Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas
Abstract
:1. Introduction
2. Local Geology
3. Materials and Methods
4. Results
4.1. Field Observations
4.2. Dyke Mineralogy
4.2.1. Raman Data on Phosphates
4.2.2. Crystal Chemistry of Phosphates
4.3. Geochemistry of Aplite and Pegmatite Dykes from Segura
5. Discussion
5.1. Comparison with Other Similar Geochemical Suites
5.2. Causes of Enrichments in Phosphorus, Lithium, and Fluorine
5.3. Migration and Extraction of Phosphorus-Rich Magma
5.4. The Behaviour of Li, F, and P during the Crystallization of Perphosphorus Magmas
5.5. Conceptual Model of the Melt Injection in the Beiras Schists
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breiter, K.; Durisova, J.; Korbelova, Z.; Lima, A.; Vasinova Galiova, M.; Hlozkova, M.; Dosbaba, M. Rock textures and mineral zoning—A clue to understanding rare-metal granite evolution: Argemela stock, Central-Eastern Portugal. Lithos 2022, 410–411, 106562. [Google Scholar] [CrossRef]
- Garate-Olave, I.; Müller, A.; Roda-Robles, E.; Gil-Crespo, P.P.; Pesquera, A. Extreme fractionation in a granite–pegmatite system documented by quartz chemistry: The case study of Tres Arroyos (Central Iberian Zone, Spain). Lithos 2017, 286, 162–164. [Google Scholar] [CrossRef]
- Garate-Olave, I.; Roda-Robles, E.; Gil-Crespo, P.P.; Pesquera, A.; Errandonea-Martin, J. The Tres Arroyos granitic aplite-pegmatite field (Central Iberian Zone, Spain): Petrogenetic constraints from the evolution of Nb-Ta-Sn oxides, whole-rock geochemistry and U-Pb geochronology. Minerals 2020, 10, 1008. [Google Scholar] [CrossRef]
- Webber, K.L.; Simmons, W.B.; Falster, A.U.; Hanson, S.L. Anatectic pegmatites of the Oxford County pegmatite field, Maine, USA. Can. Mineral. 2019, 57, 811–815. [Google Scholar] [CrossRef]
- Antunes, I.M.; Neiva, A.M.; Farinha Ramos, J.M.; Silva, P.B.; Silva, M.M.; Corfu, F. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Chem. Erde Geochem. 2013, 73, 323–341. [Google Scholar] [CrossRef]
- Castro, A. Structural pattern and ascent model in the Central Extremadura batholith, Hercynian belt, Spain. J. Struct. Geol. 1986, 8, 633–645. [Google Scholar] [CrossRef]
- Corretgé, L.G.; Suarez, O. A Garnet-Cordierite Granite Porphyry Containing Rapakivi Feldspars in the Cabeza de Araya Batholith (Extremadura, Spanish Hercynian Belt). Mineral. Petrol. 1994, 50, 97–111. [Google Scholar] [CrossRef]
- Fernandéz, C.; Castro, A. Pluton accommodation at high strain rates in the upper continental crust. The example of the Central Extremadura batholith, Spain. J. Struct. Geol. 1999, 21, 1143–1149. [Google Scholar] [CrossRef]
- García-Moreno, O.; Corretgé, L.G.; Holtz, F.; García-Aria, M.; Rodríguez, C. Phase relations in the Cabeza de Araya cordierite monzogranite, Iberian Massif: Implications for the formation of cordierite in a crystal mush. Geol. Acta 2017, 15, 337–359. [Google Scholar]
- Michaud, J.A.S.; Gumiaux, C.; Pichavant, M.; Gloaguen, E.; Marcoux, E. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geol. Rev. 2020, 116, 103215. [Google Scholar] [CrossRef]
- Cuney, M.; Marignac, C.; Weisbrod, A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France)—The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol. 1992, 87, 1766–1794. [Google Scholar] [CrossRef]
- London, D.; Wolf, M.B.; Morgan, G.B.; Gallego-Garrido, M. Experimental Silicate–Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. J. Petrol. 1999, 40, 215–240. [Google Scholar] [CrossRef]
- Garate-Olave, I.; Roda-Robles, E.; Gil-Crespo, P.P.; Pesquera, A. The phosphate mineral associations from the Tres Arroyos aplite-pegmatites (Badajoz, Spain): Petrography, mineral chemistry and petrogenetic implications. Can. Mineral. 2020, 58, 747–765. [Google Scholar] [CrossRef]
- Ribeiro, A.; Munhá, J.; Dias, R.; Mateus, A.; Pereira, E.; Ribeiro, L.; Fonseca, P.; Araújo, A.; Oliveira, T.; Romão, J.; et al. Geodynamic evolution of the SW Europe Variscides. Tectonics 2007, 26, TC6009. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Pereira, M.F. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and U-Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics 2016, 691, 290–310. [Google Scholar] [CrossRef]
- Azor, A.; Dias da Silva, Í.; Gómez Barreiro, J.; González-Clavijo, E.; Martínez Catalán, J.R.; Simancas, J.F.; Martínez Poyatos, D.; Pérez-Cáceres, I.; González Lodeiro, F.; Expósito, I.; et al. Deformation and Structure. In The Geology of Iberia: A Geodynamic Approach: Volume 2: The Variscan Cycle; Quesada, C., Oliveira, J.T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 307–348. [Google Scholar]
- Dias da Silva, Í.; González Clavijo, E.; Díez-Montes, A. The collapse of the Variscan belt: A Variscan lateral extrusion thin-skinned structure in NW Iberia. Int. Geol. Rev. 2021, 63, 659–695. [Google Scholar] [CrossRef]
- Dias da Silva, I.; Gomez-Barreiro, J.; Martínez Catalan, J.R.; Ayarza, P.; Pohl, J.; Martinez, E. Structural and microstructural analysis of the Retortillo Syncline (Variscan belt, Central Iberia). Implications for the Central Iberian Orocline. Tectonophysics 2017, 717, 99–115. [Google Scholar] [CrossRef]
- Ribeiro, M.L.; Castro, A.; Almeida, A.; González Menéndez, L.; Jesus, A.; Lains, J.A.; Lopes, J.C.; Martins, H.C.B.; Mata, J.; Mateus, A.; et al. Variscan Magmatism. In The Geology of Iberia: A Geodynamic Approach, Regional Geology Reviews; Quesada, C., Oliveira, J.T., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Villaseca, C.; Barbero, L.; Herreros, V. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans. R. Soc. Edinb. Earth Sci. 1998, 89, 113–119. [Google Scholar] [CrossRef]
- Dias, G.; Leterrier, J.; Mendes, A.; Simoes, P.P.; Bertrand, J.M. U–Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef]
- Lopez Plaza, M.Y.; Martinez Catalan, J.R. Síntesis estructural de los granitoides hercínicos del Macizo Hespérico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hespérico; Bea, F., Carnicero, A., Gonzalo, J.C., Lopez Plaza, M., Rodriguez Alonso, M.D., Eds.; Libro homenaje a L.C. García de Figuerola: Editorial Rueda, Madrid, 1987; pp. 195–210. [Google Scholar]
- Roda-Robles, E.; Villaseca, C.; Pesquera, A.; Gil-Crespo, P.P.; Vieira, R.; Lima, A.; Garate-Olave, I. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol. Rev. 2018, 95, 408–430. [Google Scholar] [CrossRef]
- Martins, I.; Mateus, A.; Cathelineau, M.; Boiron, M.C.; Ribeiro da Costa, I.; Dias da Silva, Í.; Gaspar, M. The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt. Minerals 2022, 12, 1067. [Google Scholar] [CrossRef]
- Melleton, J.; Gloaguen, E.; Frei, D.; Lima, A.; Vieira, R.; Martins, T. Polyphased rare-element magmatism during late orogenic evolution: Geochronological constraints from NW Variscan Iberia. Bull. Soc. Geol. Fr. 2022, 193, 7. [Google Scholar] [CrossRef]
- Pereira, A.; Pereira, L.; Macedo, C. Os plutonitos da Zebreira (Castelo Branco): Idade e enquadramento estructural. Mem. Not. Publ. Mus. Lab. Mineral. Geol. 1986, 101, 21–31. [Google Scholar]
- Antunes, I.M.; Neiva, A.M.; Silva, M.M.; Corfu, F. The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 2009, 111, 168–185. [Google Scholar] [CrossRef]
- Inverno, C.; Carvalho, D.d.; Parra, A.; Reynaud, R.; Filipe, A.; Martins, L. Carta de Depósitos Minerais de Portugal (Folha 3), à Escala 1:200,000; LNEG: Lisboa, Portugal, 2020. [Google Scholar]
- Instituto Geológico e Mineiro. Carta Geológica de Portugal, escala 1:500,000; Serviços Geológicos de Portugal, Instituto Geológico e Mineiro: Lisboa, Portugal, 1992. [Google Scholar]
- Vigneresse, J.L.; Bouchez, J.L. Successive granitic magma batches during pluton emplacement: The case of Cabeza de Araya (Spain). J. Petrol. 1997, 38, 1767–1776. [Google Scholar] [CrossRef]
- Sousa, M.B. Considerações sobre a estratigrafia do Complexo Xisto-Grauváquico (CXG) e sua relação com o Paleozóico Inferior. Cuad. Geol. Ibérica 1984, 9, 9–36. [Google Scholar]
- Carignan, J.; Hild, P.; Mevelle, G.; Morel, J.; Yeghicheyan, D. Routine analyses of trace elements in geological samples using flow injection and low pressure on line liquid chromatography coupled to ICP-MS: A study of geochemical reference material B.R., DR-N, EB-N, AN-G and G.H. Geostand. Newsl. 2001, 25, 187–198. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Frost, R.L.; Xi, Y.; Scholz, R.; López, A.; Lima, R.M.F.; Ferreira, C.M. Vibrational spectroscopic characterization of the phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O). Vib. Spectr. 2013, 67, 4–21. [Google Scholar]
- Rondeau, B.; Fritsch, E.; Lefèvre, P.; Guiraud, M.; Fransolet, A.-M.; Lulzac, Y. A Raman investigation of the amblygonite-montebrasite series. Can. Mineral. 2006, 44, 1109–1117. [Google Scholar] [CrossRef]
- Cerný, P.; Ercit, T.S. Mineralogy of niobium and tantalum: Crystal chemistry relationship, paragenetic aspects and their economic implications. In Lanthanides, Tantalum and Niobium; Moller, P., Černý, P., Saupé, F., Eds.; Springer: Berlin, Germany, 1989; pp. 27–29. [Google Scholar]
- Marignac, C.; Cuney, M.; Cathelineau, M.; Lecomte, A.; Carocci, E.; Pinto, F. The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W–Sn–Cu vein deposit: A petrographic, mineralogical, and geochemical study. Minerals 2020, 10, 562. [Google Scholar] [CrossRef]
- Debon, F.; Lefort, P. A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications. Bull. Minéralogie 1988, 111, 493–510. [Google Scholar] [CrossRef]
- Cerny, P. Geochemical and Petrogenetic Features of Mineralization in Rare Element Granitic Pegmatites in the Light of Current Research. Appl. Geochem. 1992, 7, 393–416. [Google Scholar]
- Simmons, W.; Falster, A.; Webber, K.; Roda-Robles, E. Bulk composition of mt. Mica pegmatite, Maine, USA: Implications for the origin of an L.C.T. type pegmatite by anatexis. Can. Mineral. 2016, 54, 1053–1070. [Google Scholar] [CrossRef]
- Deveaud, S.; Gumiaux, C.; Gloaguen, E.; Branquet, Y. Spatial statistical analysis applied to rare-element LCT-type pegmatite fields: An original approach to constrain faults-pegmatites-granites relationships. J Geosci. 2013, 58, 163–182. [Google Scholar] [CrossRef]
- Roda-Robles, E.; Vieira, R.; Lima, A.; Errandonea-Martin, J.; Pesquera, A.; Cardoso-Fernandes, J.; Garate-Olave, I. Li-rich pegmatites and related peraluminous granites of the Fregeneda-Almendra field (Spain-Portugal): A case study of magmatic signature for Li enrichment. Lithos 2023, 452–453, 107195. [Google Scholar] [CrossRef]
- Pichavant, M. Experimental Crystallization of the Beauvoir Granite as a Model for the Evolution of Variscan Rare Metal Magmas. J. Petrol. 2022, 63, egac120. [Google Scholar] [CrossRef]
- London, D. Phosphorus in S-type magmas: The P2O5 content of feldspars from granites, pegmatites, and rhyolites. Am. Mineral. 1992, 77, 126–145. [Google Scholar]
- London, D.; Morgan VI, G.B.; Babb, H.A.; Loomis, J.L. Behavior and effects of phosphorus in the system Na2O–K2O–Al2O3–SiO2–P2O5–H2O at 200 MPa. Contrib. Mineral. Petrol. 1993, 113, 450–465. [Google Scholar] [CrossRef]
- Bea, F.; Fershtater, G.B.; Corretge, L.G. The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos 1992, 29, 43–56. [Google Scholar] [CrossRef]
- Shand, S.J. The Eruptive Rocks, 2nd ed.; John and Wiley Sons: New York, NY, USA, 1943; 444p. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Villaseca, C.; Merino, E.; Oyarzun, R.; Orejana, D.; Pérez-Soba, C.; Chicharro, E. Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Res. 2014, 245, 131–145. [Google Scholar] [CrossRef]
- Thomas, R.; Webster, J.D.; Rhede, D. Strong phosphorus enrichment in a pegmatite-forming melt. Acta Universitatis Carolinae. Geologica 1998, 42, 150–164. [Google Scholar]
- Thomas, R.; Rhede, D.; Trumbull, R.B. Microthermometry of volatile-rich silicate melt inclusions in granitic rocks. Z. Geol. Wiss. 1996, 24, 505–526. [Google Scholar]
- Webster, J.D.; Thomas, R.; Rhede, D.; Forster, H.J.; Seltmann, R. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim. Cosmochim. Acta 1997, 61, 2589–2604. [Google Scholar] [CrossRef]
- Harte, B.; Hunter, R.H.; Kinny, P.D. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Trans. R. Soc. London 1993, 342, 1–21. [Google Scholar]
- London, D.; Morgan VI, G.B.; Wolf, M.B. Amblygonite-montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am. Mineral. 2001, 86, 225–233. [Google Scholar] [CrossRef]
- Frýda, J.; Breiter, K. Alkali feldspars as a main phosphorus reservoir in rare-metal granites: Three examples from the Bohemian Massif (Czech Republic). Terra Nova 1995, 7, 315–320. [Google Scholar] [CrossRef]
- Kontak, D.J.; Martin, R.F.; Richard, L. Patterns of phosphorus enrichment in alkali feldspar, South Mountain Batholith, Nova Scotia, Canada. Eur. J. Miner. 1996, 8, 805–824. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.-C.; Marignac, C.; Dour, M.; Dejean, M.; Carocci, E.; Truche, L.; Pinto, F. High pressure and temperatures during the early stages of tungsten deposition at Panasqueira revealed by fluid inclusions in topaz. Ore Geol. Rev. 2020, 126, 103741. [Google Scholar] [CrossRef]
- Yakovenko, A. Estudo de Inclusões Fluidas Dos filões Pegmatíticos Litiníferos de Segura. Master’s Thesis, Porto University, Porto, Portugal, 2021; 107p. [Google Scholar]
- Yakovenko, A.; Guedes, A.; Boiron, M.C.; Cathelineau, M.; Martins, I.; Mateus, A. Fluid inclusion studies in quartz from the Li-rich pegmatite veins from Segura. In Proceedings of the Jornadas do ICT, Évora, Portugal, 10–11 February 2022; p. 43, ISBN 978-972-778-232-1. [Google Scholar]
Weight % | Phosphates from the Eosphorite-Childrenite Series | |||||||
---|---|---|---|---|---|---|---|---|
MgO | 0.97 | 0.18 | 0.29 | n.d. | 0.08 | 0.16 | 0.18 | 0.21 |
Al2O3 | 22.68 | 22.89 | 22.99 | 21.98 | 22.16 | 22.18 | 21.96 | 22.47 |
P2O5 | 31.23 | 30.89 | 30.27 | 29.54 | 30.3 | 29.81 | 30.4 | 30.36 |
CaO | 0.27 | 0.15 | 0.26 | n.d. | 0.02 | 0.14 | 0.06 | n.d. |
FeO | 9.51 | 11.91 | 13.37 | 15.64 | 18.01 | 18.65 | 21.90 | 22.49 |
MnO | 21.35 | 18.28 | 17.72 | 14.24 | 11.86 | 11.65 | 8.72 | 8.7 |
total | 87.07 | 85.63 | 86.39 | 83.14 | 84.44 | 84.67 | 85.66 | 86.74 |
a.p.f.u. | Structural formulae | |||||||
Mg | 0.05 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
Al | 1.01 | 1.03 | 1.06 | 1.04 | 1.02 | 1.04 | 1.01 | 1.03 |
P | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Ca | 0.01 | 0.01 | 0.01 | 0 | 0 | 0.01 | 0 | 0 |
Fe | 0.30 | 0.38 | 0.44 | 0.52 | 0.59 | 0.62 | 0.71 | 0.73 |
Mn | 0.68 | 0.59 | 0.59 | 0.48 | 0.39 | 0.39 | 0.29 | 0.29 |
Fe + Mn | 0.98 | 0.97 | 1.01 | 1.03 | 0.98 | 1.01 | 1.00 | 1.02 |
Fe/(Fe + Mn) | 0.31 | 0.39 | 0.43 | 0.52 | 0.60 | 0.61 | 0.71 | 0.72 |
Weight % | Lacroixite | Amblygonite | |||
---|---|---|---|---|---|
Na2O | 14.37 | 15.63 | 15.92 | 0.03 | 0.04 |
MgO | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
Al2O3 | 31.62 | 31.31 | 32.40 | 35.33 | 34.32 |
P2O5 | 45.13 | 43.24 | 43.54 | 47.55 | 48.04 |
CaO | 0.00 | 0.00 | 0.00 | 0.06 | 0.09 |
FeO | 0.00 | 0.00 | 0.00 | 0.08 | 0.06 |
MnO | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
F | 12.50 | 12.54 | 11.74 | 6.07 | 6.32 |
H2O * | 0.00 | 0.00 | 0.56 | 3.78 | 3.00 |
Li2O * | 2.57 | 1.57 | 1.49 | 9.99 | 10.09 |
Total | 105.57 | 103.97 | 105.65 | 102.94 | 102.01 |
O=F | 5.26 | 5.28 | 4.94 | 2.56 | 2.66 |
Total * | 100.31 | 98.69 | 100.71 | 100.38 | 99.35 |
a.p.f.u. | Structural formulae | ||||
Na | 0.73 | 0.83 | 0.84 | 0.00 | 0.00 |
Li | 0.27 | 0.17 | 0.16 | 1.00 | 1.00 |
Mg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 0.98 | 1.01 | 1.04 | 1.03 | 0.99 |
P | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
OH | 0.00 | 0.00 | 0.10 | 0.63 | 0.49 |
F | 1.03 | 1.08 | 1.01 | 0.48 | 0.49 |
Weight % | Phosphates from the Goyazite-Crandallite Series | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na2O | 0.00 | 0.00 | 0.24 | 0.00 | 0.15 | 0.12 | 0.21 | 0.00 | 0.00 |
MgO | 0.35 | 0.00 | 0.26 | 0.00 | 0.17 | 0.17 | 0.18 | 0.00 | 0.00 |
Al2O3 | 33.99 | 33.34 | 34.51 | 33.40 | 34.15 | 33.40 | 35.50 | 35.15 | 35.98 |
P2O5 | 32.43 | 31.82 | 32.12 | 31.42 | 31.60 | 30.61 | 32.76 | 34.22 | 33.26 |
CaO | 4.26 | 4.62 | 6.44 | 7.49 | 8.83 | 9.51 | 9.40 | 10.75 | 11.18 |
FeO | 0.00 | 0.00 | 0.14 | 0.00 | 0.04 | 0.00 | 0.37 | 0.00 | 0.00 |
MnO | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 |
SrO | 14.58 | 14.08 | 10.60 | 8.17 | 7.69 | 6.01 | 5.51 | 3.61 | 0.59 |
BaO | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.05 | 0.00 | 0.00 |
F | 3.90 | 3.35 | 2.68 | 4.11 | 2.22 | 2.10 | 1.19 | 1.97 | 3.49 |
O=F | 1.64 | 1.41 | 1.12 | 1.72 | 0.93 | 0.88 | 0.50 | 0.83 | 1.46 |
Total | 85.61 | 83.86 | 87.10 | 80.48 | 86.13 | 83.32 | 85.29 | 83.73 | 81.01 |
H2O * | 12.75 | 14.73 | 14.57 | 17.80 | 16.29 | 19.29 | 15.57 | 15.44 | 17.53 |
Total * | 87.25 | 85.27 | 85.43 | 82.20 | 83.71 | 80.71 | 84.43 | 84.56 | 82.47 |
a.p.f.u. | Structural formulae | ||||||||
Na | 0.00 | 0.00 | 0.03 | 0.00 | 0.02 | 0.02 | 0.03 | 0.00 | 0.00 |
Mg | 0.04 | 0.00 | 0.03 | 0.00 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 |
Al | 2.92 | 2.92 | 2.99 | 2.96 | 3.01 | 3.04 | 3.02 | 2.86 | 3.01 |
P | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Ca | 0.33 | 0.37 | 0.51 | 0.60 | 0.71 | 0.79 | 0.73 | 0.80 | 0.85 |
Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Sr | 0.41 | 0.40 | 0.31 | 0.23 | 0.22 | 0.18 | 0.16 | 0.10 | 0.02 |
Ba | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
R2+ | 0.78 | 0.76 | 0.84 | 0.84 | 0.97 | 0.98 | 0.91 | 0.89 | 0.87 |
Ca/(Ca + Sr) | 0.89 | 0.96 | 1.25 | 1.44 | 1.52 | 1.63 | 1.64 | 1.78 | 1.96 |
F | 0.00 | 0.79 | 0.62 | 0.98 | 0.53 | 0.51 | 0.27 | 0.43 | 0.78 |
OH | 4.32 | 3.50 | 4.07 | 3.58 | 4.47 | 4.59 | 4.63 | 3.94 | 3.99 |
F + OH | 4.32 | 4.28 | 4.69 | 4.56 | 4.99 | 5.10 | 4.90 | 4.37 | 4.77 |
Pegmatite | Aplite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | GF SEG1 | GF SEG4 | Peg CQ-5 | Peg CQ-6 | Peg CQ-9 | Peg CQ-4 | GF SEG-3 | GF SEG-2 | GF SEG-5 | Apl CQ-4 | Apl CQ-5 | Apl CQ-6 | Apl CQ-9 |
SiO2 | 76.78 | 69.19 | 64.04 | 71.54 | 70.57 | 69.29 | 70.19 | 70.99 | 71.74 | 69.83 | 69.53 | 71.19 | 69.69 |
TiO2 | 0.01 | bdl | bdl | bdl | bdl | bdl | 0.005 | 0.02 | 0.005 | bdl | bdl | bdl | bdl |
Al2O3 | 13.43 | 14.77 | 18.71 | 15.12 | 15.36 | 16.41 | 16.85 | 15.33 | 16.63 | 16.47 | 17.84 | 16.42 | 16.12 |
Fe2O3 | 0.19 | 0.19 | 0.413 | 0.159 | 0.069 | 0.073 | 0.76 | 1.13 | 0.76 | 0.171 | 0.389 | 0.268 | 0.167 |
MnO | 0.006 | 0.024 | 0.095 | 0.021 | 0.000 | 0.000 | 0.078 | 0.048 | 0.052 | 0.020 | 0.089 | 0.023 | 0.017 |
MgO | bdl | bdl | bdl | bdl | bdl | bdl | 0.020 | bdl | 0.010 | bdl | bdl | bdl | bdl |
CaO | 0.3 | 0.22 | 0.31 | 0.74 | 0.53 | 0.53 | 0.18 | 0.51 | 0.22 | 0.70 | 0.22 | 0.53 | 0.85 |
Na2O | 6.49 | 6.06 | 6.39 | 5.40 | 4.96 | 5.48 | 6.45 | 5.03 | 5.48 | 6.43 | 6.45 | 6.42 | 6.15 |
K2O | 1.12 | 3.85 | 1.22 | 2.68 | 3.72 | 4.31 | 2.66 | 3.5 | 2.54 | 2.08 | 1.00 | 1.77 | 2.05 |
P2O5 | 0.46 | 1.7 | 4.76 | 2.49 | 3.72 | 2.63 | 2.43 | 1.00 | 1.94 | 2.29 | 2.05 | 2.05 | 2.38 |
L.O.I. | 1.21 * | 4.00 * | 2.11 | 1.32 | 1.28 | 1.19 | 1.11 | n.d. | 1.2 | 1.51 | 1.61 | 1.6 | 1.75 |
Total | 98.79 | 96.00 | 98.05 | 99.47 | 100.21 | 99.92 | 101.43 | 97.56 | 100.98 | 99.50 | 99.18 | 100.26 | 99.17 |
Li -ppm | n.d. | 1160 | 3278 | 704 | 1718 | 818 | n.d. | 1000 | n.d. | 157 | 1543 | 304 | 141 |
F -ppm | 1123 | 2900 | 19,100 | 3300 | 3900 | 2800 | 2805 | 2100 | 1806 | 3100 | 18200 | 3400 | 3200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cathelineau, M.; Boiron, M.-C.; Lecomte, A.; Martins, I.; da Silva, Í.D.; Mateus, A. Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas. Minerals 2024, 14, 287. https://doi.org/10.3390/min14030287
Cathelineau M, Boiron M-C, Lecomte A, Martins I, da Silva ÍD, Mateus A. Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas. Minerals. 2024; 14(3):287. https://doi.org/10.3390/min14030287
Chicago/Turabian StyleCathelineau, Michel, Marie-Christine Boiron, Andreï Lecomte, Ivo Martins, Ícaro Dias da Silva, and Antonio Mateus. 2024. "Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas" Minerals 14, no. 3: 287. https://doi.org/10.3390/min14030287
APA StyleCathelineau, M., Boiron, M. -C., Lecomte, A., Martins, I., da Silva, Í. D., & Mateus, A. (2024). Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas. Minerals, 14(3), 287. https://doi.org/10.3390/min14030287