Effect of Screen-Panel Tensile Length and Material Characteristics on Screening Performance of Flip-Flow Vibrating Screens for Dry-Screening Fine, Low-Grade Bituminous Coal
Abstract
:1. Introduction
2. Experiments
2.1. Test Rig and Experimental System
2.2. Experimental Materials
2.3. Evaluation Indexes
3. Results and Discussions
3.1. Effect of Screen-Panel Tensile Length on the Screening Performance of an FFVS
3.2. Effect of External Moisture Content on the Screening Performance of an FFVS
3.3. Effect of the Ratio of Fine Particles in the Feed on the Screening Performance of an FFVS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 49.36 | 20.09 |
6–3 | 4.16 | 0.34 | 4.45 | 0.36 | 5.83 | 0.50 | 8.35 | 0.72 | 23.68 | 4.69 | 79.84 | 4.81 | 33.53 | 13.65 |
3–1 | 67.18 | 5.53 | 64.79 | 5.18 | 61.07 | 5.28 | 56.75 | 4.88 | 41.69 | 8.25 | 6.46 | 0.39 | 1.13 | 0.46 |
1–0 | 28.65 | 2.36 | 30.76 | 2.46 | 33.10 | 2.86 | 34.89 | 3.00 | 34.63 | 6.86 | 13.70 | 0.83 | 15.99 | 6.51 |
Total | 100.00 | 8.23 | 100.00 | 7.99 | 100.00 | 8.64 | 100.00 | 8.60 | 100.00 | 19.80 | 100.00 | 6.03 | 100.00 | 40.71 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.15 | 20.09 |
6–3 | 5.19 | 0.39 | 3.59 | 0.29 | 5.43 | 0.44 | 7.13 | 0.58 | 22.43 | 4.91 | 78.84 | 4.93 | 33.78 | 13.53 |
3–1 | 66.37 | 4.98 | 62.30 | 5.02 | 60.77 | 4.89 | 57.54 | 4.71 | 42.50 | 9.30 | 7.84 | 0.49 | 1.43 | 0.57 |
1–0 | 28.44 | 2.14 | 34.11 | 2.75 | 33.81 | 2.72 | 35.33 | 2.89 | 35.07 | 7.68 | 13.32 | 0.83 | 14.63 | 5.86 |
Total | 100.00 | 7.51 | 100.00 | 8.05 | 100.00 | 8.05 | 100.00 | 8.19 | 100.00 | 21.89 | 100.00 | 6.25 | 100.00 | 40.06 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 51.71 | 20.09 |
6–3 | 3.90 | 0.31 | 5.87 | 0.50 | 7.38 | 0.62 | 10.28 | 0.88 | 28.73 | 6.32 | 80.54 | 4.61 | 30.44 | 11.83 |
3–1 | 64.29 | 5.09 | 60.56 | 5.20 | 59.95 | 5.02 | 56.04 | 4.79 | 37.77 | 8.31 | 7.50 | 0.43 | 2.91 | 1.13 |
1–0 | 31.81 | 2.52 | 33.57 | 2.88 | 32.66 | 2.73 | 33.67 | 2.88 | 33.50 | 7.37 | 11.96 | 0.68 | 14.93 | 5.80 |
Total | 100.00 | 7.92 | 100.00 | 8.58 | 100.00 | 8.37 | 100.00 | 8.56 | 100.00 | 21.99 | 100.00 | 5.73 | 100.00 | 38.86 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 43.13 | 20.09 |
6–3 | 6.99 | 0.39 | 6.22 | 0.36 | 8.35 | 0.46 | 8.99 | 0.52 | 14.68 | 2.86 | 47.45 | 5.38 | 32.43 | 15.11 |
3–1 | 67.83 | 3.78 | 64.79 | 3.71 | 62.04 | 3.39 | 61.75 | 3.60 | 54.14 | 10.55 | 24.35 | 2.76 | 4.67 | 2.18 |
1–0 | 25.18 | 1.40 | 28.99 | 1.66 | 29.61 | 1.62 | 29.26 | 1.71 | 31.19 | 6.08 | 28.20 | 3.20 | 19.77 | 9.21 |
Total | 100.00 | 5.57 | 100.00 | 5.72 | 100.00 | 5.47 | 100.00 | 5.83 | 100.00 | 19.49 | 100.00 | 11.34 | 100.00 | 46.59 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 59.02 | 20.09 |
6–3 | 3.68 | 1.67 | 22.85 | 2.64 | 55.87 | 1.73 | 78.06 | 1.24 | 87.84 | 2.38 | 88.55 | 1.56 | 40.72 | 13.86 |
3–1 | 51.39 | 23.26 | 49.24 | 5.69 | 23.48 | 0.73 | 6.75 | 0.11 | 2.73 | 0.07 | 4.96 | 0.09 | 0.08 | 0.03 |
1–0 | 44.93 | 20.33 | 27.91 | 3.22 | 20.65 | 0.64 | 15.19 | 0.24 | 9.43 | 0.26 | 6.49 | 0.11 | 0.18 | 0.06 |
Total | 100.00 | 45.26 | 100.00 | 11.55 | 100.00 | 3.09 | 100.00 | 1.59 | 100.00 | 2.71 | 100.00 | 1.76 | 100.00 | 34.05 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.53 | 20.09 |
6–3 | 1.66 | 0.32 | 2.10 | 0.29 | 6.50 | 0.61 | 13.38 | 0.71 | 40.27 | 2.64 | 63.51 | 2.12 | 43.48 | 18.38 |
3–1 | 58.43 | 11.32 | 58.11 | 7.98 | 58.24 | 5.48 | 53.54 | 2.85 | 29.71 | 1.95 | 9.48 | 0.32 | 0.18 | 0.08 |
1–0 | 39.91 | 7.73 | 39.78 | 5.47 | 35.26 | 3.32 | 33.08 | 1.76 | 30.02 | 1.97 | 27.02 | 0.90 | 8.82 | 3.73 |
Total | 100.00 | 19.37 | 100.00 | 13.74 | 100.00 | 9.41 | 100.00 | 5.32 | 100.00 | 6.55 | 100.00 | 3.33 | 100.00 | 42.28 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.84 | 20.09 |
6–3 | 2.36 | 0.30 | 3.76 | 0.42 | 6.13 | 0.71 | 11.80 | 1.12 | 41.04 | 4.78 | 72.84 | 2.88 | 37.61 | 14.86 |
3–1 | 64.62 | 8.27 | 60.04 | 6.65 | 56.86 | 6.54 | 50.18 | 4.77 | 29.57 | 3.45 | 4.75 | 0.19 | 0.28 | 0.11 |
1–0 | 33.02 | 4.22 | 36.20 | 4.01 | 37.01 | 4.26 | 38.02 | 3.61 | 29.39 | 3.42 | 22.41 | 0.89 | 11.27 | 4.45 |
Total | 100.00 | 12.79 | 100.00 | 11.07 | 100.00 | 11.50 | 100.00 | 9.50 | 100.00 | 11.65 | 100.00 | 3.96 | 100.00 | 39.52 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 53.50 | 20.09 |
6–3 | 4.25 | 0.35 | 4.39 | 0.41 | 5.40 | 0.50 | 6.19 | 0.60 | 21.54 | 4.50 | 77.78 | 3.85 | 39.54 | 14.85 |
3–1 | 59.39 | 4.95 | 57.33 | 5.34 | 55.57 | 5.10 | 53.87 | 5.25 | 41.93 | 8.77 | 9.49 | 0.47 | 0.24 | 0.09 |
1–0 | 36.36 | 3.03 | 38.28 | 3.56 | 39.03 | 3.58 | 39.94 | 3.89 | 36.53 | 7.64 | 12.74 | 0.63 | 6.72 | 2.53 |
Total | 100.00 | 8.34 | 100.00 | 9.31 | 100.00 | 9.18 | 100.00 | 9.74 | 100.00 | 20.91 | 100.00 | 4.96 | 100.00 | 37.56 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 53.90 | 33.42 |
6–3 | 16.40 | 1.60 | 22.02 | 1.70 | 37.24 | 1.90 | 49.83 | 1.98 | 73.68 | 5.07 | 88.26 | 4.08 | 40.94 | 25.39 |
3–1 | 57.27 | 5.57 | 49.78 | 3.83 | 38.03 | 1.94 | 31.59 | 1.25 | 12.77 | 0.88 | 2.17 | 0.10 | 0.04 | 0.02 |
1–0 | 26.33 | 2.56 | 28.20 | 2.17 | 24.74 | 1.26 | 18.58 | 0.74 | 13.55 | 0.93 | 9.57 | 0.44 | 5.13 | 3.18 |
Total | 100.00 | 9.72 | 100.00 | 7.70 | 100.00 | 5.09 | 100.00 | 3.97 | 100.00 | 6.88 | 100.00 | 4.62 | 100.00 | 62.01 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 53.64 | 28.99 |
6–3 | 7.54 | 0.95 | 13.27 | 1.36 | 26.57 | 1.76 | 40.93 | 1.77 | 68.25 | 5.19 | 82.25 | 3.73 | 39.62 | 21.41 |
3–1 | 61.82 | 7.81 | 56.08 | 5.75 | 45.23 | 2.99 | 33.64 | 1.46 | 12.17 | 0.93 | 2.22 | 0.10 | 0.02 | 0.01 |
1–0 | 30.64 | 3.87 | 30.65 | 3.15 | 28.19 | 1.86 | 25.43 | 1.10 | 19.58 | 1.49 | 15.53 | 0.70 | 6.72 | 3.63 |
Total | 100.00 | 12.63 | 100.00 | 10.26 | 100.00 | 6.61 | 100.00 | 4.33 | 100.00 | 7.61 | 100.00 | 4.53 | 100.00 | 54.03 |
Size Fraction (mm) | 0–20 s Yield | 20–40 s Yield | 40–60 s Yield | 60–80 s Yield | 80–150 s Yield | 150–250 s Yield | Oversized Product Yield | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | A (%) | B (%) | |
13–6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 48.93 | 24.54 |
6–3 | 3.07 | 0.50 | 6.42 | 0.74 | 14.19 | 1.10 | 27.88 | 1.20 | 50.77 | 3.09 | 77.22 | 2.91 | 42.01 | 21.07 |
3–1 | 63.35 | 10.40 | 59.92 | 6.89 | 53.63 | 4.16 | 39.72 | 1.71 | 19.05 | 1.16 | 1.42 | 0.05 | 0.25 | 0.13 |
1–0 | 33.58 | 5.51 | 33.66 | 3.87 | 32.18 | 2.50 | 32.40 | 1.40 | 30.18 | 1.84 | 21.35 | 0.81 | 8.80 | 4.41 |
Total | 100.00 | 16.41 | 100.00 | 11.50 | 100.00 | 7.76 | 100.00 | 4.31 | 100.00 | 6.09 | 100.00 | 3.77 | 100.00 | 50.16 |
References
- Duda-Mroz, N.; Anufriiev, S.; Stefaniak, P. Application of wavelet filtering to vibrational signals from the mining screen for spring condition monitoring. Minerals 2021, 11, 1076. [Google Scholar] [CrossRef]
- Guerreiro, F.S.; Gedraite, R.; Ataíde, C.H. Residual moisture content and separation efficiency optimization in pilot-scale vibrating screen. Powder Technol. 2016, 287, 301–307. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, Y.; Niu, F.S.; Zhang, H.M.; Li, S.Y.; Wang, Y.P. Parameterization of multi-angle shaker based on PSO-BP neural network. Minerals 2023, 13, 929. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.M.; Bao, S.X. Preparation of high purity V2O5 from a typical low-grade refractory stone coal using a pyro-hydrometallurgical process. Minerals 2016, 6, 69. [Google Scholar] [CrossRef]
- Lawinska, K.; Modrzewski, R.; Wodzinski, P. Comparison of the potential of using drum and vibrating screens for segregating mineral and municipal waste. Rocz. Ochr. Sr. 2015, 17, 1365–1388. [Google Scholar]
- Shanmugam, B.K.; Vardhan, H.; Raj, M.G.; Kaza, M.; Sah, R.; Harish, H. Evaluation of a new vibrating screen for dry screening fine coal with different moisture contents. Int. J. Coal Prep. Util. 2022, 42, 752–761. [Google Scholar] [CrossRef]
- Moncada, M.; Rodríguez, C.G. Dynamic modeling of a vibrating screen considering the ore inertia and force of the ore over the screen calculated with discrete element method. Shock Vib. 2018, 2018, 1714738. [Google Scholar] [CrossRef]
- Peng, L.P.; Jiang, H.S.; Chen, X.H.; Liu, D.Y.; Feng, H.H.; Zhang, L.; Zhao, Y.M.; Liu, C.S. A review on the advanced design techniques and methods of vibrating screen for coal preparation. Powder Technol. 2019, 347, 136–147. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Huang, L.; Jiang, H.S.; Wen, P.F.; Zhao, L.L.; Zhao, Y.M.; Duan, C.L.; Luo, Z.F.; Wang, Z.Q.; Liu, C.S.; et al. Kinematics of elastic screen surface and elimination mechanism of plugging during dry deep screening of moist coal. Powder Technol. 2019, 346, 452–461. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, G.Q.; Lv, B.; Yan, G.H. A novel and effective method for coal slime reduction of thermal coal processing. J. Clean. Prod. 2018, 198, 19–23. [Google Scholar] [CrossRef]
- Wang, W.N.; Hou, X.; Mao, P.F.; Pan, M.; Yu, S.J.; Jiang, H.S.; Qiao, J.P.; Duan, C.L. Kinematic characteristics of key structures and time evolution law of material distribution characteristics during flip-flow screening. Miner. Eng. 2023, 201, 108241. [Google Scholar] [CrossRef]
- Xu, N.N.; Tang, S.; Lin, D.D.; Geng, R.H.; Wang, X.W.; Liang, X.H. Complex granular flows of sticky-wet material on flip-flow screens: Calibration of discrete element simulations. Particuology 2024, 84, 290–308. [Google Scholar] [CrossRef]
- Zhao, G.F.; Wang, X.W.; Lin, D.D.; Xu, N.N.; Yu, C.; Geng, R.H. Study of Double-Deck Vibrating Flip-Flow Screen Based on Dynamic Stiffness Characteristics of Shear Springs. Minerals 2021, 11, 928. [Google Scholar] [CrossRef]
- Li, H.X.; Liu, C.S.; Shen, L.; Zhao, L.L.; Li, S. Kinematics characteristics of the flip-flow screen with a crankshaft-link structure and screening analysis for moist coal. Powder Technol. 2021, 394, 326–335. [Google Scholar] [CrossRef]
- Wang, W.A.; Pan, M.; Duan, C.L.; Jiang, H.S.; Zhao, Y.M.; Lu, H.D. Dry deep screening of spodumene and its mineral processing technology. Miner. Eng. 2022, 179, 107445. [Google Scholar] [CrossRef]
- Lin, D.D.; Ji, J.C.; Wang, X.W.; Wang, Y.X.; Xu, N.N.; Ni, Q.; Zhao, G.F.; Feng, K. A rigid-flexible coupled dynamic model of a flip-flow vibrating screen considering the effects of processed materials. Powder Technol. 2023, 427, 118753. [Google Scholar] [CrossRef]
- Yu, C.; Pu, K.W.; Geng, R.H.; Qiao, D.Z.; Lin, D.D.; Xu, N.N.; Wang, X.W.; Li, J.W.; Gong, S.P.; Zhou, Q. Comparison of flip-flow screen and circular vibrating screen vibratory sieving processes for sticky fine particles. Miner. Eng. 2022, 187, 107791. [Google Scholar] [CrossRef]
- Gong, S.P.; Oberst, S.; Wang, X.W. An experimentally validated rubber shear spring model for vibrating flip-flow screens. Mech. Syst. Signal Pr. 2020, 139, 106619. [Google Scholar] [CrossRef]
- Makinde, O.A.; Ramatsetse, B.I.; Mpofu, K. Review of vibrating screen development trends: Linking the past and the future in mining machinery industries. Int. J. Miner. Process 2015, 145, 17–22. [Google Scholar] [CrossRef]
- Linhares, T.B.; Vimieiro, C.B.S. Analysis of the dynamic forces acting on a vibrating screen and its support structure using a scale model. Measurement 2021, 176, 109179. [Google Scholar] [CrossRef]
- Lin, D.D.; Xu, N.N.; Yu, C.; Geng, R.H.; Wang, X.W.; Gong, S.P. Nonlinear model of vibrating flip-flow screens that considers the effects of screen panels. IEEE Access 2022, 10, 34246–34259. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Niu, L.K.; Gu, C.X.; Wang, Y.H. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens. J Sound Vib. 2017, 411, 108–128. [Google Scholar] [CrossRef]
- Chen, B.X.; Yu, C.; Gong, S.P.; Wang, X.W. Dynamic characteristics of LIWELL flip-flow screen panel and particle movement. Chem. Eng. Sci. 2021, 245, 116853. [Google Scholar] [CrossRef]
- Yu, C.; Geng, R.H.; Wang, X.W. A numerical study of separation performance of vibrating flip-flow screens for cohesive particles. Minerals 2021, 11, 631. [Google Scholar] [CrossRef]
- Peng, L.P.; Li, F.M.; Dong, H.L.; Liu, C.S.; Zhao, Y.M.; Duan, C.L. Characteristics analysis of a novel centralized-driving flip-flow screen. Int. J. Min. Sci. Technol. 2014, 24, 195–200. [Google Scholar] [CrossRef]
- Lin, D.D.; Ji, J.C.; Yu, C.; Wang, X.W.; Xu, N.N. A non-linear model of screen panel for dynamics analysis of a flip-flow vibrating screen. Powder Technol. 2023, 418, 118312. [Google Scholar] [CrossRef]
- Tang, J.; Niu, L.K.; Xiong, X.Y.; Jie, S.J. Viscoelasticity of rubber springs affects vibration characteristics of a flip-flow screen with the high G value. IEEE Access 2020, 8, 26950–26965. [Google Scholar] [CrossRef]
- Zhou, E.H.; Yan, G.H.; Weng, X.Y.; Zhang, Z.X.; Zhao, P.F.; Zhang, B. A novel and low cost coal separation process: Combination of deep screening classification and gravity separation. Powder Technol. 2020, 367, 568–575. [Google Scholar] [CrossRef]
- Yu, C.; Wang, X.W.; Gong, S.P.; Pang, K.F.; Zhao, G.F.; Zhou, Q.; Lin, D.D.; Xu, N.N. Stability analysis of the screening process of a vibrating flip-flow screen. Powder Technol. 2021, 163, 106794. [Google Scholar] [CrossRef]
- Geng, R.H.; Yu, C.; Wang, Y.X.; Wang, X.W.; Zhang, X.K.; Li, R.L. Effect of external moisture content on screening performance of vibrating flip-flow screen and circular vibrating screen. Minerals 2023, 13, 585. [Google Scholar] [CrossRef]
Size Fraction (mm) | Mad (%) | Aad (%) | Vad (%) | FCad (%) |
---|---|---|---|---|
13–6 | 1.25 | 7.20 | 37.71 | 53.84 |
6–3 | 0.84 | 19.46 | 35.22 | 44.49 |
3–1 | 0.44 | 16.68 | 34.21 | 48.67 |
1–0 | 0.26 | 16.25 | 35.06 | 48.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.; Zhang, X.; Li, R.; Xu, N.; Qiao, D.; Wang, Z.; Wang, X.; Zuo, W. Effect of Screen-Panel Tensile Length and Material Characteristics on Screening Performance of Flip-Flow Vibrating Screens for Dry-Screening Fine, Low-Grade Bituminous Coal. Minerals 2024, 14, 271. https://doi.org/10.3390/min14030271
Lin D, Zhang X, Li R, Xu N, Qiao D, Wang Z, Wang X, Zuo W. Effect of Screen-Panel Tensile Length and Material Characteristics on Screening Performance of Flip-Flow Vibrating Screens for Dry-Screening Fine, Low-Grade Bituminous Coal. Minerals. 2024; 14(3):271. https://doi.org/10.3390/min14030271
Chicago/Turabian StyleLin, Dongdong, Xiaokun Zhang, Ruile Li, Ningning Xu, Dezheng Qiao, Ziqian Wang, Xinwen Wang, and Weiran Zuo. 2024. "Effect of Screen-Panel Tensile Length and Material Characteristics on Screening Performance of Flip-Flow Vibrating Screens for Dry-Screening Fine, Low-Grade Bituminous Coal" Minerals 14, no. 3: 271. https://doi.org/10.3390/min14030271
APA StyleLin, D., Zhang, X., Li, R., Xu, N., Qiao, D., Wang, Z., Wang, X., & Zuo, W. (2024). Effect of Screen-Panel Tensile Length and Material Characteristics on Screening Performance of Flip-Flow Vibrating Screens for Dry-Screening Fine, Low-Grade Bituminous Coal. Minerals, 14(3), 271. https://doi.org/10.3390/min14030271