A Multi-Method Approach to Geophysical Imaging of a Composite Pluton in North Portugal
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Radiometric Imaging
- (i)
- Available radiometric data
- (ii)
- Radiometric survey in the field
3.2. Magnetic Susceptibility and Gravimetric Approach
3.3. Coordinate System and Map Specification
4. Results and Discussion
4.1. Radiometric Data Interpretation
- The higher concentration of Th is spatially related to areas with intense fracturing, coinciding with locations where NNE-SSW and NE-SW fractures intersect with WNW-ESE structures. This correlation is particularly notable in the middle of pluton, and at NE and ESE borders of LOP (Figure 1 and Figure 3c);
- The U concentration is higher in the eastern area of LOP, exhibiting a NNE-SSW trend. A closer examination shows that the U concentration is highest in the ESE zone of the pluton, where there is intense WNW-ESE fracturing. Additionally, the high U concentration is spatially related to the NNE-SSW fault, parallel to the regional Penacova-Régua-Verin fault (Figure 1 and Figure 3d).
4.2. Magnetic Susceptibility
4.3. Gravimetric Survey
5. Conclusions
- Radiometric measurements obtained through portable gamma-ray spectrometers effectively reveal the compositional heterogeneities within granitic plutons;
- The LOP’s radioactive heat production rate is 4.09 µW m−3, which is higher than the global average for granites;
- Feeder zones, identified in the residual anomaly map, can be correlated with the surface location of high-U and high-Th zones, corresponding to the northern and western roots, respectively. This correlation is in line with the geochemical character of the Barragem granite (rich in U), as well as the Lamas de Olo and Alto dos Cabeços granites (rich in Th);
- Insights into granite petrogenesis and emplacement conditions can be gained through the examination of variations in isotopic distribution illustrated in ternary radiometric maps. These maps provided a “frozen image” capturing the final stages of magmatic construction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tartèse, R.; Boulvais, P.; Poujol, M.; Vigneresse, J.L. Granite petrogenesis revealed by combined gravimetric and radiometric imaging. Tectonophysics 2011, 501, 98–103. [Google Scholar] [CrossRef]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014; 516p. [Google Scholar]
- Fall, M.; Baratoux, D.; Ndiaye, P.M.; Jessell, M.; Baratoux, L. Multi-scale distribution of Potassium. Thorium and Uranium in Paleoproterozoic granites from eastern Senegal. J. Afr. Earth Sci. 2018, 148, 30–51. [Google Scholar] [CrossRef]
- Kumwenda, J.; Lackie, M. Geophysical interpretation of the geology of the Stanthorpe region using aeromagnetic, gravity and radiometric data. Explor. Geophys. 2019, 50, 653–666. [Google Scholar] [CrossRef]
- Cruz, C.; Sant’ovaia, H.; Raposo, M.I.B.; Lourenço, J.M.; Almeida, F.; Noronha, F. Unraveling the emplacement history of a Po tuguese post-tectonic Variscan pluton using fabrics and gravimetry. J. Struct. Geol. 2021, 153, 104470. [Google Scholar] [CrossRef]
- Cruz, C.; Nogueira, P.; Máximo, J.; Noronha, F.; Sant’Ovaia, H. Granite emplacement within a suture shear zone in the Southwestern Iberian Variscan Belt: The Santa Eulália Plutonic Complex. Geol. Soc. 2023, 180, 13. [Google Scholar] [CrossRef]
- Moxham, R.M. Natural radioactivity in Washington County, Maryland. Geophysics 1963, 28, 262–272. [Google Scholar] [CrossRef]
- Pires, A.C.B.; Harthill, N. Statistical analysis of airborne gamma-ray data for geologic mapping purposes: Crixas-Itapaci area, Goias, Brazil. Geophysics 1989, 54, 1326–1332. [Google Scholar] [CrossRef]
- Rybach, L. Determination of heat production rate. In Handbook of Terrestrial Heat Flow Density Determination; Hänel, R., Rybach, L.L., Stegena, Eds.; Kluwer: Dordrecht, The Netherlands, 1988; pp. 125–142. [Google Scholar]
- Vilà, M.; Fernández, M.; Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 2010, 490, 152–164. [Google Scholar] [CrossRef]
- Clark, C.; Fitzsimons, I.C.; Healy, D.; Harley, S.L. How does the continental crust get really hot? Elements 2011, 7, 235–240. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Thybo, H.; Jakobsen, K.; Sørensen, N.K.; Nielsen, L.S.K. Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Sci. Rev. 2017, 172, 1–26. [Google Scholar] [CrossRef]
- Rybach, L. Radioactive Heat Production: A Physical Property Determined by the Chemistry of Rocks. In The Physics and Chemistry of Minerals and Rocks; Strens, R.G.J., Ed.; Wiley & Sons: London, UK, 1976; pp. 309–318. [Google Scholar]
- Cruz, C.; Sant’Ovaia, H.; Noronha, F. Magnetic mineralogy of Variscan granites from northern Portugal: An approach to their petrogenesis and metallogenic potential. Geol. Acta 2020, 18, 1–20. [Google Scholar] [CrossRef]
- Cruz, C.; Góiis, J.; Sant’Ovaia, H.; Noronha, F. Geostatistical approach in the study of the magnetic susceptibility variation: Lamas de Olo Pluton case study. J. Iber. Geol. 2020, 46, 279–289. [Google Scholar] [CrossRef]
- Franke, W. Variscan plate tectonics in Central Europe–current ideas and open questions. Tectonophysics 1989, 169, 221–228. [Google Scholar] [CrossRef]
- Ribeiro, A.; Pereira, E.; Dias, R. Structure in the Northwest of the Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez Garcia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 220–236. [Google Scholar]
- Kroner, U.; Romer, R.L. Two plates-Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Noronha, F.; Ramos, J.M.F.; Rebelo, J.; Ribeiro, A.; Ribeiro, M.L. Essai de corr’elation des phases de d’eformation hercyniennes dans le NW de la p’eninsule Ibérique. Leidse Geol. Meded. 1981, 52, 87–91. [Google Scholar]
- Dallmeyer, R.D.; Martinez Catalán, J.R.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez-Alonso, G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef]
- Castiñeiras, P.; Villaseca, C.; Barbero, L.; Martín Romera, C. SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: Implications in the Hercynian evolution of Central Iberia. Int. J. Earth Sci. 2008, 97, 35–50. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Rubio Pascual, F.J.; Díez Montes, A.; Díez Fernández, R.; G’omez Barreiro, J.; Dias da Silva, I.; González Clavijo, E.; Ayarza, P.; Alcock, J.E. The Late Variscan HT/LP Metamorphic Event in NW and Central Iberia: Relationships to Crustal Thickening, Extension, Orocline Development and Crustal Evolution. Geol. Soc. 2014, 405, 225–247. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Arenas, R.; Pereira, M.F.; Sánchez Martínez, S.; Albert, R.; Martín Parra, L.M.; Rubio Pascual, F.J.; Matas, J. Tectonic evolution of variscan Iberia: Gondwana–Laurussia collision revisited. Earth Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Ferreira, N.; Iglésias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico. Libro de Homenaje a L.C. García de Figuerola; Bea, F., Carnicero, A., Gonzalo, J., Lopez Plaza, M., Rodriguez Alonso, M., Eds.; Editorial Rueda: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Marques, F.O.; Mateus, A.; Tassinari, C. The Late-Variscan fault network in central–northern Portugal (NW Iberia): A re-evaluation. Tectonophysics 2002, 359, 255–270. [Google Scholar] [CrossRef]
- Ribeiro, A. Contribution à l’étude de Trás-os-Montes Oriental. Serviços Geológicos de Portugal. Ph.D. Thesis, Memórias Serviços Geológicos de Portugal, Lisboa, Portugal, 1974; 168p. [Google Scholar]
- Arthaud, F.; Matte, P. Les décrochements Tardi-Hercyniens du Sud-ouest de l’Europe. Géometrie et essai de reconstitution des conditions de la déformation. Tectonophysics 1975, 25, 139–171. [Google Scholar] [CrossRef]
- Dias, G.; Noronha, F.; Almeida, A.; Simões, P.P.; Martins, H.C.B.; Ferreira, N. Geocronologia e petrogénese do plutonismo tardi-Varisco (NW de Portugal): Síntese e inferências sobre o processo de acreção e reciclagem crustal na Zona Centro-Ibérica. In Geologia Clássica, Volume I—Ciências Geológicas: Ensino, Investigação e sua História; Cotelo Neiva, J.M., Ribeiro, A., Victor, M., Noronha, F., Ramalho, M., Eds.; Geologia Clássica, Lisboa, Escolar Editora: Lisboa, Portugal, 2010; pp. 143–160. [Google Scholar]
- Pereira, E.; Silva, N.; Moreira, A.; Ribeiro, A. Carta Geológica de Portugal à Escala 1:50,000. Folha 10-A (Celorico de Basto); Serviços Geológicos de Portugal: Lisboa, Portugal, 1987. [Google Scholar]
- Helal, B. Granitoïdes, Granites à Métaux Rares et Hydrothermalisme Associe: Géologie, Minéralogie et Géochimie de Plusieurs suites Tardi-Hercyniennes (Nord du Portugal). Ph.D. Thesis, Ecole Nacionale Superieure des Mines de Saint-Etienne, Saint-Étienne, France, 1992. [Google Scholar]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L. Mapa Tectónico de la Península Ibérica y Baleares a Escala 1:1,000,000 y Memoria Explicativa; Instituto Geologico y Mineiro de España: Madrid, Spain, 1974. [Google Scholar]
- Farias, P.; Gallastegui, G.; González Lodeiro, L.; Marquínez, J.; Martín Parra, L.M.; Martínez Catalán, J.R.; Pablo Maciá, J.G.; Rodríguez Fernández, L.R. Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. In Memórias n◦1, IX Reunião Sobre a Geologia do Oeste Peninsular, Museu Laboratário Mineralogia e Geologia-Faculdade de Ciências da Universidade do Porto; Universidad de Oporto: Porto, Portugal, 1987; pp. 411–431. [Google Scholar]
- Pereira, E. Notícia Explicativa da Folha 10-A (Celorico de Basto) da Carta Geológica de Portugal: 1:50,000; Serviços Geológicos de Portugal: Lisboa, Portugal, 1989; p. 53. [Google Scholar]
- Fernandes, S.; Gomes, M.; Teixeira, R.; Corfu, F. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal. In Proceedings of the Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Almeida, A.; Leterrier, J.; Noronha, F.; Bertrand, J.M. U-Pb zircon and monazite geochronology of the Hercynian two mica granite composite pluton of Cabeceiras de Basto (Northern Portugal). C. R. L’acad. Sci. 1998, 326, 779–785. [Google Scholar]
- Baptista, J.C.; Coke, C.; Dias, R.; Ribeiro, A. Tectónica e Geomorfologia da Região de Pedras Salgadas/Vidago e as Nascentes Minerais Associadas; Comunicações da XII Reunião de Geologia do Oeste Peninsular: Évora, Portugal, 1993; pp. 125–139. [Google Scholar]
- Baptista, J.C. Estudo Neotectónico da Zona de Falha Penacova-Régua-Verin. Ph.D. Thesis, UTAD, Vila Real, Portugal, 1998; 344p. [Google Scholar]
- Hildenbrand, A.; Marques, F.O.; Quidelleur, X.; Noronha, F. Exhumation history of the Variscan orogen in western Iberia as inferred from new K-Ar and 40Ar/39Ar data on granites from Portugal. Tectonophysics 2021, 812, 228863. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Cruz, C.; Gonçalves, A.; Nogueira, P.; Noronha, F. Deciphering Iberian Variscan Orogen Magmatism Using the Anisotropy of Magnetic Susceptibility from Granites. Minerals 2024, 14, 309. [Google Scholar] [CrossRef]
- Batista, M.J.; Leote Torres, L.; Leote, J.; Prazeres, C.; Saraiva, J.; Carvalho, J. Carta Radiométrica de Portugal (1:500,000); Laboratório de Energia e Geologia: Amadora, Portugal, 2013; ISBN 978-989-675-027-5. [Google Scholar]
- Rudnick, R.L.; Gao, S. The Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; The Crust, Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Gomes, M.E.P.; Martins, L.M.O.; Pereira, A.J.C.S.; Neves, L.J.P.F. Natural Radiation and Geochemistry of the Lamas de Olo Biotite Granite, Northern Portugal. In Proceedings of the Goldschmidt, Sacramento, CA, USA, 8–13 June 2014; p. 2458. [Google Scholar]
- Ishihara, S. The Magnetite-series and Ilmenite-series Granitic Rocks. Min. Geol. 1977, 27, 292–305. [Google Scholar]
Total (ppm) | K (%) | Th (ppm) | U (ppm) | eU/eTh | eTh/K | eU/K | ||
---|---|---|---|---|---|---|---|---|
LOP + surrounding rocks | 41.1 | 4.4 | 22.1 | 8.8 | 0.4 | 5.0 | 2.0 | |
6.2 | 0.6 | 3.9 | 2.7 | 0.1 | 0.5 | 0.5 | ||
Min. | 27.7 | 2.8 | 12.9 | 3.3 | 0.2 | 3.3 | 0.9 | |
Max. | 59.9 | 6.0 | 30.3 | 18.5 | 1.2 | 6.6 | 3.9 | |
LOP | 42.0 | 4.5 | 22.5 | 9.1 | 0.4 | 5.0 | 2.0 | |
6.0 | 0.6 | 3.7 | 2.7 | 0.1 | 0.6 | 0.5 | ||
Min. | 27.7 | 2.8 | 13.1 | 5.1 | 0.2 | 3.3 | 1.3 | |
Max. | 59.9 | 6.0 | 30.3 | 18.5 | 1.2 | 6.6 | 3.9 | |
Surrounding rocks | 36.1 | 4.0 | 19.7 | 6.8 | 0.4 | 4.9 | 1.7 | |
5.0 | 0.5 | 4.1 | 1.6 | 0.1 | 0.8 | 0.3 | ||
Min. | 27.8 | 3.2 | 12.9 | 3.3 | 0.2 | 3.9 | 0.9 | |
Max. | 43.8 | 4.7 | 24.6 | 8.9 | 0.5 | 6.0 | 1.9 |
Lamas de Olo Granite | Alto dos Cabeços Granite | Barragem Granite | LOP | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |||||||||
SiO2 (%) | 73.63 | 1.41 | 71.69 | 75.04 | 72.50 | 1.27 | 71.11 | 73.60 | 76.84 | 0.73 | 76.23 | 77.65 | 74.15 | 2.04 | 71.11 | 77.65 |
TiO2 (%) | 0.185 | 0.02 | 0.168 | 0.206 | 0.241 | 0.03 | 0.215 | 0.279 | 0.091 | 0.007 | 0.084 | 0.098 | 0.175 | 0.059 | 0.084 | 0.279 |
Al2O3 (%) | 13.72 | 0.29 | 13.30 | 14.04 | 13.50 | 0.33 | 13.21 | 13.86 | 12.34 | 0.03 | 12.31 | 12.37 | 13.32 | 0.64 | 12.31 | 14.04 |
Fe2O3 (%) | 0.95 | 0.18 | 0.60 | 1.13 | 0.77 | 0.18 | 0.64 | 0.97 | 0.30 | 0.10 | 0.21 | 0.41 | 0.74 | 0.32 | 0.21 | 1.13 |
FeO (%) | 1.0 | 0.2 | 0.7 | 1.2 | 1.2 | 0.1 | 1.1 | 1.3 | 0.7 | 0.2 | 0.5 | 0.9 | 0.9 | 0.2 | 0.5 | 1.3 |
Fe2O3 (T%) | 2.01 | 0.12 | 1.91 | 2.23 | 2.07 | 0.31 | 1.87 | 2.42 | 1.08 | 0.30 | 0.83 | 1.41 | 1.79 | 0.48 | 0.83 | 2.42 |
MnO (%) | 0.059 | 0.01 | 0.039 | 0.067 | 0.060 | 0.02 | 0.043 | 0.075 | 0.031 | 0.018 | 0.020 | 0.052 | 0.052 | 0.018 | 0.020 | 0.075 |
MgO (%) | 0.33 | 0.05 | 0.29 | 0.41 | 0.50 | 0.08 | 0.46 | 0.59 | 0.16 | 0.01 | 0.16 | 0.17 | 0.33 | 0.13 | 0.16 | 0.59 |
CaO (%) | 0.98 | 0.14 | 0.73 | 1.16 | 1.26 | 0.26 | 0.96 | 1.42 | 0.39 | 0.14 | 0.29 | 0.55 | 0.90 | 0.37 | 0.29 | 1.42 |
Na2O (%) | 3.49 | 0.13 | 3.39 | 3.74 | 3.00 | 0.38 | 2.56 | 3.23 | 3.10 | 0.09 | 2.99 | 3.15 | 3.27 | 0.30 | 2.56 | 3.74 |
K2O (%) | 4.69 | 0.21 | 4.39 | 4.98 | 4.26 | 0.09 | 4.18 | 4.36 | 4.52 | 0.14 | 4.41 | 4.67 | 4.54 | 0.24 | 4.18 | 4.98 |
P2O5 (%) | 0.06 | 0.01 | 0.05 | 0.07 | 0.07 | 0.01 | 0.07 | 0.08 | 0.04 | 0.01 | 0.03 | 0.04 | 0.06 | 0.02 | 0.03 | 0.08 |
LOI (%) | 0.54 | 0.15 | 0.39 | 0.73 | 1.28 | 0.81 | 0.66 | 2.19 | 0.81 | 0.26 | 0.51 | 0.99 | 0.79 | 0.49 | 0.39 | 2.19 |
Total (%) | 99.58 | 0.85 | 98.34 | 100.5 | 98.63 | 0.35 | 98.31 | 99.00 | 99.32 | 0.57 | 98.94 | 99.97 | 99.28 | 0.76 | 98.31 | 100.5 |
Sc (ppm) | 5 | 0 | 5 | 5 | 5 | 0 | 5 | 5 | 5 | 1 | 4 | 5 | 5 | 0 | 4 | 5 |
Be (ppm) | 5 | 2 | 4 | 10 | 7 | 3 | 5 | 11 | 48 | 73 | 6 | 132 | 17 | 36 | 4 | 132 |
V (ppm) | 15 | 1 | 14 | 17 | 22 | 3 | 20 | 25 | 8 | 2 | 7 | 10 | 15 | 5 | 7 | 25 |
Cr (ppm) | 117 | 28 | 80 | 150 | 110 | 17 | 100 | 130 | 127 | 117 | 40 | 260 | 118 | 54 | 40 | 260 |
Co (ppm) | 3 | 0 | 3 | 3 | 3 | 0 | 3 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 |
Ni (ppm) | 13 | 8 | 10 | 30 | 33 | 6 | 30 | 40 | 37 | 38 | 10 | 80 | 24 | 21 | 10 | 80 |
Cu (ppm) | 5 | 0 | 5 | 5 | 20 | 10 | 10 | 30 | 60 | 69 | 20 | 140 | 23 | 38 | 5 | 140 |
Zn (ppm) | 34 | 10 | 15 | 40 | 47 | 6 | 40 | 50 | 55 | 49 | 15 | 110 | 43 | 24 | 15 | 110 |
Ga (ppm) | 18 | 1 | 17 | 18 | 18 | 1 | 17 | 18 | 17 | 1 | 17 | 18 | 18 | 1 | 17 | 18 |
Ge (ppm) | 2 | 0 | 2 | 3 | 2 | 0 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 0 | 2 | 3 |
As (ppm) | 3 | 0 | 3 | 3 | 3 | 0 | 3 | 3 | 5 | 2 | 3 | 7 | 3 | 2 | 3 | 7 |
Rb (ppm) | 242 | 15 | 223 | 265 | 253 | 29 | 221 | 277 | 304 | 15 | 291 | 321 | 260 | 32 | 221 | 321 |
Sr (ppm) | 98 | 13 | 81 | 114 | 147 | 5 | 142 | 152 | 27 | 9 | 21 | 37 | 93 | 46 | 21 | 152 |
Y (ppm) | 33 | 3 | 29 | 37 | 25 | 7 | 19 | 33 | 37 | 13 | 28 | 52 | 32 | 8 | 19 | 52 |
Zr (ppm) | 107 | 7 | 100 | 118 | 123 | 14 | 113 | 139 | 50 | 7 | 45 | 58 | 97 | 30 | 45 | 139 |
Nb (ppm) | 18 | 1 | 16 | 20 | 18 | 2 | 16 | 20 | 37 | 11 | 27 | 48 | 23 | 10 | 16 | 48 |
Mo (ppm) | 3 | 1 | 2 | 4 | 2 | 0 | 2 | 2 | 4 | 2 | 2 | 6 | 3 | 1 | 2 | 6 |
Ag (ppm) | 0.3 | 0.1 | 0.3 | 0.5 | 0.3 | 0.0 | 0.3 | 0.3 | 0.4 | 0.2 | 0.3 | 0.6 | 0.3 | 0.1 | 0.3 | 0.6 |
In (ppm) | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 |
Sn (ppm) | 7 | 2 | 3 | 10 | 9 | 4 | 6 | 13 | 9 | 4 | 7 | 14 | 8 | 3 | 3 | 14 |
Sb (ppm) | 0.3 | 0.0 | 0.3 | 0.3 | 0.3 | 0.0 | 0.3 | 0.3 | 0.3 | 0.0 | 0.3 | 0.3 | 0.3 | 0.0 | 0.3 | 0.3 |
Cs (ppm) | 11.1 | 3.8 | 7.6 | 18.5 | 13.9 | 4.1 | 10.3 | 18.4 | 11.8 | 2.3 | 9.4 | 13.9 | 12.0 | 3.5 | 7.6 | 18.5 |
Ba (ppm) | 388 | 78 | 282 | 483 | 531 | 53 | 481 | 587 | 81 | 45 | 50 | 132 | 347 | 182 | 50 | 587 |
Hf (ppm) | 3.3 | 0.3 | 3.0 | 3.8 | 3.7 | 0.2 | 3.5 | 3.9 | 2.6 | 0.1 | 2.5 | 2.7 | 3.2 | 0.5 | 2.5 | 3.9 |
Ta (ppm) | 4.3 | 0.6 | 3.7 | 5.2 | 3.7 | 1.2 | 2.8 | 5.0 | 10.9 | 2.9 | 7.8 | 13.6 | 5.8 | 3.4 | 2.8 | 13.6 |
W (ppm) | 4 | 2 | 2 | 8 | 3 | 0 | 3 | 3 | 7 | 3 | 4 | 9 | 5 | 3 | 2 | 9 |
Tl (ppm) | 1.3 | 0.1 | 1.2 | 1.4 | 1.4 | 0.1 | 1.3 | 1.5 | 1.5 | 0.2 | 1.3 | 1.6 | 1.4 | 0.1 | 1.2 | 1.6 |
Pb (ppm) | 31 | 1 | 29 | 32 | 29 | 1 | 28 | 30 | 41 | 6 | 35 | 47 | 33 | 6 | 28 | 47 |
Bi (ppm) | 0.4 | 0.3 | 0.2 | 0.8 | 0.2 | 0.0 | 0.2 | 0.2 | 6.0 | 8.6 | 0.7 | 16.0 | 1.7 | 4.5 | 0.2 | 16.0 |
Th (ppm) | 15.2 | 1.8 | 13.2 | 18.3 | 16.5 | 1.2 | 15.6 | 17.9 | 9.4 | 0.1 | 9.4 | 9.5 | 14.1 | 3.1 | 9.4 | 18.3 |
U (ppm) | 10.0 | 5.6 | 5.6 | 20.9 | 7.4 | 1.8 | 5.4 | 9.0 | 28.0 | 14.1 | 12.1 | 38.9 | 13.9 | 11.2 | 5.4 | 38.9 |
La (ppm) | 20.6 | 2.9 | 18.5 | 26.0 | 29.5 | 3.5 | 27.2 | 33.5 | 12.1 | 0.2 | 12.0 | 12.3 | 20.7 | 6.9 | 12.0 | 33.5 |
Ce (ppm) | 42.3 | 5.1 | 36.4 | 50.6 | 55.4 | 5.1 | 50.2 | 60.3 | 22.9 | 5.8 | 17.4 | 28.9 | 40.7 | 13.0 | 17.4 | 60.3 |
Pr (ppm) | 4.82 | 0.57 | 4.28 | 5.86 | 6.51 | 0.52 | 6.19 | 7.11 | 3.12 | 0.37 | 2.82 | 3.53 | 4.82 | 1.34 | 2.82 | 7.11 |
Nd (ppm) | 18.5 | 2.3 | 16.6 | 22.8 | 23.4 | 1.1 | 22.6 | 24.7 | 11.5 | 1.2 | 10.6 | 12.9 | 18.0 | 4.8 | 10.6 | 24.7 |
Sm (ppm) | 4.5 | 0.6 | 3.9 | 5.6 | 4.8 | 0.3 | 4.6 | 5.1 | 3.6 | 0.5 | 3.0 | 3.9 | 4.3 | 0.7 | 3.0 | 5.6 |
Eu (ppm) | 0.58 | 0.04 | 0.54 | 0.64 | 0.71 | 0.04 | 0.68 | 0.75 | 0.22 | 0.04 | 0.18 | 0.25 | 0.52 | 0.19 | 0.18 | 0.75 |
Gd (ppm) | 4.7 | 0.4 | 4.3 | 5.5 | 4.4 | 0.8 | 3.7 | 5.3 | 4.2 | 1.0 | 3.3 | 5.2 | 4.5 | 0.7 | 3.3 | 5.5 |
Tb (ppm) | 0.9 | 0.1 | 0.7 | 1.0 | 0.7 | 0.2 | 0.6 | 0.9 | 0.9 | 0.4 | 0.6 | 1.3 | 0.8 | 0.2 | 0.6 | 1.3 |
Dy (ppm) | 5.2 | 0.5 | 4.5 | 5.8 | 4.4 | 1.3 | 3.3 | 5.8 | 6.2 | 2.4 | 4.3 | 8.9 | 5.3 | 1.4 | 3.3 | 8.9 |
Ho (ppm) | 1.1 | 0.1 | 0.9 | 1.2 | 0.9 | 0.3 | 0.7 | 1.2 | 1.3 | 0.5 | 0.9 | 1.8 | 1.1 | 0.3 | 0.7 | 1.8 |
Er (ppm) | 3.3 | 0.4 | 2.7 | 3.8 | 2.7 | 0.7 | 2.1 | 3.5 | 4.1 | 1.6 | 2.8 | 5.8 | 3.3 | 0.9 | 2.1 | 5.8 |
Tm (ppm) | 0.53 | 0.06 | 0.45 | 0.61 | 0.42 | 0.12 | 0.33 | 0.56 | 0.71 | 0.25 | 0.51 | 0.99 | 0.55 | 0.16 | 0.33 | 0.99 |
Yb (ppm) | 3.6 | 0.3 | 3.1 | 4.1 | 3.0 | 0.9 | 2.4 | 4.0 | 5.5 | 2.0 | 3.8 | 7.7 | 3.9 | 1.4 | 2.4 | 7.7 |
Lu (ppm) | 0.56 | 0.06 | 0.47 | 0.64 | 0.45 | 0.09 | 0.38 | 0.55 | 0.89 | 0.32 | 0.62 | 1.24 | 0.62 | 0.23 | 0.38 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, C.; Noronha, F.; Sant’Ovaia, H. A Multi-Method Approach to Geophysical Imaging of a Composite Pluton in North Portugal. Minerals 2024, 14, 342. https://doi.org/10.3390/min14040342
Cruz C, Noronha F, Sant’Ovaia H. A Multi-Method Approach to Geophysical Imaging of a Composite Pluton in North Portugal. Minerals. 2024; 14(4):342. https://doi.org/10.3390/min14040342
Chicago/Turabian StyleCruz, Cláudia, Fernando Noronha, and Helena Sant’Ovaia. 2024. "A Multi-Method Approach to Geophysical Imaging of a Composite Pluton in North Portugal" Minerals 14, no. 4: 342. https://doi.org/10.3390/min14040342
APA StyleCruz, C., Noronha, F., & Sant’Ovaia, H. (2024). A Multi-Method Approach to Geophysical Imaging of a Composite Pluton in North Portugal. Minerals, 14(4), 342. https://doi.org/10.3390/min14040342