.
- Repeat steps 1 and 2 to generate different realizations.
2.2.2. Sequential Gaussian Simulation
3. Case Study at an Operating Copper Mine
3.1. High-Order Sequential Simulations of the Mineral Deposit, Results and Comparisons to Sequential Gaussian Simulations
3.2. Integrated Stope Design and Scheduling Optimization and Forecasting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamrin, H. Underground mining methods and applications. In Underground Mining Methods: Engineering Fundamentals and International Case Studies; Hamrin, H., Hustrulid, W., Bullock, R., Eds.; Society for Mining, Metallurgy and Exploration (SME): Littleton, CO, USA, 2001; pp. 3–14. [Google Scholar]
- Hartman, H.L.; Mutmansky, J.M. Introductory Mining Engineering, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Pakalnis, R.; Hughes, P.B. Sublevel stoping. In SME Mining Engineering Handbook; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration, Inc.: Englewood, CO, USA, 2011; pp. 1355–1363. [Google Scholar]
- Alford, C. Optimisation in underground mine design. In Proceedings of APCOM XXV: Application of Computers and Operations Research in the Minerals Industries; AusIMM: Melbourne, Australia, 1995; pp. 213–218. [Google Scholar]
- Alford, C.; Hall, B. Stope optimisation tools for selection of optimum cut-off grade in underground mine design. In Project Evaluation Conference; AusIMM: Melbourne, Australia, 2009; pp. 137–144. [Google Scholar]
- Alford Mining Systems. AMS—Stope Shape Optimizer; Carlton: Victoria, Australia, 2022. [Google Scholar]
- Cawrse, I. Multiple pass floating stope process. In Strategic Mine Planning Conference; AusIMM Publication Series: Perth, Australia, 2001; pp. 87–94. [Google Scholar]
- Erdogan, G.; Cigla, M.; Topal, E.; Yavuz, M. Implementation and comparison of four stope boundary optimization algorithms in an existing underground mine. Int. J. Min. Reclam. Environ. 2017, 31, 389–403. [Google Scholar] [CrossRef]
- Nikbin, V.; Mardaneh, E.; Asad, M.W.A.; Topal, E. Pattern search method for accelerating Stope boundary optimization problem in underground mining operations. Eng. Optim. 2021, 54, 881–893. [Google Scholar] [CrossRef]
- Brazil, M.; Grossman, P.A.; Lee, D.H.; Rubinstein, J.H.; Thomas, D.A.; Wormald, N.C. Decline design in underground mines using constrained path optimisation. Min. Technol. 2008, 117, 93–99. [Google Scholar] [CrossRef]
- Brazil, M.; Lee, D.H.; Van Leuven, M.; Rubinstein, J.H.; Thomas, D.A.; Wormald, N.C. Optimising declines in underground mines. Min. Technol. 2003, 112, 164–170. [Google Scholar] [CrossRef]
- Brazil, M.; Thomas, D.A. Network optimization for the design of underground mines. Networks 2007, 49, 40–50. [Google Scholar] [CrossRef]
- Brickey, A.J. Undergrounf Production Scheduling Optimization with Ventilation Constraints; Colorado School of Mines: Golden, CO, USA, 2015; pp. 1–93. [Google Scholar]
- Fava, L.; Millar, D.; Maybee, B. Scenario evaluation through mine schedule optimisation. In Proceedings of the 2nd International Seminar on Mine Planning, Antofagasta, Chile, 8–10 June 2011; pp. 1–10. [Google Scholar]
- Fava, L.; Saavedra-Rosas, J.; Tough, V.; Haarala, P. A heuristic optimization process for achieving strategic mine planning targets. In Proceedings of the 23rd World Mining Congress, Montreal, QC, Canada, 11–15 August 2013. [Google Scholar]
- Hauta, R.; Whittier, M.; Fava, L. Application of the geosequencing module to ensure optimised underground mine schedules with reduced geotechnical risk. In Underground Mining Technology 2017; Hudyma, M., Potivin, Y., Eds.; Australian Centre for Geomechanics (ACG): Sudbury, ON, Canada, 2017; pp. 547–555. [Google Scholar]
- Little, J.; Topal, E.; Knights, P. Simultaneous optimisation of stope layouts and long term production schedules. Min. Technol. 2011, 120, 129–136. [Google Scholar] [CrossRef]
- Newman, A.M.; Rubio, E.; Caro, R.; Weintraub, A.; Eurek, K. A review of operations research in mine planning. Inf. J. Appl. Anal. 2010, 40, 222–245. [Google Scholar] [CrossRef]
- Topal, E. Advanced Underground Mine Scheduling Using Mixed Integer Programming; Colorado School of Mines: Golden, Colorado, USA, 2003. [Google Scholar]
- Trout, L. Underground mine production scheduling using mixed integer programming. In Application of Computers and Operations Research in the Mineral Industry (APCOM); Australasian Institute of Mining and Metallurgy: Brisbane, Australia, 1995; pp. 395–400. [Google Scholar]
- Chimunhu, P.; Topal, E.; Ajak, A.D.; Asad, W. A review of machine learning applications for underground mine planning and scheduling. Resour. Policy 2022, 77, 102693. [Google Scholar] [CrossRef]
- Campeau, L.-P.; Gamache, M.; Martinelli, R. Integrated optimisation of short- and medium-term planning in underground mines. Int. J. Min. Reclam. Environ. 2022, 36, 235–253. [Google Scholar] [CrossRef]
- Martinelli, R.; Collard, J.; Gamache, M. Strategic planning of an underground mine with variable cut-off grades. Optim. Eng. 2020, 21, 803–849. [Google Scholar] [CrossRef]
- Ravenscroft, P.J. Risk analysis for mine scheduling by conditional simulation. Trans. Inst. Min. Metall. 1992, 101, A104–A108. [Google Scholar]
- Dowd, P. Risk assessment in reserve estimation and open-pit planning. Trans. Inst. Min. Metall. Sect. A Min. Technol. 1994, 103, 148–154. [Google Scholar]
- Grieco, N.; Dimitrakopoulos, R. Managing grade risk in stope design optimisation: Probabilistic mathematical programming model and application in sublevel stoping. Min. Technol. 2007, 116, 49–57. [Google Scholar] [CrossRef]
- Little, J.; Knights, P.; Topal, E. Integrated optimization of underground mine design and scheduling. J. South. Afr. Inst. Min. Metall. 2013, 113, 775–785. [Google Scholar]
- Copland, T.; Nehring, M. Integrated optimization of stope boundary selection and scheduling for sublevel stoping operations. J. S. Afr. Inst. Min. Metall. 2016, 116, 1135–1142. [Google Scholar] [CrossRef]
- Foroughi, S.; Hamidi, J.K.; Monjezi, M.; Nehring, M. The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II). Resour. Policy 2019, 63, 101408. [Google Scholar] [CrossRef]
- Hou, J.; Li, G.; Hu, N.; Wang, H. Simultaneous integrated optimization for underground mine planning: Application and risk analysis of geological uncertainty in a gold deposit. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2019, 35, 153–174. [Google Scholar] [CrossRef]
- Furtado e Faria, M.; Dimitrakopoulos, R.; Lopes Pinto, C.L. Integrated stochastic optimization of stope design and long-term underground mine production scheduling. Resour. Policy 2022, 78, 102918. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer: New York, NY, USA, 2011. [Google Scholar]
- Carelos Andrade, L.; Dimitrakopoulos, R.; Cownway, P. Integrated stochastic optimization of stope design and long-term production scheduling at an operating underground copper mine. Int. J. Min. Reclam. Environ. 2023, 78, 102918. [Google Scholar]
- Villaescusa, E. Geotechnical Design for Sublevel Open Stoping; CRC Press, Taylor & Francis Group: New York, NY, USA, 2014. [Google Scholar]
- Skipochka, S.I.; Palamarchuk, T.A.; Sergienko, V.N. Geomechanical monitoring for underground mining mineral deposits. In Innovative Development of Resource-Saving Technologies for Mining; Multi-authores monograph; Kalinichenko, V.A., Ed.; Publishing House “St.Ivan Rilski”: Sofia, Ukraine, 2018; pp. 147–167. [Google Scholar]
- Dimitrakopoulos, R. (Ed.) Advances in Applied Strategic Mine Planning, 1st ed.; Springer Nature: Cham, Switzerland, 2018; pp. 1–802. [Google Scholar]
- Dimitrakopoulos, R.; Lamghari, A. Simultaneous stochastic optimization of mining complexes—Mineral value chains: An overview of concepts, examples and comparisons. Int. J. Min. Reclam. Environ. 2022, 36, 443–460. [Google Scholar] [CrossRef]
- Goodfellow, R.; Dimitrakopoulos, R. Global optimization of open pit mining complexes with uncertainty. Appl. Soft Comput. 2016, 40, 292–304. [Google Scholar] [CrossRef]
- Dimitrakopoulos, R.; Grieco, N. Stope design and geological uncertainty: Quantification of risk in conventional designs and a probabilistic alternative. J. Min. Sci. 2009, 45, 152–163. [Google Scholar] [CrossRef]
- Villalba Matamoros, M.E.; Kumral, M. Underground mine planning: Stope layout optimisation under grade uncertainty using genetic algorithms. Int. J. Min. Reclam. Environ. 2018, 33, 353–370. [Google Scholar] [CrossRef]
- Furtado e Faria, M.; Dimitrakopoulos, R.; Lopes Pinto, C.L. Stochastic stope design optimisation under grade uncertainty and dynamic development costs. Int. J. Min. Reclam. Environ. 2022, 36, 81–103. [Google Scholar] [CrossRef]
- Carpentier, S.; Gamache, M.; Dimitrakopoulos, R. Underground long-term mine production scheduling with integrated geological risk management. Min. Technol. 2016, 125, 93–102. [Google Scholar] [CrossRef]
- Dirkx, R.; Kazakidis, V.; Dimitrakopoulos, R. Stochastic optimisation of long-term block cave scheduling with hang-up and grade uncertainty. Int. J. Min. Reclam. Environ. 2018, 33, 371–388. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Chilès, J.-P.; Delfiner, P. Geostatistics; Wiley Series in Probability and Statistics: Hoboken, NJ, USA, 1999. [Google Scholar]
- Rossi, M.E.; Deutsch, V. Mineral Rosource Estimation, 1st ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- David, M. Hadbook of Applied Advanced Geostatistical Ore Reserve Estimation; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978. [Google Scholar]
- Mariethoz, G.; Caers, J. Multiple-Point Geostatistics: Stochastic Modeling with Training Images; Wiley-Blackwell: New York, NY, USA, 2015; p. 384. [Google Scholar]
- Journel, A.G. Modeling uncertainty: Some conceptual thoughts. In Geostatistics for the Next Century; Dimitrakopoulos, R., Ed.; Springer: Dordrecht, The Netherlands; Montreal, QC, Canada, 1994; pp. 30–43. [Google Scholar]
- Journel, A.G.; Deutsch, C.V. Entropy and spatial disorder. Math. Geol. 1993, 25, 329–355. [Google Scholar] [CrossRef]
- Dimitrakopoulos, R.; Mustapha, H.; Gloaguen, E. High-order statistics of spatial random fields: Exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math. Geosci. 2010, 42, 65–99. [Google Scholar] [CrossRef]
- Journel, A.G. Beyond covariance: The advent of multiple-point geostatistics. In Geostatistics Banff 2004; Leuangthong, O., Deutsch, C.V., Eds.; Springer: Dordrecht, The Netherlands; Banff, AB, Canada, 2005; pp. 225–233. [Google Scholar]
- Remy, N.; Alexandre, B.; Wu, J. Applied Geostatistics with SGems: A User’s Guide; Cambridge University Press: Cambrigde, UK, 2009. [Google Scholar]
- Guardiano, F.; Srivasta, R. Multivariate geostatistics: Beyond bivariate moments. In Geostatistics Troia ‘92; Soares, A., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 133–144. [Google Scholar]
- Strebelle, S. Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 2002, 34, 1–21. [Google Scholar] [CrossRef]
- Arpat, G.B.; Caers, J. Conditional simulation with patterns. Math. Geol. 2007, 39, 177–203. [Google Scholar] [CrossRef]
- Zhang, T.; Switzer, P.; Journel, A. Filter-based classification of training image patterns for spatial simulation. Math. Geol. 2006, 38, 63–80. [Google Scholar] [CrossRef]
- Mariethoz, G.; Renard, P.; Straubhaar, J. The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. 2010, 46, W11536. [Google Scholar] [CrossRef]
- Osterholt, V.; Dimitrakopoulos, R. Simulation of orebody geology with multiple-point geostatistics—Application at Yandi Channel iron ore deposit, WA, and implications for resource uncertainty. In Advances in Applied Strategic Mine Planning; Dimitrakopoulos, R., Ed.; Springer Nature: Cham, Switzerland, 2018; pp. 335–352. [Google Scholar]
- Minniakhmetov, I.; Dimitrakopoulos, R.; Godoy, M. High-order spatial simulation using legendre-like orthogonal splines. Math. Geosci. 2018, 50, 753–780. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, H.; Dimitrakopoulos, R. HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Comput. Geosci. 2011, 37, 1242–1253. [Google Scholar] [CrossRef]
- de Carvalho, J.P.; Dimitrakopoulos, R.; Minniakhmetov, I. High-order block support spatial simulation method and its application at a gold deposit. Math. Geosci. 2019, 51, 793–810. [Google Scholar] [CrossRef]
- Dimitrakopoulos, R.; Yao, L. High-order spatial stochastic models. In Encyclopedia of Mathematical Geosciences; Daya Sagar, B.S., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- de Carvalho, J.P.; Dimitrakopoulos, R. Effects of high-order simulations on the simultaneous stochastic optimization of mining complexes. Minerals 2019, 9, 210. [Google Scholar] [CrossRef]
- Goodfellow, R.; Dimitrakopoulos, R. Simultaneous stochastic optimization of mining complexes and mineral value chains. Math. Geosci. 2017, 49, 341–360. [Google Scholar] [CrossRef]
- Montiel, L.; Dimitrakopoulos, R. A heuristic approach for the stochastic optimization of mine production schedules. J. Heuristics 2017, 23, 397–415. [Google Scholar] [CrossRef]
- Montiel, L.; Dimitrakopoulos, R. Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach. Eur. J. Oper. Res. 2015, 247, 166–178. [Google Scholar] [CrossRef]
- Brika, Z. Optimisation de la Planification Stratégique d’une Mine à ciel Ouvert en Tenant Compte de L’incertitude Géologique; Department of Mathematics and Industrial Engineering, Polytechnique Montréal: Montreal, QC, Canada, 2019. [Google Scholar]
- Ramazan, S.; Dimitrakopoulos, R. Production scheduling with uncertain supply: A new solution to the open pit mining problem. Optim. Eng. 2013, 14, 361–380. [Google Scholar] [CrossRef]
- Isaaks, E. The Application of Monte Carlo Methods to the Analysis of Spatially Correlated Data; Stanford University: Stanford, CA, USA, 1990. [Google Scholar]
- Albor Consuegra, F.R.; Dimitrakopoulos, R. Stochastic mine design optimisation based on simulated annealing: Pit limits, production schedules, multiple orebody scenarios and sensitivity analysis. Min. Technol. 2009, 118, 79–90. [Google Scholar] [CrossRef]
- IBM ILOG. CPLEX User’s Manual; IBM: Armonk, NY, USA, 2017; p. 596. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Index | Definition |
---|---|
Tonnage of stope j, in mining zone configuration b, stope sequencing option a, and in geological scenario s | |
Grade of element ε within stope j in mining zone b, in scenario s | |
Economic discount factor for period t given an economic discount rate | |
Discounted horizontal development discounted cost in sublevel l, at period t in $/km | |
Discounted mining cost for type k stopes at period t in $/t | |
Unitary processing cost $/t | |
Discounted rehandling cost at period t in $/t | |
Discounted haulage cost at period t if in $/(tons×km) and if in $/t | |
Fixed discounted cost for keeping the mining zone configuration b | |
Stockpiling capacity at period t (tons/year). |
Parameter | Value/Description |
---|---|
Minimum dimensions | 15 m × 30 m × 30 m |
Maximum dimensions | 30 m × 30 m × 150 m |
Parameter | Value |
---|---|
Cu price | 8500 $/t |
Economic discount rate | 10% |
Geologic discount rate | 10% |
Processing recovery Cu | 94% |
Mining cost | 50 $/t |
Processing cost | 13.5 $/t |
Haulage cost | 5 $/t×m |
Rehandling cost | 0.5 $/t |
Drifts development cost | 12,000 $/m |
Density | 3.2 t/m3 |
Haulage capacity | 3 Mt/year |
Processing capacity | 2.5 Mt/year |
Stockpiling capacity | 400 kt/year |
Drift development capacity | 5000 m/year |
Minimum copper mill head grade | 1.8% |
Penalty cost for deviations below minimum Cu mill head grade | 100 $/unit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carelos Andrade, L.; Dimitrakopoulos, R. Integrated Stochastic Underground Mine Planning with Long-Term Stockpiling: Method and Impacts of Using High-Order Sequential Simulations. Minerals 2024, 14, 123. https://doi.org/10.3390/min14020123
Carelos Andrade L, Dimitrakopoulos R. Integrated Stochastic Underground Mine Planning with Long-Term Stockpiling: Method and Impacts of Using High-Order Sequential Simulations. Minerals. 2024; 14(2):123. https://doi.org/10.3390/min14020123
Chicago/Turabian StyleCarelos Andrade, Laura, and Roussos Dimitrakopoulos. 2024. "Integrated Stochastic Underground Mine Planning with Long-Term Stockpiling: Method and Impacts of Using High-Order Sequential Simulations" Minerals 14, no. 2: 123. https://doi.org/10.3390/min14020123
APA StyleCarelos Andrade, L., & Dimitrakopoulos, R. (2024). Integrated Stochastic Underground Mine Planning with Long-Term Stockpiling: Method and Impacts of Using High-Order Sequential Simulations. Minerals, 14(2), 123. https://doi.org/10.3390/min14020123