Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin
Abstract
:1. Introduction
2. Geologic Context
3. Materials and Methods
4. Core Descriptions
5. Petrological Characteristics of the In Situ Deposits
5.1. Constituents and Their Paragenetic Relationships
5.1.1. Magnesian Clay Minerals
5.1.2. Calcite
5.1.3. Dolomite
5.1.4. Other Carbonates and Minor Diagenetic Constituents
5.1.5. Detrital and Intrabasinal Grains
5.1.6. Pore Types
6. Discussion
6.1. Genesis of the Pre-Salt Minerals
6.2. Syngenetic Interactions
6.3. Eodiagenetic Interactions
6.4. Mesodiagenetic/Hydrothermal Interactions
7. Conclusions
- The main syngenetic interactions included the deposition of the magnesian clay laminated matrices, peloids, and ooids and the precipitation of fascicular calcite aggregates upon the sediment–water interface.
- The main eodiagenetic interactions include the widespread formation of spherulites and shrubs replacing and displacing the matrix, the precipitation of blocky calcite and dolomite replacing the matrix or as rims covering calcite aggregates, the precipitation of lamellar carbonates in pores formed by shrinkage of the matrix, the replacement and cementation of clay ooids, and the precipitation of microcrystalline calcite, dolomite, and silica replacing the matrix.
- The main mesodiagenetic/hydrothermal interactions are mostly related to cementation by saddle dolomite, macrocrystalline calcite, and dawsonite after significant matrix dissolution.
- The fast precipitation of syngenetic calcite shrubs occurred under high ionic supply conditions. The common occurrence of peloids within preferential growth layers in shrubs indicates that clay and carbonate precipitation was concomitant and mostly controlled by the rate of precipitation of each mineral.
- The interruption and deformation of the clay matrix laminations by the calcite spherulites and shrubs indicate that the matrix was deposited as Mg-clay particles and was replaced and displaced by the calcite aggregates still in an unconsolidated state.
- The lamellar carbonates were formed initially by filling the matrix shrinkage pores and later covered by palisade crystals perpendicular to matrix orientation. A similar pattern is observed in the replacement and cementation of the clay envelopes of the ooids.
- An original HMC composition of some aggregates could explain the wide variation in the recrystallization patterns observed in the calcite spherulites and shrubs, as well as their local pseudomorphic dolomitization.
- The common replacement of the matrix by blocky dolomite crystals was favored due to the instability of stevensite during eodiagenesis.
- The occurrence of rounded, inclusion-rich cores in blocky calcite and dolomite may indicate a recrystallization of an initial highly defective phase such as proto-dolomite or VHMC, followed by a further precipitation of more stoichiometric carbonates.
- The preferential replacement of peloidal levels by calcite and dolomite likely occurred due to their higher permeability and specific surface.
- The replacement of the matrix by microcrystalline, instead of spherulitic calcite, likely occurred due to decreased alkalinity and/or silica concentration.
- Saddle dolomite and dawsonite precipitated mostly through matrix dissolution and replacement possibly by hydrothermal fluids or alternatively as a result of the cementation and recrystallization of early blocky dolomite by evolved brines, not related to hydrothermal circulation, during burial. A mesodiagenetic origin without hydrothermal influence is suggested by the widespread distribution of saddle dolomite in wells away from major faults that could correspond to conduits for the focused flow of such fluids [19]. Macrocrystalline calcite cemented dissolution pores after significant dolomite precipitation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Formigli, J. Pre-Salt Reservoirs Offshore Brazil: Perspectives and Challenges. In Proceedings of the Bank of America Energy Conference, Miami, FL, USA, 15 November 2007. [Google Scholar]
- Carminatti, M.; Wolff, B.; Gamboa, L. New exploratory frontiers in Brazil. In Proceedings of the 19th World Petroleum Congress, Madrid, Spain, 29 June–3 July 2008. [Google Scholar]
- Gabrielli, J.S. A indústria de petróleo e gás natural. In Proceedings of the III Fórum do Instituto Brasileiro de Executivos de Finanças de Óleo e Gás, Rio de Janeiro, Brazil, 18 March 2022; p. 24. [Google Scholar]
- Gomes, P.O.; Kilsdonk, B.; Minken, J.; Grow, T.; Barragan, R. The Outer High of the Santos Basin, Southern São Paulo Plateau, Brazil: Pre-Salt Exploration Outbreak, Paleogeographic Setting, and Evolution of the Syn-Rift Structures. In Proceedings of the AAPG International Conference and Exhibition, Cape Town, South Africa, 26–29 October 2008. [Google Scholar]
- Sabato Ceraldi, T.; Green, D. Evolution of the South Atlantic lacustrine deposits in response to Early Cretaceous rifting, subsidence and lake hydrology. In Petroleum Geoscience of the West Africa Margin; Geological Society of London Special Publication 438; Sabato Ceraldi, T., Hodgkinson, R.A., Backe, G., Eds.; Geological Society of London: London, UK, 2017; pp. 77–98. [Google Scholar]
- Saller, A.; Rushton, S.; Buambua, L.; Inman, K.; Mcneil, R.; Dickson, J.A.D. Pre-Salt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola. AAPG Bull. 2016, 100, 1135–1164. [Google Scholar] [CrossRef]
- Terra, G.J.S.; Spadini, A.R.; França, A.B.; Sombra, C.L.; Zambonato, E.E.; Juschaks, L.C.S.; Arienti, L.M.; Erthal, M.M.; Blauth, M.; Franco, M.P.; et al. Carbonate rock classification applied to Brazilian sedimentary basins. Bol. Geociências Petrobras 2010, 18, 9–29. [Google Scholar]
- Wright, V.P.; Barnett, A.J. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. In Microbial Carbonates in Space and Time: Implications for Global Exploration and Production; Special Publication 418; Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A., Eds.; Geological Society of London: London, UK, 2015; pp. 209–219. [Google Scholar]
- Wright, V.P.; Tosca, N.A. Geochemical Model for the Formation of the Pre-Salt Reservoirs, Santos Basin, Brazil: Implications for Understanding Reservoir Distribution. In Proceedings of the AAPG Annual Convention and Exhibition, Calgary, AB, Canada, 19–22 June 2016. [Google Scholar]
- Herlinger, R., Jr.; Zambonato, E.E.; De Ros, L.F. Influence of Diagenesis on the Quality of Lower Cretaceous Pre-salt Lacustrine Carbonate Reservoirs from Northern Campos Basin, Offshore Brazil. J. Sediment. Res. 2017, 87, 1285–1313. [Google Scholar] [CrossRef]
- Kirkham, A.; Tucker, M.E. Thrombolites, spherulites and microbial crusts (Holkerian, Purbeckian, Aptian): Context, fabrics and origin. Sediment. Geol. 2018, 374, 69–84. [Google Scholar] [CrossRef]
- Mercedes-Martín, R.; Brasier, A.T.; Rogerson, M.; Reijmer, J.J.G.; Vonhof, H.; Pedley, M. A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes. Mar. Pet. Geol. 2017, 86, 68–191. [Google Scholar] [CrossRef]
- Pietzsch, R.; Oliveira, D.M.; Tedeschi, L.R.; Neto, J.V.Q.; Figueiredo, M.F.; Vazquez, J.C.; de Souza, R.S. Palaeohydrology of the Lower Cretaceous pre-salt lacustrine system, from rift to post-rift phase, Santos Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 507, 60–80. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation. Geochim. Cosmochim. Acta 2018, 225, 80–101. [Google Scholar] [CrossRef]
- Farias, F.; Szatamari, P.; Bahniuk, A.; França, A.B. Evaporitic carbonates in the pre-salt of Santos Basin—Genesis and tectonic implications. Mar. Pet. Geol. 2019, 105, 251–272. [Google Scholar] [CrossRef]
- Lima, B.E.M.; De Ros, L.F. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sediment. Geol. 2019, 383, 55–81. [Google Scholar] [CrossRef]
- Gomes, J.P.; Bunevich, R.B.; Tedeschi, L.R.; Tucker, M.E.; Whitaker, F.F. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Mar. Pet. Geol. 2020, 113, 104–176. [Google Scholar] [CrossRef]
- Hosa, A.; Wood, R.A.; Corbett, P.W.M.; de Souza, R.S.; Roemers, E. Modelling the impact of depositional and diagenetic processes on reservoir properties of the crystal-shrub limestones in the ‘Pre-Salt’ Barra Velha Formation, Santos Basin, Brazil. Mar. Pet. Geol. 2020, 112, 104100. [Google Scholar] [CrossRef]
- Lima, B.E.M.; Tedeschi, L.R.; Pestilho, A.L.S.; Santos, R.V.; Vazquez, J.C.; Guzzo, J.V.P.; De Ros, L.F. Deep-burial hydrothermal alteration of the Pre-Salt carbonate reservoirs from northern Campos Basin, offshore Brazil: Evidence from petrography, fluid inclusions, Sr, C and O isotopes. Mar. Pet. Geol. 2020, 113, 104143. [Google Scholar] [CrossRef]
- Pietzsch, R.; Tedeschi, L.R.; Oliveira, D.M.; dos Anjos, C.W.D.; Vazquez, J.C.; Figueiredo, M.F. Environmental conditions of deposition of the Lower Cretaceous lacustrine carbonates of the Barra Velha Formation, Santos Basin (Brazil), based on stable carbon and oxygen isotopes: A continental record of pCO2 during the onset of the Oceanic Anoxic Event 1a (OAE 1a) interval? Chem. Geol. 2020, 535, 119457. [Google Scholar]
- Wright, V.P.; Barnett, A.J. The textural evolution and ghost matrices of the Cretaceous Barra Velha Formation carbonates from the Santos Basin, offshore Brazil. Facies 2020, 66, 18. [Google Scholar] [CrossRef]
- Carvalho, M.D.; Fernandes, F.L. Pre-Salt Depositional System: Sedimentology, Diagenesis, and Reservoir Quality of the Barra Velha Formation, as a Result of the Santos Basin Tectono-Stratigraphic Development. In The Supergiant Lower Cretaceous Pre-Salt Petroleum Systems of the Santos Basin, Brazil, AAPG Memoir 124; Mello, M.R., Yilmaz, P.O., Katz, B.J., Eds.; AAPG and Brazilpetrostudies: Tulsa, OK, USA, 2021; pp. 121–154. [Google Scholar]
- Carvalho, A.M.A.; Hamon, Y.; Souza, O.G., Jr.; Carramal, N.G.; Collard, N. Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: A comprehensive quantitative approach. Mar. Pet. Geol. 2022, 141, 105708. [Google Scholar] [CrossRef]
- Carramal, N.G.; Oliveira, D.M.; Cacela, A.S.M.; Cuglieri, M.A.A.; Rocha, N.P.; Viana, S.M.; Toledo, S.L.V.; Pedrinha, S.; De Ros, L.F. Paleoenvironmental insights from the deposition and diagenesis of Aptian Pre-Salt magnesium silicates from the Lula Field, Santos Basin, Brazil. J. Sediment. Res. 2022, 92, 12–31. [Google Scholar] [CrossRef]
- Wright, V.P. The mantle, CO2 and the giant Aptian chemogenic lacustrine carbonate factory of the South Atlantic: Some carbonates are made, not born. Sedimentology 2022, 69, 47–73. [Google Scholar] [CrossRef]
- Herlinger, R.; De Ros, L.F.; Surmas, R.; Vidal, A. Residual oil saturation investigation in Barra Velha Formation reservoirs from the Santos Basin, Offshore Brazil: A sedimentological approach. Sediment. Geol. 2023, 448, 106273. [Google Scholar] [CrossRef]
- Moreira, J.L.P.; Madeira, C.V.; Gil, J.A.; Machado, M.A.P. Bacia de Santos. Bol. Geociências Petrobras 2007, 15, 531–554. [Google Scholar]
- Freitas, V.A.; Travassos, R.M.; Cardoso, M.B. Bacia de Santos: Sumário Geológico e Setores em Oferta. In Proceedings of the Décima Sexta Rodada de Licitações, ANP, Rio de Janeiro, Brazil, 30 July 2019. [Google Scholar]
- Milani, E.J.; Rangel, H.D.; Bueno, G.V.; Stica, J.; Winter, W.; Caixeta, J.M.; Neto, O.C.P. Bacias Sedimentares Brasileiras: Cartas Estratigráficas. Bol. Geociências Petrobras 2007, 15, 183–205. [Google Scholar]
- Gamboa, L.A.P.; Machado, M.A.P.; Silva, D.P.; Freitas, J.T.R.; Silva, S.R.P. Evaporitos estratificados no Atlântico Sul: Interpretação sísmica e controle tectono-estratigráfico na Bacia de Santos. In Sal: Geologia e Tectônica; Mohriak, W., Szatmari, P., Anjos, S.M.C.d., Eds.; Beca Edições: São Paulo, Brazil, 2008; pp. 178–187. [Google Scholar]
- Dias, J.L. Tectônica, estratigrafia e sedimentação no Andar Aptiano damargem leste brasileira. Bol. Geociências Petrobras 2005, 13, 7–25. [Google Scholar]
- Mohriak, W.U. Bacias Sedimentares da Margem Continental Brasileira. In Geologia, Tectônica e Recursos Minerais do Brasil; Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M., Gonçalves, J.H., Eds.; CPRM: Brasília, Brazil, 2003; pp. 87–165. [Google Scholar]
- Riccomini, C.; Sant’Anna, L.G.; Tassinari, C.C.G. Pré-sal: Geologia e exploração. Rev. USP 2012, 95, 33–42. [Google Scholar] [CrossRef]
- De Ros, L.F.; Oliveira, D.M. An operational classification system for the South Atlantic pre-salt rocks. J. Sediment. Res. 2023, 93, 693–704. [Google Scholar] [CrossRef]
- Terry, R.D.; Chilingar, C.V. Summary of “Concerning some additional aids in studying sedimentary formations” by M. S. Shvetsov. J. Sediment. Petrol. 1955, 25, 229–234. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies Analysis of Limestones; Springer: New York, NY, USA, 1982; p. 633. [Google Scholar]
- De Ros, L.F.; Golberg, K.; Abel, M.; Victoreti, F.; Mastella, M.; Castro, E. Advanced acquisition and management of petrographic information from reservoir rocks using the Petroledge(r) System. In Proceedings of the AAPG Annual Convention and Exhibition, Long Beach, CA, USA, 1–4 April 2007. [Google Scholar]
- Dickson, J.A. Modified Staining Technique for Carbonates in Thin Sections. Nature 1965, 205, 587. [Google Scholar] [CrossRef]
- Christidis, G.E.; Koutsopoulou, E. A simple approach to the identification of trioctahedral smectite by X-ray diffraction. Clay Miner. 2013, 48, 687–696. [Google Scholar] [CrossRef]
- Ramnani, C.W.; Santos, J.F.; Parizek-Silva, Y.; Madrucci, V.; Santos, M.R.F.M.; Araújo, C.C. Diagenesis of Magnesian Clay Minerals in Santos Basin (Aptian). In Proceedings of the AIPEA—XVII International Clay Conference, Istanbul, Turkey, 25–29 July 2022. [Google Scholar]
- Kendall, A.C. Fascicular-optic calcite: A replacement of bundled acicular carbonate cements. J. Sediment. Petrol. 1977, 47, 1056–1062. [Google Scholar] [CrossRef]
- Pozo, M.; Calvo, J.P. Na Overview of Authigenic Magnesian Clays. Minerals 2018, 8, 520. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Guidry, S.A. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation. Sediment. Geol. 1999, 126, 57–74. [Google Scholar] [CrossRef]
- Riding, R.; Virgone, A. Hybrid Carbonates: In situ abiotic, microbial and skeletal co-precipitates. Earth-Sci. Rev. 2020, 208, 103300. [Google Scholar] [CrossRef]
- Chilingar, G.V.; Bissel, H.J.; Wolf, K.H. Diagenesis of Carbonate Rocks. In Diagenesis in Sediments, Developments in Sedimentology; Larsen, G., Chilingar, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; Volume 8, pp. 179–322. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Worden, R.H.; Burley, S.D. Sandstone diagenesis: The evolution of sand to stone. In Sandstone Diagenesis: Recent and Ancient; Burley, S.D., Worden, R.H., Eds.; International Association of Sedimentologists Blackwell Publishing Ltd.: Malden, MA, USA, 2003; pp. 1–44. [Google Scholar]
- Morad, S.; Ketzer, J.M.; De Ros, L.F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology 2000, 47, 95–120. [Google Scholar] [CrossRef]
- Machel, H.G.; Lonnee, J. Hydrothermal dolomite—A product of poor definition and imagination. Sediment. Geol. 2002, 152, 163–171. [Google Scholar] [CrossRef]
- Silva, M.D.; Gomes, M.E.B.; Mexias, A.S.; Pozo, M.; Drago, S.M.; Célia, R.S.; Silva, L.A.C.; Netto, P.; Gomes, L.B.; Porcher, C.C.; et al. Mineralogical Study of Levels with Magnesian Clay Minerals in the Santos Basin, Aptian Pre-Salt Brazil. Minerals 2022, 11, 970. [Google Scholar] [CrossRef]
- Netto, P.R.A.; Pozo, M.; Silva, M.D.; Mexias, A.S.; Gomes, M.E.B.; Borghi, L.; Rios-Netto, A.M. b Authigenic Mg-Clay assemblages in the Barra Velha Formation (Upper Cretaceous) from Santos Basin (Brazil): The Role of Syngenetic and Diagenetic Processes. Appl. Clay Sci. 2021, 216, 106339. [Google Scholar] [CrossRef]
- Netto, P.R.A.; Pozo, M.; Silva, M.D.; Gomes, M.E.B.; Mexias, A.; Ramnani, C.W.; Parizek-Silva, Y.; Borghi, L.; Rios-Netto, A.d.M. Paleoenvironmental implications of authigenic magnesian clay formation sequences in the Barra Velha Formation (Santos Basin, Brazil). Minerals 2022, 12, 200. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Knoll, A.H. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 1995, 10, 578–596. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J.P.; Knoll, A.H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 1999, 27, 313–358. [Google Scholar] [CrossRef]
- Sami, T.T.; James, N.P. Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, upper Pethei Group, northwest Canada. J. Sediment. Res. 1994, 64, 111–131. [Google Scholar]
- Pope, M.C.; Grotzinger, J.P.; Schreiber, B.C. Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance. J. Sediment. Res. 2000, 70, 1139–1151. [Google Scholar] [CrossRef]
- Riding, R. Abiogenic, microbial and hybrid authigenic carbonate crusts: Components of Precambrian stromatolites. Geol. Croat. 2008, 61, 73–103. [Google Scholar] [CrossRef]
- Coniglio, M.; Frizzell, R.; Pratt, B.R. Reef-capping laminites in the Upper Silurian carbonateto-evaporite transition, Michigan Basin, south-western Ontario. Sedimentology 2004, 51, 653–668. [Google Scholar] [CrossRef]
- Pruss, S.B.; Bottjer, D.J.; Corsetti, F.A.; Baud, A. A global marine sedimentary response to the end-Permian mass extinction: Examples from southern Turkey and the western United States. Earth-Sci. Rev. 2006, 78, 193–206. [Google Scholar] [CrossRef]
- Pentecost, A. The formation of travertine shrubs: Mammoth hot springs, Wyoming. Geol. Mag. 1990, 294, 159–168. [Google Scholar] [CrossRef]
- De Ros, L.F. Syngenetic, Diagenetic and Hydrothermal Processes in the Pre-Salt Sag Section of Santos and Campos Basins. In Proceedings of the Second EAGE Conference on Pre-Salt Reservoirs, Online, 8–10 September 2021. [Google Scholar]
- Tosca, N.J.; Wright, V.P. Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: A model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil. In Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction; Armitage, P.J., Butcher, A.R., Churchill, J.M., Csoma, A.E., Hollis, C., Lander, R.H., Omma, J.E., Worden, R.H., Eds.; Geological Society, Special Publications: London, UK, 2015; Volume 435, pp. 33–46. [Google Scholar]
- French, M.W.; Worden, R.H.; Mariani, E.; Larese, R.E.; Mueller, R.R.; Kliewer, C.E. Microcrystalline quartz generation and the preservation of porosity in sandstones: Evidence from the Upper Cretaceous of the Subhercynian Basin, Germany. J. Sediment. Res. 2012, 82, 422–434. [Google Scholar] [CrossRef]
- French, M.W.; Worden, R.H. Orientation of microcrystalline quartz in the Fontainebleau Formation, Paris Basin and why it preserves porosity. Sediment. Geol. 2013, 284–285, 149–158. [Google Scholar] [CrossRef]
- Raigemborn, M.S.; Gómez-Peral, L.E.; Krause, J.M.; Matheos, S.D. Controls on clay minerals assemblages in an early Paleogene nonmarine succession: Implications for the volcanic and paleoclimatic record of extra-andean Patagonia, Argentina. J. S. Am. Earth Sci. 2014, 52, 1–23. [Google Scholar] [CrossRef]
- Vazquez, M.; Bauluz, B.; Nieto, F.; Morata, D. Illitization sequence controlled by temperature in volcanic geothermal systems: The Tinguiririca geothermal field, Andean Cordillera, Central Chile. Appl. Clay Sci. 2016, 134, 221–234. [Google Scholar] [CrossRef]
- Odin, G.S. Introduction to the Verdine Facies. In Green Marine Clays: Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies, and Celadonite-Bearing Faceis, Developments in Sedimentology; Odin, G.S., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1988; Volume 45, pp. 53–56. [Google Scholar]
- Baldermann, A.; Dietzel, M.; Mavromatis, V.; Mittermayer, F.; Warr, L.N.; Wemmer, K. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates. Chem. Geol. 2017, 453, 21–34. [Google Scholar] [CrossRef]
- Odin, G.S. Significance of Green Particles (Glaucony, Berthierine, Chlorite) in Arenites. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO ASI Series; Springer: Dordrecht, Germany, 1985; Volume 148, pp. 279–307. [Google Scholar]
- Amorosi, A. Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sediment. Geol. 1997, 109, 135–153. [Google Scholar] [CrossRef]
- Armelenti, G.; Goldberg, K.; Kuchle, J.; De Ros, L.F. Deposition, diagenesis and reservoir potential of non-carbonate sedimentary rocks from the rift section of Campos Basin, Brazil. Pet. Geosci. 2016, 22, 223–239. [Google Scholar] [CrossRef]
- Kranck, K. Flocculation of Suspended Sediment in the Sea. Nature 1973, 246, 348–350. [Google Scholar] [CrossRef]
- Kranck, K. Experiments on the significance of flocculation in the settling of fine-grained sediment in still water. Can. J. Earth Sci. 1980, 17, 1517–1526. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Asprey, K.W.; Clattenburg, D.A.; Hodg, G.D. The prodelta environment of a fjord: Suspended particle dynamics. Sedimentology 1985, 32, 83–107. [Google Scholar] [CrossRef]
- Hill, P.S.; Miligan, T.G.; Geyer, W.R. Controls on effective settling velocity of suspended sediment in the Eel River flood plume. Cont. Shelf Res. 2000, 20, 2095–2111. [Google Scholar] [CrossRef]
- Fox, J.M.; Hill, P.; Milligan, T.G.; Boldrin, A. Flocculation and sedimentation on the Po River Delta. Mar. Geol. 2004, 203, 95–107. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; van Kesteren, W.G.M. Introduction to the Physics of Cohesive Sediment in the Marine Environment; Elsevier: Amsterdam, The Netherlands, 2004; p. 466. [Google Scholar]
- Sahin, C.; Guner, H.A.A.; Ozturk, M.; Sheremet, A. Floc size variability under strong turbulence: Observations and artificial neural network modeling. Appl. Ocean. Res. 2017, 68, 130–141. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 2003, 73, 105–127. [Google Scholar] [CrossRef]
- Bontognali, T.R.; Vasconcelos, C.; Warthmann, R.J.; Bernasconi, S.M.; Dupraz, C.; Strohmenger, C.J.; McKenzie, J.A. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 2010, 57, 824–844. [Google Scholar] [CrossRef]
- Burne, R.V.; Moore, L.S.; Christy, A.G.; Troitzsch, U.; King, P.L.; Carnerup, A.M.; Hamilton, P.J. Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization? Geology 2014, 42, 575–578. [Google Scholar] [CrossRef]
- Perri, E.; Tucker, M.E.; Słowakiewicz, M.; Whitaker, F.; Bowen, L.; Perrotta, I.D. Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses. Sedimentology 2018, 65, 1213–1245. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.; Carozzi, A. Lagoa Feia Formation (Lower Cretaceous) Campos Basin, offshore Brazil: Rift valley type lacustrine carbonate reservoirs I. J. Pet. Geol. 1985, 8, 37–58. [Google Scholar] [CrossRef]
- Leite, C.O.N.; Silca, C.M.A.; De Ros, L.F. Depositional and diagenetic processes in the pre-salt rift section of a Santos Basin area, SE Brazil. J. Sediment. Res. 2020, 90, 584–608. [Google Scholar] [CrossRef]
- Chafetz, H.; Barth, J.; Cook, M.; Guo, X.; Zhou, J. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sediment. Geol. 2018, 365, 21–33. [Google Scholar] [CrossRef]
- Tonietto, S.N.; Gomes, J.P.B.; Bunevich, R.B.; Erthal, M.M. Spherulitestone as a transitional facies responding to lake level variation—Diagenetic or depositional? In Proceedings of the AAPG IMAGE, Houston, TX, USA, 28 August–1 September 2023.
- Rodríguez-Berriguete, A.; Dal’Bo, P.F.; Valle, B.; Borghi, L. When distinction matters: Carbonate shrubs from the Aptian Barra Velha Formation of Brazillian’s Pre-salt. Sediment. Geol. 2022, 440, 106236. [Google Scholar] [CrossRef]
- Wright, V.P.; Barnett, A. Cyclicity and carbonate-silica gel interactions in Cretaceous alkaline lakes. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 6–9 April 2014. [Google Scholar]
- Tucker, M.E.; Wright, V.P. Calcretes: An Introduction. In Calcretes, 2nd ed.; Tucker, M.E., Wright, V.P., Eds.; International Association of Sedimentologists, Blackwell Science: Oxford, UK, 1991; pp. 1–22. [Google Scholar]
- Sélles-Martinez, J. Concretion morphology, classification and genesis. Earth-Sci. Rev. 1996, 41, 177–210. [Google Scholar] [CrossRef]
- Arementeros, I. Diagenesis of carbonates in continental settings. In Carbonates in Continental Settings, Geochemistry, Diagenesis and Applications, Developments in Sedimentology; Alonso-Zarza, A.M., Tanner, L., Eds.; Elsevier: Oxford, UK, 2010; Volume 62, pp. 61–151. [Google Scholar]
- Gaines, R.R.; Vorhies, J.S. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA). Sedimentology 2016, 63, 662–698. [Google Scholar] [CrossRef]
- Pozo, M. Origin and evolution of magnesium clays in lacustrine environments: Sedimentology and geochemical pathways. In Proceedings of the 1st Latin American Clay Conference, Funchal, Portugal, 17–22 September 2000; pp. 117–133. [Google Scholar]
- Galán, E.; Pozo, M. Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. In Developments in Palygorskite—Sepiolite Research, Developments in Clay Science 3; Singer, A., Gálan, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 125–174. [Google Scholar]
- Tosca, N.J.; Masterson, A. Chemical controls on incipient Mg-silicate crystallization at 25 °C: Implications for early and late diagenesis. Clay Miner. 2014, 49, 165–194. [Google Scholar] [CrossRef]
- Guggenheim, Introduction to Mg-rich clay minerals: Structure and composition. In Magnesian Clays: Characterization, Origins and Applications—Association Internationale pour L’Étude des Argiles; Educational Series; Pozo, M.; Galán, E. (Eds.) Digilabs Pub.: Bari, Italy, 2013; Volume 2, pp. 1–62. [Google Scholar]
- Molnár, Z.; Pekker, P.; Dódony, I.; Pósfai, M. Clay minerals affect calcium (magnesium) carbonate precipitation and aging. Earth Planet. Sci. Lett. 2021, 567, 116971. [Google Scholar] [CrossRef]
- Gomes, J.P. Facies, Diagenesis and Cycles within the Pre-Salt Deposits from Barra Velha Formation, Santos Basin, Offshore Brazil. Ph.D. Thesis, University of Bristol, Bristol, UK, September 2021. [Google Scholar]
- Sibley, D.F. The origin of common dolomite fabrics; clues from the Pliocene. J. Sediment. Res. 1982, 52, 1087. [Google Scholar]
- Budd, D.A. Dissolution of High-Mg Calcite Fossils and the Formation of Biomolds During Mineralogical Stabilization. Carbonates Evaporites 1997, 7, 74–81. [Google Scholar] [CrossRef]
- Kırmacı, M.Z.; Yıldız, M.; Kandemir, R.; Eroğlu-Gümrük, T. Multistage dolomitization in Late Jurassic–Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization. Mar. Pet. Geol. 2018, 89, 515–529. [Google Scholar] [CrossRef]
- Lohman, K.C.; Meyers, W.J. Microdolomite inclusions in cloudy prismatic calcites: A proposed criterion for former high-magnesium calcite. J. Sediment. Petrol. 1977, 47, 1078–1088. [Google Scholar]
- Stanienda, K.J. Carbonate phases rich in magnesium in the Triassic limestones of the eastern part of the Germanic Basin. Carbonates Evaporites 2016, 31, 387–405. [Google Scholar] [CrossRef]
- Cotton, L.J.; Evans, D.; Beavington-Penney, S.J. The high-magnesium calcite origin of Nummulitid foraminifera and implications for the identification of calcite diagenesis. Palaios 2020, 35, 421–431. [Google Scholar] [CrossRef]
- Ross, D.J. Botryoidal high-magnesium calcite marine cements from the Upper Cretaceous of the Mediterranean Region. J. Sediment. Petrol. 1991, 61, 349–353. [Google Scholar]
- Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 1749–1769. [Google Scholar] [CrossRef]
- Warren, K. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. A route for the direct crystallization of dolomite. Am. Mineral. 2015, 100, 1172–1181. [Google Scholar] [CrossRef]
- Hashim, M.S.; Kaczmarek, S.E. Experimental stabilization of carbonate sediments to calcite: Insights into the depositional and diagenetic controls on calcite microcrystal texture. Earth Planet. Sci. Lett. 2020, 538, 116235. [Google Scholar] [CrossRef]
- Huang, H.; Wen, H.; Wen, L.; Zhang, B.; Zhou, G.; He, Y.; Wen, L.; Zhao, Y.; Jiang, H. Multistage dolomitization of deeply buried dolomite in the Lower Cambrian Canglangpu Formation, central and northern Sichuan Basin. Mar. Pet. Geol. 2023, 152, 106261. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Y.; Papineau, D.; Yu, N.; Fan, Q.; Qiu, X.; Hongmei, W. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochim. Cosmochim. Acta 2019, 247, 83–95. [Google Scholar] [CrossRef]
- Li, T.; Zhu, D.; Yang, M.; Zhang, X.; Li, P.; Lu, C.; Zou, H. Early-stage marine dolomite altered by hydrothermal fluids in the Middle Permian Maokou Formation in the eastern Sichuan Basin, Southern China. Mar. Pet. Geol. 2021, 134, 105367. [Google Scholar] [CrossRef]
- Jones, B. Inside-Out Dolomite. J. Sediment. Res. 2007, 77, 539–551. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Préat, A. Hydrothermal Carbonate Mineralization, Calcretization, and Microbial Diagenesis Associated with Multiple Sedimentary Phases in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Geosciences 2019, 9, 459. [Google Scholar] [CrossRef]
- Mueller, M.; Igbokwe, O.A.; Walter, B.; Pederson, C.L.; Riechelmann, S.; Richter, D.K.; Albert, R.; Gerdes, A.; Buhl, D.; Neuser, R.D.; et al. Testing the preservation potential of early diagenetic dolomites as geochemical archives. Sedimentology 2019, 67, 849–881. [Google Scholar] [CrossRef]
- Koeshidayatullah, A.; Corlett, H.; Stacey, J.; Swart, P.K.; Boyce, A.; Robertson, H.; Whitaker, F.; Hollis, C. Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology 2020, 67, 2945–2973. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, S.; Lu, N.; Ye, N.; Zhu, B.; Ding, X.; Li, Y. Origin of dolomites in Lower-Middle Ordovician carbonate rocks in the Yingshan Formation, Gucheng Area, Tarim Basin: Evidence from petrography and geochemical data. Mar. Pet. Geol. 2021, 134, 105322. [Google Scholar] [CrossRef]
- Kareem, K.H.; Al-Aasm, I.S.; Mansurbeg, H. Geochemical constraints of hydrothermal alteration of dolostones: An example of Lower Cretaceous Qamchuqa Formation, Kurdistan Region, northern Iraq. Mar. Pet. Geol. 2021, 134, 105337. [Google Scholar] [CrossRef]
- Pan, L.; Hu, A.; Liang, F.; Jiang, L.; Hao, Y.; Feng, Y.; Shen, A.; Zhao, J. Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ U–Pb carbonate geochronology and isotope geochemistry. Mar. Pet. Geol. 2021, 129, 105080. [Google Scholar] [CrossRef]
- Stacey, J.; Corlett, H.; Holland, G.; Koeshidayatullah, A.; Cao, C.; Swart, P.; Crowley, S.; Hollis, C. Regional fault-controlled shallow dolomitization of the Middle Cambrian Cathedral Formation by hydrothermal fluids fluxed through basal clastic aquifer. Geol. Soc. Am. Bull. 2021, 113, 2355–2377. [Google Scholar] [CrossRef]
- Cobbold, P.R.; Zanella, A.; Rodrigues, N.; Løseth, H. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization. Mar. Pet. Geol. 2013, 43, 1–20. [Google Scholar] [CrossRef]
- Su, A.; Bons, P.D.; Chen, H.; Feng, Y.; Zhao, J.; Song, J. Age, material source, and formation mechanism of bedding-parallel calcite beef veins: Case from the mature Eocene lacustrine shales in the Biyang Sag, Nanxiang Basin, China. GSA Bull. 2022, 134, 1811–1833. [Google Scholar] [CrossRef]
- Sibson, R.H. Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull. 2003, 87, 901–908. [Google Scholar] [CrossRef]
- Cosgrove, J.W. The expression of hydraulic fracturing in rocks and sediments. Geol. Soc. Lond. Spec. Publ. 1995, 92, 187–196. [Google Scholar] [CrossRef]
- Cosgrove, J.W. Hydraulic fracturing during the formation and deformation of a basin: A factor in the dewatering of low-permeability sediments. AAPG Bull. 2001, 85, 737–748. [Google Scholar]
- Lash, G.G.; Engelder, T. An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex. AAPG Bull. 2005, 89, 1433–1449. [Google Scholar] [CrossRef]
- Meng, Q.; Hao, F.; Tian, J. Origins of non-tectonic fractures in shale. Earth-Sci. Rev. 2021, 222, 103825. [Google Scholar] [CrossRef]
- Mathia, E.J.; Bowen, L.; Thomas, K.M.; Aplin, A.C. Evolution of porosity and pore types in organic-rich, calcareous, lower toarcian posidonia shale. Mar. Pet. Geol. 2016, 75, 117–139. [Google Scholar] [CrossRef]
- Milliken, K.L.; Olson, T. Silica Diagensis, Porosity Evolution, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U.S.A. J. Sediment. Res. 2017, 87, 366–387. [Google Scholar] [CrossRef]
- McMahon, S.; Hood, A.S.; McIlroy, D. The origin and occurrence of subaqueous sedimentary cracks. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society of London: London, UK, 2017; Volume 448, pp. 295–309. [Google Scholar]
- Curtis, C.D.; Murchison, D.G.; Berner, R.A.; Shaw, H.; Sarnthein, M.; Durand, B.; Eglinton, G.; Mackenzie, A.S.; Surdam, R.C. Clay mineral precipitation and transformation during burial diagenesis. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 91–105. [Google Scholar]
- Foscolos, A.E. Diagenesis 7. Catagenesis of Argillaceous Sedimentary Rocks. Geosci. Can. 1984, 11, 67–75. [Google Scholar]
- Meunier, A. Clays; Springer: Heidelberg, Germany, 2005; p. 486. [Google Scholar]
- Velde, B. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence; Developments in Sedimentology Vol. 40; Elsevier Science: Amsterdam, The Netherlands, 2000; p. 426. [Google Scholar]
- Garcia-Ruiz, J.M. Geochemical scenarios for the precipitation of bomimetic inorganic carbonates. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World; Grotzinger, J.P., James, N.P., Eds.; Society of Sedimentary Geology: Tulsa, OK, USA, 2000; Volume 67, pp. 578–596. [Google Scholar]
- Beck, R.; Andreassen, J.-P. Spherulitic growth of calcium carbonate. Cryst. Growth Des. 2010, 10, 2934–2947. [Google Scholar] [CrossRef]
- Meister, P.; Johnson, O.; Corsetti, F.; Nealson, K.H. Magnesium inhibition controls spherical carbonate precipitation in ultrabasic springwater (Cedars, California) and culture experiments. In Advances in Stromatolie Geobiology; Reitner, J., Queric, N.-V., Arp, G., Eds.; Springer: Berlin, Germany, 2010; pp. 101–121. [Google Scholar]
- Spötl, C.; Pitman, J.K. Saddle (Baroque) Dolomite in Carbonates and Sandstones: A Reappraisal of a Burial-Diagenetic Concept. In Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution; Morad, S., Ed.; The International Association of Sedimentologists, Blackwell Science Ltd.: Oxford, UK, 1998; pp. 437–460. [Google Scholar]
- Al-Aasm, I.; Lonnee, J.; Clarke, J. Multiple fluid flow events and the formation of saddle dolomite: Case studies from the Middle Devonian of the Western Canada Sedimentary Basin. Mar. Pet. Geol. 2002, 19, 209–217. [Google Scholar] [CrossRef]
- Lavoie, D.; Jackson, S.; Girard, I. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada. Sediment. Geol. 2014, 305, 58–68. [Google Scholar] [CrossRef]
- Sirat, M.; Al-Aasm, I.S.; Morad, S.; Aldahan, A.; Al-Jallad, O.; Ceriani, A.; Morad, D.; Mansurbeg, H.; Al-Suwaidi, A. Saddle dolomite and calcite cements as records of fluid flow during basin evolution: Paleogene carbonates, United Arab Emirates. Mar. Pet. Geol. 2016, 74, 71–91. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Alsuwaidi, M.; Salih, N.; Shahorkhi, S.; Morad, S. Integration of stable isotopes, radiometric dating and microthermometry of saddle dolomite and host dolostones (Cretaceous carbonates, Kurdistan, Iraq): New insights into hydrothermal dolomitization. Mar. Pet. Geol. 2021, 127, 104989. [Google Scholar] [CrossRef]
- Poros, Z.; Jagniecki, E.; Luczaj, J.; Kenter, J.; Gal, B.; Correa, T.S.; Ferreira, E.; McFadden, K.A.; Elifritz, A.; Heumann, N.; et al. Origin of silica in pre-salt carbonates, Kwanza Basin, Angola. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 2–5 April 2017. [Google Scholar]
- Girard, J.-P.; San Miguel, G. Evidence of High Temperature Hydrothermal Regimes in the Pre-Salt Series, Kwanza Basin, Offshore Angola. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 2–5 April 2017. [Google Scholar]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 31, 455–468. [Google Scholar] [CrossRef]
- Ryan, B.H.; Kaczmarek, S.E.; Rivers, J.M. Multi-Episodic Recrystallization and Isotopic Resetting of Early-Diagenetic Dolomites in Near-Surface Settings. J. Sediment. Res. 2021, 91, 146–166. [Google Scholar] [CrossRef]
- Moore, C.H.; Wade, W.J. Burial Diagenetic Environment. In Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework, Developments in Sedimentology, 2nd ed.; Moore, C.H., Wade, W.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 67, pp. 239–284. [Google Scholar]
- Lonnee, J.; Machel, H.G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bull. 2006, 90, 1739–1761. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Morad, D.; Othman, R.; Morad, S.; Ceriani, A.; Al-Aasm, I.; Kolo, K.; Spirov, P.; Proust, J.N.; Preat, A. Hydrothermal dolomitization of the Bekhme formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation. Sediment. Geol. 2016, 341, 147–162. [Google Scholar] [CrossRef]
- Morad, S.; Al Suwaidi, M.; Mansurbeg, H.; Morad, D.; Ceriani, A.; Paganoni, N.; Al-Aasm, I. Diagenesis of a limestone reservoir (Lower Cretaceous), Abu Dhabi, United Arab Emirates: Comparison between the anticline crest and flanks. Sediment. Geol. 2019, 380, 127–142. [Google Scholar] [CrossRef]
- Stacey, J.; Hollis, C.; Corlett, H.; Koeshidayatullah, A. Burial dolomitization driven by modified seawater and basal aquifer-sourced brines: Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Res. 2020, 33, 648–680. [Google Scholar] [CrossRef]
- Kareem, K.H.; Al-Aasm, I.; Mansurbeg, H. Structurally-controlled hydrothermal fluid flow in an extensional tectonic regime: A case study of Cretaceous Qamchuqa Formation, Zagros Basin, Kurdistan Iraq. Sediment. Geol. 2019, 386, 52–78. [Google Scholar] [CrossRef]
- Jones, B.J.; Mumpton, F.A. Clay mineral diagenesis in lacustrine sediments. GSA Bull. 1986, 1578, 291–300. [Google Scholar]
- Guo, C.; Chen, D.; Qing, H.; Dong, S.; Li, G.; Wang, D.; Qian, Y.; Liu, C. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China. Mar. Pet. Geol. 2016, 72, 295–316. [Google Scholar] [CrossRef]
- Merino, E.; Canals, À. Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and associated mineralization. Am. J. Sci. 2011, 311, 573–607. [Google Scholar] [CrossRef]
- Worden, R.H. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Mar. Pet. Geol. 2006, 23, 61–77. [Google Scholar] [CrossRef]
- Cseresznyés, D.; Czuppon, G.; Király, C.; Demény, A.; Györe, D.; Forray, V.; Kovács, I.; Szabó, C.; Falus, G. Origin of dawsonite-forming fluids in the Mihélyi-Répcelak field (Pannonian Basin) using stable H, C and O isotope compositions: Implication for mineral storage of carbon-dioxide. Chem. Geol. 2021, 584, 120536. [Google Scholar] [CrossRef]
- Baker, J.C.; Bai, G.P.; Hamilton, P.J.; Golding, S.D.; Keene, J.B. Continental-scale magmatic carbon-dioxide seepage recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, eastern Australia. J. Sediment. Res. 1995, 65, 522–530. [Google Scholar]
- Moore, J.; Adams, M.; Allis, R.; Lutz, S.; Rauzi, S. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville–St. Johns Field, Arizona, and New Mexico, U.S.A. Chem. Geol. 2005, 217, 365–385. [Google Scholar] [CrossRef]
- Smith, J.W.; Young, N.B. Dawsonite: Its geochemistry, thermal behavior, and extraction from Green River oil shale. Colo. Sch. Mines Q. Rep. 1975, 70, 69–93. [Google Scholar]
A | Predominance of in situ rocks (max. 6.25 m) with rare intercalations of reworked deposits (max. 68 cm). In situ rocks consist predominantly of shrub-spherulstone (max. 2.9 m) and muddy spherulstones (max. 1.4 m). Silicification is concentrated at the base and top of the core. |
B1 | Predominance of in situ rocks (max. 8.8 m) with intercalated reworked deposits at the top and in situ rocks at the base of the cored interval. In situ rocks predominantly consist of shrubstones (max. 3.7 m), muddy shrubstones (max. 2 m), and cycles of muddy shrubstones and muddy spherulstones with high frequency, centimetric intercalations. Reworked rocks are mostly composed of calcarenites (max. 4.53 m) and rudaceous calcarenites (max. 3.2 m). Silicification is restricted to the top and the base of the core. |
C1 | Predominance of reworked deposits (2.18 m) with thick in situ intercalations (max. 3.12 m) at the top, transitioning to in situ predominance (max. 17.54 m) towards the bottom of the core. In situ rocks consist predominantly of muddy spherulstones (max. 2.6 m), shrubstones (max. 2.6 m), and shrub-spherulstones (max. 1.7 m). Reworked deposits are represented by mostly calcarenites (max. 2.18 m) and rudaceous calcarenites (max. 1.7 m). Silicification is dispersed throughout the core. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrank, A.B.S.; Dos Santos, T.; Altenhofen, S.D.; Freitas, W.; Cembrani, E.; Haubert, T.; Dalla Vecchia, F.; Barili, R.; Rodrigues, A.G.; Maraschin, A.; et al. Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin. Minerals 2024, 14, 191. https://doi.org/10.3390/min14020191
Schrank ABS, Dos Santos T, Altenhofen SD, Freitas W, Cembrani E, Haubert T, Dalla Vecchia F, Barili R, Rodrigues AG, Maraschin A, et al. Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin. Minerals. 2024; 14(2):191. https://doi.org/10.3390/min14020191
Chicago/Turabian StyleSchrank, Argos Belmonte Silveira, Thisiane Dos Santos, Sabrina Danni Altenhofen, William Freitas, Elias Cembrani, Thiago Haubert, Felipe Dalla Vecchia, Rosalia Barili, Amanda Goulart Rodrigues, Anderson Maraschin, and et al. 2024. "Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin" Minerals 14, no. 2: 191. https://doi.org/10.3390/min14020191
APA StyleSchrank, A. B. S., Dos Santos, T., Altenhofen, S. D., Freitas, W., Cembrani, E., Haubert, T., Dalla Vecchia, F., Barili, R., Rodrigues, A. G., Maraschin, A., & De Ros, L. F. (2024). Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin. Minerals, 14(2), 191. https://doi.org/10.3390/min14020191