Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin
Abstract
:1. Introduction
2. Geological Setting
3. Sample Collection and Methods
3.1. Sample Collection and Preparation
3.2. Experimental Analytical Methods
3.2.1. ICP-OES and ICP-MS Analysis
3.2.2. Electron Microscopic Analysis
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Atalay, M.; Oskay, R.G.; Córdoba, P.; Querol, X.; Bulut, Y. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. Int. J. Coal Geol. 2020, 218, 103366. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y. Minimum mining grade of the selected trace elements in Chinese coal. J. China Coal Soc. 2014, 39, 744–748. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Izquierdo, M.; Wang, Z. New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2014, 125, 10–21. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Spears, D.A.; Vergunov, A.V.; Ilenok, S.S.; Mezhibor, A.M.; Ivanov, V.P.; Zarubinac, N.A. Geochemistry, mineralogy, and genesis of rare metal (Nb-Ta-Zr-Hf-Y- REE-Ga) coals of the Seam XI in the South of Kuznetsk Basin. Ore Geol. Rev. 2019, 113, 103073. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Korobkin, V.V.; Buslov, M.M. Tectonics and geodynamics of the western Central Asian Fold Belt (Kazakhstan Paleozoides). Russ. Geol. Geophys. 2011, 52, 1600–1618. [Google Scholar] [CrossRef]
- Li, P.; Sun, M.; Rosenbaum, G.; Yuan, C.; Safonova, I.; Cai, K.; Jiang, Y.; Zhang, Y. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt. J. Asian Earth Sci. 2018, 153, 42–56. [Google Scholar] [CrossRef]
- Buslov, M.M. Tectonics and geodynamics of the Central Asian Foldbelt: The role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 2011, 52, 52–71. [Google Scholar] [CrossRef]
- Levashova, N.M.; Degtıarev, K.E.; Bajenov, M.L. Oroclinal edition of the Middle Late Paleozoic volcanic phenomena of Kazakhstan: Paleomagnetic evidence and geological consequences. Geotectonics 2012, 4, 42–61. [Google Scholar] [CrossRef]
- Dobretsov, N.L. Early Paleozoic tectonics and geodynamics of Central Asia: The role of Early Paleozoic mantle plumes. Geol. Geophys. 2011, 52, 1957–1973. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Cennye Elementy-Primesi v Uglyah. Ekaterinburg: Izdatelstvo: Ýralskoe Otdelenıe Rossııskoı Akademıı Naýk, 2006, 538c. Available online: https://www.geokniga.org/bookfiles/geokniga-cennye-elementy-primesi-v-uglyah-yudovich-yae-ketris-mp-2006.pdf (accessed on 20 November 2023). (In Russian).
- Grıgorev, N.A. Distribution of Chemical Elements in the Upper Part of the Continental Crust; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2009; p. 383s, (In Russian with English abstract). [Google Scholar]
- Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P. Brecciated and mineralized coals in Union County, Western Kentucky coal field. Int. J. Coal Geol. 2001, 47, 223–234. [Google Scholar] [CrossRef]
- Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O’Keefe, J.M.; Tatu, C.A.; Buia, G. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petroşani basin (southern Carpathian Mountains), Romania. Int. J. Coal Geol. 2010, 82, 68–80. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Ilenok, S.S.; Arbuzov, S.I. Metalliferous coals of the Azeyskoye deposit of the Irkutsk coal basin. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2018, 329, 132–144. (In Russian) [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Arbuzov, S.I. The nature of abnormal concentrations of scandium in coals. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2013, 323, 56–64. (In Russian) [Google Scholar]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Verkhoturov, A.A.; Spears, D.A.; Melkiy, V.A.; Zarubina, N.V.; Blokhin, M.G. Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin Island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Maslov, S.G.; Il’enok, S.S. Modes of occurrence of scandium in coals and peats (A review). Solid Fuel Chem. 2015, 49, 167–182. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Saikia, B.K.; Wang, P.; Saikia, A.; Song, H.; Liu, J.; Wei, J.; Gupta, U.N. Mineralogical and elemental analysis of some high-sulfur Indian Paleogene coals: A statistical approach. Energy Fuel 2015, 29, 1407–1420. [Google Scholar] [CrossRef]
- Medunic, G.; Kuharic, Z.; Krivohlavek, A.; Fiket, Z.; Rađenovic, A.; Godel, K.; Kampic, S.; Kniewald, G. Geochemistry of Croatian superhigh-organic-sulphur Rasa coal, imported low-S coal and bottom ash: Their Se and trace metal fingerprints in seawater, clover, foliage and mushroom specimens. Int. J. Oil Gas Coal Technol. 2018, 18, 3–24. [Google Scholar] [CrossRef]
- Nayak, B. Mineral matter and the nature of pyrite in some high-sulfur tertiary coals of Meghalaya, northeast India. J. Geol. Soc. India 2013, 81, 203–214. [Google Scholar] [CrossRef]
- Xie, P.; Hower, J.C.; Nechaev, V.P.; Ju, D.; Liu, X. Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel 2021, 300, 120948. [Google Scholar] [CrossRef]
- Bekman, V.M.; Seidalin, O.A.; Zinova, R.A.; Vedishev, V.E.; Shedrov, V.K.; Chaban, G.S.; Orlov, I.V.; Golicin, M.V.; Vihodciv, A.P. Geology of the Karaganda Coal Basin; Publishing House of Nedra: Moscow, Russia, 1972; p. 416s. (In Russian) [Google Scholar]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and geochemical characteristics of coal from the Southeastern Qinshui Basin: Implications for the enrichment and economic value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Gurova, A.; Safonova, I.; Savinsky, I.; Antonyuk, R.; Orynbek, T. Magmatic Rocks of the Tekturmass Accretionary Complex, Central Kazakhstan: Geological Position and Geodynamic Settings of Formation. Geodyn. Tectonophys. 2022, 13, 0673, (In Russian with English abstract). [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; Volume 349. [Google Scholar]
- Allègre, C.J.; Minster, J. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Mezhibor, A.M.; Spears, D.A.; Ilenok, S.S.; Shaldybin, M.V.; Belaya, E.V. Nature of Tonsteins in the Azeisk Deposit of the Irkutsk Coal Basin (Siberia, Russia). Int. J. Coal Geol. 2016, 152, 99–111. [Google Scholar] [CrossRef]
Element | Saranskaya | Aktasskaya | Kuzembayev | Coal Clarke * | Element | Saran | Aktasskaya | Kuzembayev | Coal Clarke * |
---|---|---|---|---|---|---|---|---|---|
Li | 10.964 | 20.64 | 15.64 | 14.00 | Hf | 1.053 | 1.07 | 1.36 | 1.20 |
Be | 0.294 | 0.36 | 0.34 | 2.00 | Ta | 0.053 | 0.07 | 0.08 | 0.30 |
Sc | 4.246 | 6.59 | 5.70 | 3.70 | W | 0.241 | 0.19 | 0.23 | 1.00 |
V | 30.159 | 53.05 | 33.22 | 28.00 | Tl | 0.009 | 0.09 | 0.01 | 0.58 |
Cr | 2.588 | 2.87 | 2.40 | 17.00 | Pb | 2.735 | 3.65 | 3.87 | 9.00 |
Co | 3.134 | 3.06 | 2.93 | 6.00 | Bi | 0.074 | 0.09 | 0.12 | 1.10 |
Ni | 2.669 | 2.81 | 2.09 | 17.00 | Th | 1.099 | 1.12 | 1.32 | 3.20 |
Cu | 14.983 | 21.23 | 16.62 | 16.00 | U | 0.349 | 0.41 | 0.49 | 1.90 |
Zn | 12.096 | 13.86 | 11.64 | 28.00 | Ge | 0.316 | 0.36 | 0.33 | 2.50 |
Ga | 2.698 | 4.89 | 3.61 | 6.20 | Te | 0.106 | 0.07 | 0.03 | 0.05 |
As | 0.251 | 4.30 | 0.19 | 9.00 | La | 5.634 | 4.64 | 5.96 | 11.00 |
Se | 1.063 | 3.32 | 1.33 | 1.60 | Ce | 12.352 | 10.65 | 13.29 | 23.00 |
Rb | 1.398 | 3.71 | 1.44 | 18.00 | Pr | 1.505 | 1.34 | 1.62 | 3.50 |
Sr | 62.413 | 80.88 | 54.85 | 100.00 | Nd | 6.997 | 6.22 | 7.21 | 11.00 |
Y | 9.581 | 7.69 | 7.96 | 8.20 | Sm | 1.666 | 1.52 | 1.64 | 2.40 |
Zr | 41.638 | 43.96 | 51.11 | 36.00 | Eu | 0.394 | 0.36 | 0.38 | 0.43 |
Nb | 0.765 | 0.99 | 0.90 | 4.00 | Gd | 1.808 | 1.58 | 1.69 | 2.70 |
Mo | 0.311 | 2.84 | 0.11 | 2.10 | Tb | 0.267 | 0.24 | 0.26 | 0.31 |
Ag | 0.144 | 0.13 | 0.32 | 0.10 | Dy | 1.586 | 1.28 | 1.48 | 2.10 |
Cd | 0.063 | 0.10 | 0.08 | 0.20 | Ho | 0.319 | 0.26 | 0.31 | 0.57 |
Sn | 0.503 | 0.60 | 0.54 | 1.40 | Er | 0.915 | 0.76 | 0.92 | 0.85 |
Sb | 0.032 | 0.29 | 0.05 | 1.00 | Tm | 0.135 | 0.11 | 0.14 | 0.31 |
Cs | 0.123 | 0.20 | 0.12 | 1.10 | Yb | 0.868 | 0.68 | 0.99 | 1.00 |
Ba | 22.021 | 70.67 | 24.99 | 150.00 | Lu | 0.139 | 0.11 | 0.14 | 0.20 |
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | MnO | Na2O | K2O |
---|---|---|---|---|---|---|---|---|---|
Average for TAC | 48.23 | 1.065 | 14.3 | 12.665 | 7.0925 | 11.175 | 0.1825 | 2.635 | 0.495 |
Average for CI | 39.68 | 0.50 | 31.02 | 4.31 | 0.68 | 0.52 | 0.06 | 0.67 | 1.01 |
Average for Coal * | 8.06 | 0.18 | 4.91 | 1.61 | 0.20 | 1.65 | 0.02 | 0.09 | 0.11 |
Rocks | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coals | 0.18 | 0.18 | 0.21 | 0.26 | 0.35 | 0.43 | 0.44 | 0.39 | 0.41 | 0.38 | 0.37 | 0.37 | 0.38 | 0.38 | 0.40 |
CI | 0.68 | 0.61 | 0.56 | 0.58 | 0.64 | 0.54 | 0.62 | 0.43 | 0.43 | 0.37 | 0.39 | 0.44 | 0.52 | 0.55 | 0.63 |
Magmatic Rocks | 0.26 | 0.30 | 0.37 | 0.44 | 0.55 | 0.79 | 0.70 | 0.90 | 0.95 | 1.02 | 0.94 | 0.83 | 0.73 | 0.68 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopobayeva, A.; Amangeldikyzy, A.; Blyalova, G.; Askarova, N. Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals 2024, 14, 349. https://doi.org/10.3390/min14040349
Kopobayeva A, Amangeldikyzy A, Blyalova G, Askarova N. Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals. 2024; 14(4):349. https://doi.org/10.3390/min14040349
Chicago/Turabian StyleKopobayeva, Aiman, Altynay Amangeldikyzy, Gulim Blyalova, and Nazym Askarova. 2024. "Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin" Minerals 14, no. 4: 349. https://doi.org/10.3390/min14040349
APA StyleKopobayeva, A., Amangeldikyzy, A., Blyalova, G., & Askarova, N. (2024). Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals, 14(4), 349. https://doi.org/10.3390/min14040349