Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Raw Materials
2.2. Experimental Equipment and Methods
3. Results
3.1. Softening Properties
3.2. Melting Properties
3.3. Cohesive Zone and Permeability
3.4. Dripping Properties
3.5. Effect of Sinter Basicity on V and Cr Migration
4. Discussion
5. Conclusions
- (1)
- Compared with the cohesive characteristics of ordinary iron ores, vanadium–titanium ore has a lower softening start temperature, a wider softening zone, a lower melting start temperature, and a wider melting zone.
- (2)
- With the increase of sinter basicity in the comprehensive burden structure and the corresponding increase of the proportion of pellets in the comprehensive burden structure, the softening zone became narrower, and the softening performance was improved; the melting zone was obviously narrowed, and the melting temperature zone shifted upwards within the blast furnace; the cohesive zone became thinner, the lower edge of the cohesive zone shifted upwards, and the whole cohesive zone shifted upwards within the blast furnace.
- (3)
- The sinter basicity in the comprehensive burden structure increased from 1.9 to 2.5, the permeability increased and then decreased, the dripping rate first increased and then decreased, and the V and Cr yield reduced as the sinter basicity increased.
- (4)
- Based on the softening, melting, and dripping properties of the comprehensive burden, the optimum basicity of sinter is 2.5 under the experimental conditions used, and the corresponding pellet ratio is less than 42%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rogers, D.B.; Arnott, R.J.; Word, A.; Goodenough, J.B. The preparation and properties of some vanadium spinels. J. Phys. Chem. Solids 1963, 24, 347–360. [Google Scholar] [CrossRef]
- Guo, X.C. Utilization status and use value of vanadium titanium magnetite. Panzhihua Sci. Technol. 1996, 2, 14–18. [Google Scholar]
- Peng, Y.J.; Lv, C. Current situation and progress of comprehensive utilization of vanadium titanium magnetite. Min. Res. Dev. 2019, 39, 130–135. [Google Scholar]
- Xue, X.; Wu, D.H. Different technological processes and evaluation of comprehensive utilization of vanadium titanium magnetite. China Metallurgy. 2012, 22, 22–26. [Google Scholar]
- Chu, M.S.; Tang, J.; Liu, Z.G. Current situation and progress of comprehensive utilization of high chromium vanadium titanium magnetite. J. Iron Steel Res. 2017, 29, 335–344. [Google Scholar]
- Yang, J.; Jiang, T.; Ma, S.H.; Yang, S.T.; Zhou, M. Kinetics and mechanism of coal-based direct reduction of highchromium vanadium-titanium magnetite. J. Iron Steel Res. Int. 2022, 29, 11. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, T.; Wen, J.; Li, L.; Zhu, F.; Hu, P.; Rao, J. Reducibility optimization and reaction mechanism of high-chromium vanadium–titanium magnetite flux pellets. Metall. Mater. Trans. B. Process Metall. Mater. Process. Sci. 2023, 5, 2503–2518. [Google Scholar] [CrossRef]
- Qin, J.; Liu, G.G.; Li, Z.J. Review of several typical processes for direct reduction treatment of vanadium titanate resources. Min. Metall. 2014, 23, 79–82+91. [Google Scholar]
- Jin, Y.L.; He, Z.J.; Wang, C. Analysis on low carbon emission of blast furnace with different raw materials structure. Iron Steel 2019, 54, 8–16. [Google Scholar]
- Song, G.C.; Wan, T.Y.; Chen, X.X. Study on the phase composition of the soft melting dropping zone of vanadium titanium sinter in blast furnace smelting. Iron Steel Vanadium Titan. 1996, 17, 3. [Google Scholar]
- Park, H.; Park, J.Y.; Kim, G.H.; Sohn, I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int. 2012, 83, 150–156. [Google Scholar] [CrossRef]
- Zhou, K. Research on the Soft Melting Properties and Phase Change Law of Vanadium Titanium Furnace Charge. Ph.D. Thesis, Chongqing University, Chongqing, China, 2020. [Google Scholar]
- Zhao, W.; Chu, M.S.; Guo, H.W.; Liu, Z.G.; Yan, B.J.; Li, P. Interface behavior and interaction mechanism between vanadium-titanium magnetite carbon composite briquette and sinter in softening-melting-dripping process. ISIJ Int. 2020, 61, 146–157. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, K.; Ling, Q.; Qing, Y.L. Effect of B2O3 content on the sintering basic characteristics of mixed ore powder of vanadium-titanium magnetite and hematite. J. Chem. 2020, 7, 6279176. [Google Scholar] [CrossRef]
- Du, H.G. Principle of Smelting Vanadium-Titanium Magnetite in the Blast Furnace; China Science Publishing & Media Ltd.: Beijing, China, 1996; pp. 1–3. [Google Scholar]
- Lin, W.K.; Hu, P. Study on the Influence of TiO2 content and basicity level on the metallogenic law of vanadium titanium sinters. Iron Steel Vanadium Titanium. 2020, 41, 94–100. [Google Scholar]
- Cheng, G.; Gao, Z.; Yang, H.; Xue, X. Effect of Calcium Oxide on the Crushing Strength, Reduction, and Smelting Performance of High-Chromium Vanadium–Titanium Magnetite Pellets. Metals. 2017, 7, 181. [Google Scholar] [CrossRef]
- Gan, Q.; He, Q.; Li, J.M. The effect of SiO2/TiO2 ratio and auxiliary materials on the soft melt dripping properties of vanadium titanium Sinter. Iron Steel. 2000, 4, 1–4. [Google Scholar]
- Paananen, T.; Kinnunen, K. Effect of TiO2-content on reduction of iron ore agglomerates. Steel Res. Int. 2009, 80, 408–414. [Google Scholar]
- Fang, H.X.; Li, H.Y.; Zhang, T. Influence of CaO on existence form of vanadium-containing phase in vanadium slag. ISIJ Int. 2015, 55, 200–206. [Google Scholar] [CrossRef]
- Wang, F.J.; Lv, Q.; Chen, S.J. The effect of TiO2/SiO2 on the droplet properties of vanadium titanium bearing blast furnace burden. Iron Steel Vanadium Titan. 2015, 36, 79–83. [Google Scholar]
- Wang, H.T.; Zhao, W.; Chu, M.S. Effect and function mechanism of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite. J. Cent. South Univ. 2017, 24, 39–47. [Google Scholar] [CrossRef]
- Liao, J.L.; Li, J.; Wang, X.D.; Zhang, Z.T. Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmak. Steelmak. 2014, 39, 133–139. [Google Scholar] [CrossRef]
- Yang, S.T.; Zhou, M.; Jiang, T.; Wang, Y.J.; Xue, X.X. Effect of basicity on sintering behavior of low-titanium vanadium-titanium magnetite. Trans. Nonferrous Met. Soc. China 2015, 25, 2087–2094. [Google Scholar] [CrossRef]
- Yang, S.T.; Zhou, M.; Jiang, T.; Xue, X.X. Effects of dolomite on mineral compositions and metallurgical properties of chromium-bearing vanadium–titanium magnetite sinter. Minerals 2017, 7, 210. [Google Scholar] [CrossRef]
- Tang, W.D.; Xue, X.X.; Yang, S.T. Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite. Int. J. Miner. Metall. Mater. 2018, 25, 871–880. [Google Scholar] [CrossRef]
- Wang, F.J.; Lv, Q.; Chen, S.J.; Liu, R.; Li, F.G. The effect of basicity on the droplet properties of vanadium titanium bearing blast furnace burden. Iron Steel Vanadium Titan. 2015, 36, 92–96. [Google Scholar]
- Chen, L.J.; Chu, M.S.; Liu, Z.G. The effect of flux content in vanadium titanium Sinter on the reasonable burden structure of blast Furnace. In Proceedings of the 2014 National Ironmaking Production Technology Conference and Ironmaking Academic Annual Conference (Part 1), Zhengzhou, China, 13–16 May 2014. [Google Scholar]
- GB/T 34211-2017; lron Ores-Method for Determination of Iron Reduction Softening Drippinger Performance under Load. National Standardization Administration: Beijing, China, 2017.
- Agrawal, A. Blast furnace performance under varying pellet proportion. Trans. Indian Inst. Met. 2019, 72, 777. [Google Scholar] [CrossRef]
- Hoque, M.M.; Doostmohammadi, H.; Mitra, S.; O’Dea, D.; Liu, X.; Honeyands, T. High temperature softening and melting interactions between Newman blend lump and sinter. ISIJ Int. 2021, 61, 2944–2952. [Google Scholar] [CrossRef]
Item | TFe | CaO | SiO2 | V2O5 | Al2O3 | TiO2 | MgO | Cr2O3 | R (CaO/SiO2) |
---|---|---|---|---|---|---|---|---|---|
Sinter A | 54.17 | 9.84 | 5.17 | 0.27 | 2.06 | 1.86 | 2.66 | 0.22 | 1.9 |
Sinter B | 53.43 | 10.85 | 5.16 | 0.26 | 2.04 | 1.83 | 2.69 | 0.20 | 2.1 |
Sinter C | 52.69 | 11.87 | 5.16 | 0.26 | 2.02 | 1.81 | 2.72 | 0.21 | 2.3 |
Sinter D | 51.98 | 12.84 | 5.15 | 0.25 | 2.00 | 1.78 | 2.75 | 0.23 | 2.5 |
Pellet | 60.74 | 2.60 | 8.06 | 0.38 | 2.90 | 1.61 | 2.17 | 0.32 | 0.31 |
Fixed Carbon | Total Sulfur | Volatile | Ash (14.00) | ∑ | |||||
---|---|---|---|---|---|---|---|---|---|
FeO | CaO | SiO2 | MgO | Al2O3 | Others | ||||
84.00 | 0.50 | 1.50 | 0.14 | 0.48 | 7.50 | 0.15 | 2.72 | 2.89 | 100.00 |
Item | Comprehensive Burden Ratio/% | Basicity of Sinter (R = CaO/SiO2) | Estimated Basicity of Blast Furnace Final Slag (R = CaO/SiO2) |
---|---|---|---|
1 | Sinter A (75%) + Pellet (25%) | 1.9 | 1.1 |
2 | Sinter B (69%) + Pellet (31%) | 2.1 | 1.1 |
3 | Sinter C (63%) + Pellet (37%) | 2.3 | 1.1 |
4 | Sinter D (58%) + Pellet (42%) | 2.5 | 1.1 |
Temperature Range | 0~400 °C | 400~900 °C | 900~1020 °C | 1020 °C~Dripping Temperature |
---|---|---|---|---|
Gas compositiom | N2 100% 3 L/min | N2 60% 9 L/min CO 26% 3.9 L/min CO2 14% 2.1 L/min | N2 70% 10.5 L/min CO 30% 4.5 L/min | |
Furnace ramping rate | 10 °C/min | 10 °C/min | 3 °C/min | 5 °C/min |
Item | Liquid Iron Composition/% | V Element Yield | Cr Element Yield | |||||||
Fe | V | Cr | Si | Mn | P | S | Ti | |||
1 | 95.89 | 0.209 | 0.061 | 0.16 | 0.37 | 0.12 | 0.05 | 0.22 | 40.84 | 32.15 |
2 | 96.57 | 0.211 | 0.065 | 0.15 | 0.36 | 0.12 | 0.05 | 0.18 | 41.19 | 34.26 |
3 | 96.61 | 0.222 | 0.087 | 0.15 | 0.32 | 0.11 | 0.06 | 0.19 | 42.29 | 45.86 |
4 | 96.69 | 0.234 | 0.096 | 0.15 | 0.32 | 0.10 | 0.05 | 0.20 | 44.54 | 50.60 |
Item | Slag Composition/% | |||||||||
Fe | V2O5 | Cr2O3 | CaO | SiO2 | MgO | Al2O3 | TiO2 | |||
1 | 1.638 | 0.095 | 0.001 | 33.69 | 27.31 | 11.75 | 7.73 | 8.56 | ||
2 | 1.570 | 0.104 | 0.003 | 33.49 | 27.57 | 12.52 | 6.23 | 8.62 | ||
3 | 2.121 | 0.126 | 0.001 | 33.37 | 27.56 | 13.10 | 6.68 | 8.65 | ||
4 | 1.891 | 0.103 | 0.004 | 34.76 | 27.82 | 12.45 | 6.89 | 8.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Z.; Wang, X.; Yang, S. Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden. Minerals 2024, 14, 293. https://doi.org/10.3390/min14030293
Ning Z, Wang X, Yang S. Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden. Minerals. 2024; 14(3):293. https://doi.org/10.3390/min14030293
Chicago/Turabian StyleNing, Zhe, Xiyu Wang, and Songtao Yang. 2024. "Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden" Minerals 14, no. 3: 293. https://doi.org/10.3390/min14030293
APA StyleNing, Z., Wang, X., & Yang, S. (2024). Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden. Minerals, 14(3), 293. https://doi.org/10.3390/min14030293