Fluid Mixing, Organic Matter, and the Origin of Permian Carbonate-Hosted Pb-Zn Deposits in SW China: New Insights from the Fuli Deposit
Abstract
:1. Introduction
2. Geological Setting of the Region and Deposit
2.1. Geological Setting of the Region
2.2. Deposit Geology Setting
2.2.1. Tectonic Features
2.2.2. Stratigraphy and Lithology
2.2.3. Ore Bodies
2.2.4. Petrography and Mineralogy
- (1)
- Early-Mineralization Stage: The primary characteristic of the ore in the early-mineralization stage includes the presence of two different types of hydrothermal dolomitization: D1 and D2. D1 dolomite is gray-black with irregular, fine-grained particles that are typically cemented by mineralizing gray dolomite. Conversely, D2 dolomite is gray-white with coarse-grained particles, featuring a white core and a dark gray-to-gray-white edge (Figure 3a). Blocky or impregnated sphalerite and galena have been discovered as replacements within the dolomite (Figure 3b).
- (2)
- Main Mineralization Stage: This stage entails minerals forming within interlayer fractured zones, following the stratigraphic trend. Primarily, the main minerals are vein-like, impregnated, or blocky sphalerite, whereas galena appears in cubic crystals. Overall, sulfides display granular structures (Figure 3e,f) and replacement structures (Figure 3c,d), some of which form blocky or conglomerate-like structures, with impregnated structures present as well (Figure 3b). At this stage, sphalerite can be divided into two mineralization phases: Phase I sphalerite appears predominantly reddish brown to dark-brown in transmitted light, with mainly euhedral-to-subhedral crystals, while Phase II sphalerite appears predominantly brownish yellow to white in transmitted light, with mainly subhedral-to-anhedral crystals. The HD3 dolomite is a grey-white, meso-coarse-grained semi-autotype dolomite with a grain size ranging from 0.1 to 0.8 mm; it is distributed along the edges of sphalerite and galena and directly contacts or replaces wall rock.
- (3)
- Post-Mineralization Stage: The HD4 dolomite often appears as saddle-like, euhedral coarse crystals that are white-milky white in color. It fills open spaces or cement fissures and is mostly in contact with the grey dolomite, and it was formed later than the grey dolomite. Coarse, vein-like calcite (C5) forms during the post-mineralization stage and envelops the sphalerite and galena from the main mineralization stage (Figure 3b,f).
3. Materials and Methods
3.1. Fluid Inclusion Microthermometry
3.2. H-O Isotope Analysis
3.3. Laser Raman
4. Results
4.1. Characteristics of Fluid Inclusions
- Liquid-rich fluid inclusions: This group included inclusions consisting of a liquid and vapor (L+V-type) (Figure 5a–h): These inclusions included more than 50% liquid phase and contained both gas and liquid phases. The fluid inclusions displayed diverse shapes, such as negative crystal, rectangular, and irregular shapes, with occasional elliptical and circular forms. Approximately 95% of all inclusions in this group were measured within 1–25 μm. The gas phase content of these inclusions ranged between 5% and 40%. Upon heating, the inclusions homogenized into a liquid phase, primarily consisting of H2O.
- Pure gas inclusions (V type) (Figure 5f): The inclusions observed were clusters of single-phase vapor, ranging in size from 1 to 5 μm, and commonly coexisted with the L+V-type inclusions.
- Daughter mineral-bearing fluid inclusions: These rare multiphase inclusions contained gas, liquid, and solid phases and showed near-elliptical or irregular shapes (Figure 5c). Their sizes ranged from approximately 5 to 20 μm. The daughter minerals frequently exhibit a cubic crystal morphology, which may suggest the existence of NaCl minerals and indicate the presence of high-salinity elements in the ore-forming fluids of the Fuli deposit.
4.2. Microthermometry Results of Fluid Inclusions
4.3. Laser Raman Characteristics
4.4. H-O Isotopic Analysis
5. Discussion
5.1. Fluid Characteristics
5.2. Fluid Mixing
5.3. Organic Matter and TSR Interaction
5.4. Ore-Forming Mechanism
6. Conclusions
- (1)
- The formation process of the Fuli Pb-Zn deposit can be divided into three stages: (I) the precipitation of hydrothermal dolomite, (II) the precipitation of sphalerite + galena, and (III) the precipitation of calcite. The first stage occurs at a medium temperature (182–237 °C) and in fluids with low salinity (4.3–9.3 wt.% NaCl eqv.). In the early part of the second stage, low to medium temperatures (117–197 °C) and high-salinity (14.3–22.8 wt.% NaCl eqv.) fluids were observed, while the late part of the second stage is characterized by low to medium temperatures (112–171 °C) and low salinity (2.3–9.2 wt.% NaCl eqv.).
- (2)
- Petrographic studies show that the inclusions are two-phase gas–liquid inclusions with complex compositions. Laser Raman spectroscopy showed the presence of components other than H2O, such as CH4, N2, and CO2. The initial melting temperature of the inclusions indicates that the fluids in the hydrothermal calcite stage consist mainly of a NaCl-H2O fluid system, while the sphalerite + galena stage contains multiple ions, such as Mg2+ and Ca2+, forming a multicomponent fluid system.
- (3)
- The Fuli deposit was formed by the mixture of low-temperature, medium–high salinity basin brine and high-temperature, low-salinity metamorphic fluids, and mineralization occurred in the Middle Permian Yangxin Formation. At an appropriate temperature range (120–260 °C), the sulfate (SO42−) carried by the ore-bearing fluid and the catalyst (Mg2+) jointly promote the initiation of TSR, leading to the precipitation of metal sulfides. The change in fluid pH during the reduction of sulfate by organic matter and CH4 further facilitated the precipitation of metal sulfides. The presence of asphalt, CH4, N2, CO2, and sulfur isotope fractionation characteristics in the ore-forming fluids constitute evidence of the occurrence of the TSR.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.C.; Lin, W.D. Regularity Research of Ag, Zn, Pb Ore Deposits North-East Yunnan Province; Yunnan University Press: Kunming, China, 1999. [Google Scholar]
- Zhou, J.-X.; Wang, X.-C.; Wilde, S.A.; Luo, K.; Wu, T. New Insights into the Metallogeny of MVT Zn-Pb Deposits: A Case Study from the Nayongzhi in South China, Using Field Data, Fluid Compositions, and in Situ S-Pb Isotopes. Am. Mineral. 2018, 103, 91–108. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, J.; Wang, D.; Yang, G.; Lv, C. Trace Elemental and S-Pb Isotopic Geochemistry of the Fule Pb-Zn Deposit, NE Yunnan Province. Acta Petrol. Sin. 2019, 35, 3493–3505. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, W.; Zhang, J.; Wang, J.; Zhang, X. Formation of Pb-Zn Deposits in the Sichuan–Yunnan–Guizhou Triangle Linked to the Youjiang Foreland Basin: Evidence from Rb-Sr Age and in Situ Sulfur Isotope Analysis of the Maoping Pb-Zn Deposit in Northeastern Yunnan Province, Southeast China. Ore Geol. Rev. 2019, 107, 780–800. [Google Scholar] [CrossRef]
- Xiong, S. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing an Range:Implications for Ore Genesis. Earth Sci. J. China Univ. Geosci. 2014, 39, 820–836. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Anderson, G.M. Organic Maturation and Ore Precipitation in Southeast Missouri. Econ. Geol. 1991, 86, 909–926. [Google Scholar] [CrossRef]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-Hosted Lead-Zinc DepositsA Global Perspective. In One Hundredth Anniversary Volume; Society of Economic Geologists: Tulsa, OK, USA, 2005; ISBN 978-1-887483-01-8. [Google Scholar]
- Wu, Y.; Zhang, C.; Mao, J.; Zhang, W.; Wei, C. The Relationship between Oil-Gas Organic Matter and MVT Mineralization: A Case Study of the Chipu Lead-Zinc Deposit, Sichuan. Acta Geosci. Sin. 2013, 34, 425–436. [Google Scholar] [CrossRef]
- Han, R.; Wu, P.; Zhang, Y.; Huang, Z.; Wang, F.; Jin, Z.; Zhou, G.; Shi, Z.; Zhang, C. New Research Progresses of Metallogenic Theory for Rich Zn-Pb-(Ag-Ge) Deposits in the Sichuang-Yunnan-Guizhou Triangle (SYGT) Area, Southwestern Tethys. Acta Geol. Sin. 2022, 96, 554–573. [Google Scholar]
- Han, R.; Yan, Z.; Qiu, W.; Ding, T.; Wang, M.; Feng, W. Geology and Geochemistry of Zn-Pb (-Ge-Ag) Deposits in the Sichuan-Yunnan-Guizhou Triangle Area, China: A Review and a New Type. Front. Earth Sci. 2023, 11, 1136397. [Google Scholar]
- Zhou, J.-X.; Luo, K.; Wang, X.-C.; Wilde, S.A.; Wu, T.; Huang, Z.-L.; Cui, Y.-L.; Zhao, J.-X. Ore Genesis of the Fule Pb Zn Deposit and Its Relationship with the Emeishan Large Igneous Province: Evidence from Mineralogy, Bulk COS and in Situ SPb Isotopes. Gondwana Res. 2018, 54, 161–179. [Google Scholar] [CrossRef]
- Nian, H.; Cui, Y.; Li, Z.; Jia, F.; Yang, S.; Cheng, W.; Yang, Z. Features of Sphalerite-Hosted Fluid Inclusions of Fule Lead-Zinc Mining Area and Outskirts in Luoping Area, Eastern Yunnan Province, China. ACTA Mineral. Sin. 2017, 37, 469–474. [Google Scholar] [CrossRef]
- Xu, C.; Zhong, H.; Zhu, W.; Tang, L.; Song, C.; Luo, G. Characteristics of sulfur, lead, zinc and cadmium isotopes of sphalerites in the Fusheng Pb-Zn deposit in Yunnan Province and their indicative significances. Acta Mineral. Sin. 2022, 42, 732–744. [Google Scholar] [CrossRef]
- Ni, P.; Li, W.; Pan, J. Ore-Forming Fluid and Metallogenic Mechanism of Wolframite–Quartz Vein-Type Tungsten Deposits in South China. Acta Geol. Sin. Ed. 2020, 94, 1774–1796. [Google Scholar]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HokieFlincs_H2O-NaCl: A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Steele-MacInnis, M.; Bodnar, R.J.; Naden, J. Numerical Model to Determine the Composition of H2O–NaCl–CaCl2 Fluid Inclusions Based on Microthermometric and Microanalytical Data. Geochim. Cosmochim. Acta 2011, 75, 21–40. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, P.; Niu, Y.; Su, S. Chemical and Stable Isotopic Constraints on the Nature and Origin of Volatiles in the Sub-Continental Lithospheric Mantle beneath Eastern China. Lithos 2007, 96, 55–66. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, G.; Gong, B. Theoretical Study on Oxygen Isotope Fractionation in Carbonate Minerals. Geol. J. China Univ. 1997, 3, 241. [Google Scholar]
- Lu, H.; Fan, H.; Ni, P. Fluid Inclusion; Science Press: Beijing, China, 2004. [Google Scholar]
- Liu, W.; Wang, J.; Li, Z. Geochemical Characteristics of Lead-Zinc Deposits at Eastern Margin of Kangdian Axis. Miner. Depos. 2002, 21, 173–176. [Google Scholar] [CrossRef]
- Mu, L.; Hu, R.; Bi, X.; Tang, Y.; Lan, T.; Lan, Q.; Zhu, J.; Peng, J.; Oyebamiji, A. New Insights into the Origin of the World-Class Jinding Sediment-Hosted Zn-Pb Deposit, Southwestern China: Evidence from LA-ICP-MS Analysis of Individual Fluid Inclusions. Econ. Geol. 2021, 116, 883–907. [Google Scholar] [CrossRef]
- Wilkinson, J. A Review of Fluid Inclusion Constraints on Mineralization in the Irish Ore Field and Implications for the Genesis of Sediment-Hosted Zn-Pb Deposits. Econ. Geol. 2010, 105, 417–442. [Google Scholar] [CrossRef]
- Li, D.-F.; Chen, H.-Y.; Zhang, L.; Hollings, P.; Chen, Y.-J.; Lu, W.-J.; Zheng, Y.; Wang, C.-M.; Fang, J.; Chen, G.; et al. Ore Geology and Fluid Evolution of the Giant Caixiashan Carbonate-Hosted Zn-Pb Deposit in the Eastern Tianshan, NW China. Ore Geol. Rev. 2016, 72, 355–372. [Google Scholar] [CrossRef]
- Nejadhadad, M.; Taghipour, B.; Lentz, D.R. Implications of Multiple Fluids in the Deposition of Pb-Zn-Ba Deposits in the Alvand Mountain, Golpayegan, Iran: Evidence from Fluid Inclusions and O, C, S Isotopes. Ore Geol. Rev. 2023, 153, 105300. [Google Scholar] [CrossRef]
- Wang, L.; Han, R.; Zhang, Y.; Li, X. Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb-Zn Deposits, SW China: Insights from the Maoping Deposit. Minerals 2023, 13, 600. [Google Scholar] [CrossRef]
- Samson, I.M.; Russell, M.J. Genesis of the Silvermines Zinc-Lead-Barite Deposit, Ireland; Fluid Inclusion and Stable Isotope Evidence. Econ. Geol. 1987, 82, 371–394. [Google Scholar] [CrossRef]
- Kesler, S.E.; Vennemann, T.W.; Frederickson, C.; Breithaupt, A.; Vazquez, R.; Furman, F.C. Hydrogen and Oxygen Isotope Evidence for Origin of MVT-Forming Brines, Southern Appalachians. Geochim. Cosmochim. Acta 1997, 61, 1513–1523. [Google Scholar] [CrossRef]
- Meinert, L.; Hedenquist, J.; Satoh, H.; Matsuhisa, Y. Formation of Anhydrous and Hydrous Skarn in Cu-Au Ore Deposits by Magmatic Fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Xu, R.; Li, W.-C.; Deng, M.-G.; Zhou, J.-X.; Ren, T.; Yu, H.-J. Genesis of the Superlarge Luziyuan Zn-Pb-Fe (-Cu) Distal Skarn Deposit in Western Yunnan (SW China): Insights from Ore Geology and CHOS Isotopes. Ore Geol. Rev. 2019, 107, 944–959. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.-H.; Xue, C.-J.; Liu, J.-J.; Zhang, F.-F. Fluid Inclusions and C–H–O–S–Pb Isotope Systematics of the Caixiashan Sediment-Hosted Zn-Pb Deposit, Eastern Tianshan, Northwest China: Implication for Ore Genesis. Ore Geol. Rev. 2020, 119, 103404. [Google Scholar] [CrossRef]
- Zhang, P.; Kou, L.; Zhao, Y.; Sha, D. Genesis of the Maoling Gold Deposit in the Liaodong Peninsula: Constraints from a Combined Fluid Inclusion, C-H-O-S-Pb-He-Ar Isotopic and Geochronological Studies. Geosci. Front. 2022, 13, 101379. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Xiang, Z.-Z.; Zhou, M.-F.; Feng, Y.-X.; Luo, K.; Huang, Z.-L.; Wu, T. The Giant Upper Yangtze Pb-Zn Province in SW China: Reviews, New Advances and a New Genetic Model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef]
- Tayor, H. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposit. Econ. Geol. 1974, 69, 843–883. [Google Scholar]
- Zhou, J.-X.; Bai, J.-H.; Huang, Z.-L.; Zhu, D.; Yan, Z.-F.; Lv, Z.-C. Geology, Isotope Geochemistry and Geochronology of the Jinshachang Carbonate-Hosted Pb-Zn Deposit, Southwest China. J. Asian Earth Sci. 2015, 98, 272–284. [Google Scholar] [CrossRef]
- Zhao, D.; Han, R.; Wang, L.; Ren, T.; Wang, J.; Zhang, X.; Cui, J.; Ding, J. Genesis of the Lehong Large Zinc–Lead Deposit in Northeastern Yunnan, China: Evidences from Geological Characteristics and C–H–O–S–Pb Isotopic Compositions. Ore Geol. Rev. 2021, 135, 104219. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, X.Y.; Wang, J.B.; Jia, D.L.; Shi, Y.; Chen, L.; Xu, Z.F. Sources of Metallogenic Materials and Metallogenic Mechanism of Tianbaoshan Pb-Zn Deposit in Sichuan Province: Constraints from Fluid Inclusions and Isotopic Evidences. Acta Petrol. Sin. 2021, 37, 1830–1846. [Google Scholar] [CrossRef]
- Ding, W.P.; Xie, C.F.; Huang, C.; Zhang, B.; Xin, Z.; Zhan, H.S.; Zheng, L.L.; Kong, F.Q.; Wang, H.B.; Huang, L.F. Sources of Permian Lead-Zine Ore-Forming Materials in Sichuan-Yunnan-Guizhou Area: CHOS-Pb Isotope Constraints—An Example from Taipingzi Lead-Zinc Deposit in Yunnan Provinces. Geol. China 2022, 49, 1845–1861. [Google Scholar]
- Li, W.; Huang, Z.; Zhang, G. Sources of the Ore Metals of the Huize Ore Field in Yunnan Province: Constraints from Pb, S, C, H, O and Sr Isotope Geochemistry. Acta Petrol. Sin. 2006, 22, 2567–2580. [Google Scholar]
- Wu, Y.; Zhang, C.; Mao, J.; Ouyang, H.; Sun, J. The Genetic Relationship between Hydrocarbon Systems and Mississippi Valley-Type Zn-Pb Deposits along the SW Margin of Sichuan Basin, China. Int. Geol. Rev. 2013, 55, 941–957. [Google Scholar] [CrossRef]
- Yuan, B.; Mao, J.; Yan, X.H.; Wu, Y.; Zhang, F.; Zhao, L.L. Sources of Metallogenic Materials and Metallogenic Mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from Geochemistry of S, C, H, O, Sr Isotope and Trace Element in Sphalerite. Acta Petrol. Sin. 2014, 30, 209–220. [Google Scholar]
- Luo, K.; Zhou, J.-X.; Ju, Y. A Shift from BSR to TSR Caused the Formation of the Chipu Pb-Zn Deposit, South China. Ore Geol. Rev. 2022, 144, 104845. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Wang, J.; Zhong, W.; Liu, W. Study of Ore-Forming Fluid Geochemistry of Maozu Large-Scale Lead-Zinc Deposit in Northeast Yunnan. Miner. Resour. Geol. 2017, 31, 854–863. [Google Scholar]
- Li, R.X.; Dong, S.W.; Zhang, S.N.; Zhu, R.J.; Xia, B. Features and Formation of Organic Fluids during Dabashan Orogenesis. J. Nanjing Univ. Nat. Sci. 2012, 48, 295–307. [Google Scholar] [CrossRef]
- Machel, H.G. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Liu, W.-H.; Zhang, J.; Wang, J. Sulfur Isotope Analysis of Carbonate-Hosted Zn-Pb Deposits in Northwestern Guizhou Province, Southwest China: Implications for the Source of Reduced Sulfur. J. Geochem. Explor. 2017, 181, 31–44. [Google Scholar] [CrossRef]
- Chen, X.; Xue, C. Origin of H2S in Uragen Large-Scale Zn-Pb Mineralization, Western Tien Shan: Bacteriogenic Structure and S-Isotopic Constraints. Acta Petrol. Sin. 2016, 32, 1301–1314. [Google Scholar]
- Ren, S.; Li, Y.; Zeng, P.; Qiu, W.; Fan, C.; Hu, G. Effect of Sulfate Evaporate Salt Layer in Mineralization of the Huize and Maoping Lead-Zinc Deposits in Yunnan: Evidence from Sulfur Isotope. Acta Geol. Sin. 2018, 92, 1041–1055. [Google Scholar]
- Liang, X.; Li, B.; Zhang, X.; Qin, H.; Li, G.; Zhang, C. Trace Element Composition and Genesis Mechanism of the Fuli Pb-Zn Deposit in Yunnan: LA-ICP-MS and in Situ S-Pb Isotopic Constraints. Front. Earth Sci. 2023, 11, 1104631. [Google Scholar] [CrossRef]
- Huang, Z.L.; Chen, J.; Han, R.S.; Li, W.B.; Liu, C.Q.; Zhang, Z.L.; Ma, D.Y.; Gao, D.R.; Yang, H.L. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China:Discussion on the Relationship between Emeishan Flood Basalts and Lead-zinc Mineralization; Geological Publishing House: Beijing, China, 2004. [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; JG, G.; Yan, Z.F. Geological and C-O-S-Pb-Sr Isotopic Constraints on the Origin of the Qingshan Carbonate-Hosted Pb-Zn Deposit, Southwest China. Int. Geol. Rev. 2013, 55, 904–916. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.; Zhou, M.; Li, X.; Jin, Z. Constraints of C–O–S–Pb Isotope Compositions and Rb–Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb-Zn Deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Jin, Z.; Zhou, J.; Zhilong, H.; Luo, K.; Jianguo, G.; Song, P.; Bing, W.; Xinglong, C. Ore Genesis of the Nayongzhi Pb-Zn Deposit, Puding City, Guizhou Province, China: Evidences from S and in Situ Pb Isotopes. Acta Petrol. Sin. 2016, 32, 3441–3455. [Google Scholar]
- Cloetingh, S.; Thybo, H.; Faccenna, C. TOPO-EUROPE: Studying Continental Topography and Deep Earth—Surface Processes in 4D. Tectonophysics 2009, 474, 4–32. [Google Scholar] [CrossRef]
- Wang, C.; Bagas, L.; Lu, Y.; Santosh, M.; Du, B.; McCuaig, T.C. Terrane Boundary and Spatio-Temporal Distribution of Ore Deposits in the Sanjiang Tethyan Orogen: Insights from Zircon Hf-Isotopic Mapping. Earth-Sci. Rev. 2016, 156, 39–65. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Ai, G.; Xue, X.; Li, H.; Shah, S.A.; Wang, N.; Chen, X. LA-ICP-MS Trace Element Geochemistry of Sphalerite: Metallogenic Constraints on the Qingshuitang Pb-Zn Deposit in the Qinhang Ore Belt, South China. Ore Geol. Rev. 2022, 141, 104659. [Google Scholar] [CrossRef]
- Wu, Y.; Kong, Z.; Chen, M.; Zhang, C.; Cao, L.; Tang, Y.; Yuan, X.; Zhang, P. Trace Elements in Sphalerites from the Mississippi Valley-Type Lead-Zinc Deposits around the Margins of Yangtze Block and Its Geological Implications: A LA-ICPMS Study. Acta Petrol. Sin. 2019, 35, 3443–3460. [Google Scholar] [CrossRef]
- Liu, X.; Chen, F.; Chang, H.; Gao, J.; Wu, P.; Tan, J. The Mineralization of Daxiao Carbonate-Hosted Pb-Zn Deposit, Northeast Yunnan Province, SW China: Constraints from Rb-Sr Isotopic Dating and H O S-Pb Isotopes. Ore Geol. Rev. 2022, 147, 104956. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Hou, L.; Mao, J. Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan–Yunnan–Guizhou Zn-Pb Triangle, Southwest China: Implications from Age-Dating Studies in the Past Decade and the Sm–Nd Age of Jinshachang Deposit. J. Asian Earth Sci. 2015, 103, 103–114. [Google Scholar] [CrossRef]
- Sangster, D.F. The Role of Dense Brines in the Formation of Vent-Distal Sedimentary-Exhalative (SEDEX) Lead–Zinc Deposits: Field and Laboratory Evidence. Miner. Deposita 2002, 37, 149–157. [Google Scholar] [CrossRef]
- Tang, Y.; Ellis, G.; Zhang, T.; Jin, Y. Effect of Aqueous Chemistry on the Thermal Stability of Hydrocarbons in Petroleum Reservoirs. Geochim. Cosmochim. Acta Suppl. 2005, 69, 559. [Google Scholar]
- Zhang, S.; Shuai, Y.; He, K.; Mi, J. Research on the Initiation Mechanism of Thermochemical Sulfate Reduction (TSR). Acta Petrol. Sin. 2012, 28, 739–748. [Google Scholar]
- Seewald, J.S. Organic–Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature 2003, 426, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G. Precipitation of Mississippi Valley-Type Ores. Econ. Geol. 1975, 70, 937–942. [Google Scholar] [CrossRef]
- Ghazban, F.; Schwarcz, H.P.; Ford, D.C. Carbon and Sulfur Isotope Evidence for in Situ Reduction of Sulfate, Nanisivik Lead-Zinc Deposits, Northwest Territories, Baffin Island, Canada. Econ. Geol. 1990, 85, 360–375. [Google Scholar] [CrossRef]
- Jochum, J. Variscan and Post-Variscan Lead-Zinc Mineralization, Rhenish Massif, Germany: Evidence for Sulfide Precipitation via Thermochemical Sulfate Reduction. Miner. Deposita 2000, 35, 451–464. [Google Scholar] [CrossRef]
- Worden, R.H.; Smalley, P.C.; Oxtoby, N.H. The Effects of Thermochemical Sulfate Reduction upon Formation Water Salinity and Oxygen Isotopes in Carbonate Gas Reservoirs. Geochim. Cosmochim. Acta 1996, 60, 3925–3931. [Google Scholar] [CrossRef]
- Mougin, P.; Lamoureux-Var, V.; Bariteau, A.; Huc, A.Y. Thermodynamic of Thermochemical Sulphate Reduction. J. Pet. Sci. Eng. 2007, 58, 413–427. [Google Scholar] [CrossRef]
Mineral | Stage | N | Tm (°C) | Mean Value | Th (°C) | Mean Value | Salinity (wt.% NaCl Eqv.) | Mean Value |
---|---|---|---|---|---|---|---|---|
dolomite | HD3 | 21 | −2.6 to −6.1 | −4.5 | 182 to 237 | 203 | 4.3 to 9.3 | 7.1 |
sphalerite | I | 31 | −10.3 to −20.6 | −15.3 | 117 to 197 | 162 | 14.3 to 22.8 | 18.8 |
sphalerite | II | 17 | −1.3 to −6 | −3.4 | 112 to 171 | 142 | 2.2 to 9.2 | 5.5 |
Sample No. | Host | δDV-SMOW/‰ | δ18OV-SMOW/‰ | T/ °C | δ18Ofluid/‰ |
---|---|---|---|---|---|
FL8-1 | dolomite | −62.1 | 20.3 | 202 | 10.4 |
FL8-2 | dolomite | −52.4 | 20.8 | 202 | 10.9 |
FL14 | dolomite | −52.8 | 19.6 | 202 | 9.7 |
FL15 | dolomite | −60.3 | 19.2 | 202 | 9.3 |
FL10 | dolomite | −96.7 | 12.1 | 202 | 2.2 |
FL13 | dolomite | −49.8 | 18.9 | 202 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Li, B.; Zhang, X.; Qin, H.; Li, G. Fluid Mixing, Organic Matter, and the Origin of Permian Carbonate-Hosted Pb-Zn Deposits in SW China: New Insights from the Fuli Deposit. Minerals 2024, 14, 312. https://doi.org/10.3390/min14030312
Liang X, Li B, Zhang X, Qin H, Li G. Fluid Mixing, Organic Matter, and the Origin of Permian Carbonate-Hosted Pb-Zn Deposits in SW China: New Insights from the Fuli Deposit. Minerals. 2024; 14(3):312. https://doi.org/10.3390/min14030312
Chicago/Turabian StyleLiang, Xingyu, Bo Li, Xinyue Zhang, Huaikun Qin, and Gao Li. 2024. "Fluid Mixing, Organic Matter, and the Origin of Permian Carbonate-Hosted Pb-Zn Deposits in SW China: New Insights from the Fuli Deposit" Minerals 14, no. 3: 312. https://doi.org/10.3390/min14030312
APA StyleLiang, X., Li, B., Zhang, X., Qin, H., & Li, G. (2024). Fluid Mixing, Organic Matter, and the Origin of Permian Carbonate-Hosted Pb-Zn Deposits in SW China: New Insights from the Fuli Deposit. Minerals, 14(3), 312. https://doi.org/10.3390/min14030312