A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Experimental Analysis
2.4. Experimental Procedure
2.4.1. Horizontal Tube Furnace Apparatus: Manufacturing of NdCl3 Powder
2.4.2. Horizontal Tube Furnace Apparatus: Manufacturing of Bulk NdCl3
2.4.3. Glove Box Apparatus: Manufacturing of NdCl3 Powder
2.5. Conversion Rate of Chlorination
2.6. Chlorination Variables
3. Results
3.1. Thermodynamic Considerations
3.1.1. Calcination
3.1.2. Chlorination
NdOCl(s) + 2NH4Cl(s) → NdCl3(s) + 2NH3(g) + H2O(g), T = 306.47 °C
T = 400 °C, ∆Go673.15K = −233.97 kJ
3.2. Horizontal Tube Furnace Apparatus: Manufacturing of NdCl3 Powder
3.3. Horizontal Tube Furnace Apparatus: Manufacturing of Bulk NdCl3
3.4. Glove Box Apparatus: Manufacturing of NdCl3 Powder
4. Discussion
4.1. Impurity Control
4.2. Recovery Rate of NdCl3
4.3. Particle Property
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weifeng, L.; Warwick, J.M.; Adele, C.M.; Peter, J.W. Global economic and environmental outcomes of the Paris Agreement. Energy Econ. 2020, 90, 104838. [Google Scholar] [CrossRef]
- Heim, J.W., II; Vander Wal, R.L. NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review. Minerals 2023, 13, 1274. [Google Scholar] [CrossRef]
- Jianliang, W.; Meiyu, G.; Mingming, L.; Xinqiang, W. Long-term outlook for global rare earth production. Resour. Policy 2020, 65, 101569. [Google Scholar] [CrossRef]
- Shizhe, L.; Lingyun, C.; Bing, L.; Liangliang, W.; Bo, Y.; Mugen, L. Anode processes for Nd electrowinning from LiF-NdF3-Nd2O3 melt. Electrochim. Acta 2014, 147, 82–86. [Google Scholar] [CrossRef]
- Andrea, S.; Josefine, M.; Petra, Z.; Wilhelm, K. Comparative Life Cycle Assessment of Neodymium Oxide Electrolysis in Molten Salt. Adv. Eng. Mater. 2020, 22, 1901206. [Google Scholar] [CrossRef]
- Shah, S.; Pietsch, T.; Ruck, M. Facile synthesis of anhydrous rare-earth trichlorides from their oxides in chloridoaluminate ionic liquids. Angew. Chem. Int. Ed. 2024, 63, e202317480. [Google Scholar] [CrossRef]
- Isyatun, R.; Andina, S.; Hasudungan, E.M.; Zulfiadi, Z.; Cristina, A.S. Thermodynamic simulation and validation experiment of neodymium oxide reduction into metallic neodymium by metallothermic process. Indones. Min. J. 2018, 21, 21–34. [Google Scholar] [CrossRef]
- Anderson, A.; Mishra, B. Investigation of the Carbochlorination Process for Conversion of Cerium and Neodymium Oxides into Their Chlorides. J. Sustain. Met. 2015, 1, 189–198. [Google Scholar] [CrossRef]
- Meyer, G.; Ax, P. An analysis of the ammonium chloride route to anhydrous rare-earth metal chlorides. Mater. Res. Bull. 1982, 17, 1447–1455. [Google Scholar] [CrossRef]
- Brocchi, E.A.; Navarro, R.C.S.; Moura, F.J. A chemical thermodynamics review applied to V2O5 chlorination. Thermochim. Acta 2013, 559, 1–16. [Google Scholar] [CrossRef]
- Sofronov, V.; Ivanov, Z.; Makaseyev, Y.; Kostareva, T. Research of Dysprosium, Terbium and Neodymium Oxides Fluoration. Key Eng. Mater. 2016, 683, 345–352. [Google Scholar] [CrossRef]
- Osamu, Y.; Yasuo, T.; Ryoji, K.; Masahiro, F. Thermal decomposition and electrical conductivity of M(OH)3 and MOOH (M=Y, Lanthanide). Solid State Ion. 1985, 17, 107–114. [Google Scholar] [CrossRef]
- Anukorn, P.; Somchai, T.; Titipun, T. Template-free synthesis of neodymium hydroxide nanorods by microwave-assisted hydrothermal process, and of neodymiumoxide nanorods by thermal decomposition. Ceram. Int. 2012, 38, 4075–4079. [Google Scholar] [CrossRef]
- Sister, J.E.; Norman, O.S. Sublimation pressures of solid solutions III. NH4Cl+NH4Br. J. Chem. Thermodyn. 1971, 3, 531–538. [Google Scholar] [CrossRef]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.B.; Melançon, J.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
Crucible | Nd2O3 | NH4Cl | NdCl3 |
---|---|---|---|
MgO | Stable | 0~1000 | 0~1000 |
Al2O3 | Stable | 500 | 300 |
SiO2 | Stable | Stable | 700 |
No. | Apparatus | Gas Atmosphere | Product Form | Chlorination | Melting | Reactants [g] | |||
---|---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | Temp. [°C] | Time [min] | Nd2O3 | NH4Cl | ||||
1 | Horizontal furnace | Ar gas blowing | Powder | 400 | 240 | - | 5 | 7.4796 | |
2 | 9.0455 | ||||||||
3 | 19.2753 | ||||||||
4 | 120 | 7.4796 | |||||||
5 | 9.0455 | ||||||||
6 | 19.2753 | ||||||||
7 | Bulk | 400 | 120 | 760 | 1 | 5 | 7.4796 | ||
8 | 9.0455 | ||||||||
9 | 19.2753 | ||||||||
10 | 75 | 7.4796 | |||||||
11 | 9.0455 | ||||||||
12 | 19.2753 | ||||||||
13 | Glove box | O2: 16.05 ppm H2O: 0.01 ppm | Powder | 400 | 120 | - | 5 | 7.4796 |
Temp. [°C] | NH4Cl/Nd2O3 [mol/mol] | a(NdOCl) | ∆Grxn [kJ] | ∆Hrxn [kJ] | ∆Srxn [J] |
---|---|---|---|---|---|
400 | 9.41 | 1 | −908 | 1524 | 3027 |
400 | 11.38 | 0.5 | −1051 | 1927 | 3735 |
400 | 24.25 | 0.1 | −1965 | 4549 | 8308 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | d90 | d50 | d10 | Specific Surface Area [m2/g] |
---|---|---|---|---|---|---|
[μm] | [μm] | [μm] | ||||
Nd2O3 | - | - | 7.546 | 3.085 | 0.508 | 4.468 |
1 | 240 | 9.41 | 12.865 | 5.572 | 2.056 | 2.539 |
2 | 11.38 | 14.076 | 5.596 | 2.073 | 2.463 | |
3 | 24.25 | 48.433 | 6.828 | 2.443 | 2.023 | |
4 | 120 | 9.41 | 10.946 | 5.376 | 2.022 | 2.613 |
5 | 11.38 | 11.977 | 5.473 | 2.059 | 2.552 | |
6 | 24.25 | 18.001 | 6.210 | 2.305 | 2.203 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|---|---|
N | H | O | |||||
1 | 240 | 9.41 | 0.590 | 0.626 | 1.054 | 6.9401 | 0.158 |
2 | 11.38 | 0.560 | 0.599 | 0.795 | 7.0211 | 0.137 | |
3 | 24.25 | 0.620 | 0.516 | 0.808 | 7.3434 | 0.143 | |
4 | 120 | 9.41 | 0.610 | 0.692 | 1.119 | 7.1062 | 0.172 |
5 | 11.38 | 0.740 | 0.611 | 0.998 | 7.1146 | 0.167 | |
6 | 24.25 | 0.640 | 0.782 | 0.814 | 7.2812 | 0.163 |
No. | Chlorination | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | |
---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | |||||||
1 | 400 | 240 | 9.41 | 5 | 7.4796 | 7.4477 | 6.783 | 91.07 |
2 | 11.38 | 9.0455 | 6.884 | 92.43 | ||||
3 | 24.25 | 19.2753 | 7.201 | 96.68 | ||||
4 | 120 | 9.41 | 7.4796 | 6.934 | 93.10 | |||
5 | 11.38 | 9.0455 | 6.947 | 93.28 | ||||
6 | 24.25 | 19.2753 | 7.118 | 95.58 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|---|---|
N | H | O | |||||
7 | 120 | 9.41 | 0.540 | 0.696 | 0.932 | 7.0521 | 0.153 |
8 | 11.38 | 0.570 | 0.505 | 0.889 | 7.0733 | 0.139 | |
9 | 24.25 | 0.490 | 0.481 | 0.823 | 7.2932 | 0.131 | |
10 | 75 | 9.41 | 0.660 | 0.479 | 1.032 | 7.0753 | 0.154 |
11 | 11.38 | 0.650 | 0.555 | 1.073 | 7.1461 | 0.163 | |
12 | 24.25 | 0.630 | 0.522 | 0.803 | 7.2032 | 0.141 |
No. | Chlorination | Melting | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | ||
---|---|---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | Temp. [°C] | Time [min] | |||||||
7 | 400 | 120 | 760 | 1 | 9.41 | 5 | 7.4796 | 7.4477 | 6.899 | 92.64 |
8 | 11.38 | 9.0455 | 6.934 | 93.11 | ||||||
9 | 24.25 | 19.2753 | 7.162 | 96.17 | ||||||
10 | 75 | 9.41 | 7.4796 | 6.922 | 92.94 | |||||
11 | 11.38 | 9.0455 | 6.983 | 93.76 | ||||||
12 | 24.25 | 19.2753 | 7.062 | 94.83 |
No. | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|
N | H | O | |||
13 | 0.330 | 0.349 | 0.517 | 7.4364 | 0.089 |
No. | Chlorination | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | |
---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | |||||||
13 | 400 | 120 | 9.41 | 5 | 7.4796 | 7.4477 | 7.347 | 98.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-W.; Wang, J.-P. A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals 2024, 14, 480. https://doi.org/10.3390/min14050480
Yu J-W, Wang J-P. A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals. 2024; 14(5):480. https://doi.org/10.3390/min14050480
Chicago/Turabian StyleYu, Joo-Won, and Jei-Pil Wang. 2024. "A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride" Minerals 14, no. 5: 480. https://doi.org/10.3390/min14050480
APA StyleYu, J. -W., & Wang, J. -P. (2024). A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals, 14(5), 480. https://doi.org/10.3390/min14050480