Twinning Impact on the Structure and Hypotheses on the Growth Mechanism of Kermesite: Insights from Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source
2.2. Analytical Methods
3. Results
3.1. Chemical Composition
3.2. Crystal Structure Refinement
3.3. Microstructure of Kermesite Crystals
4. Discussion
4.1. The Influence of Twinning on Structural Analysis
4.2. Twinning Constraints on the Crystal Growth of Kermesite
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cairncross, B. Connoisseur’s Choice: Kermesite, Globe and Phoenix Mine, Kwekwe District, Zimbabwe. Rocks Miner. 2020, 95, 440–446. [Google Scholar] [CrossRef]
- Schoeller, W. Observations on the alteration products of stibnite. J. Mineral. Soc. 1941, 26, 94–96. [Google Scholar] [CrossRef]
- Baumgardt, E.M.; Kupcik, V. Synthesis of kermesite Sb2S2O. J. Cryst. Growth 1977, 37, 346–348. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Wang, Y.; Xu, J.; Ding, J.; Cai, J.; Huang, F.; Dai, H.; Liang, T.; Wang, D.; et al. Antimony Ore Volume; Geological Press House: Beijing, China, 2022; p. 30. [Google Scholar]
- Kaufmann, A.B.; Lazarov, M.; Weyer, S.; Stevko, M.; Kiefer, S.; Majzlan, J. Changes in antimony isotopic composition as a tracer of hydrothermal fluid evolution at the Sb deposits in Pezinok (Slovakia). Min. Depos. 2023, 59, 559–575. [Google Scholar] [CrossRef]
- Hybler, J.; Durovic, S. Kermesite, Sb2S2O: Crystal structure revision and order-disorder interpretation. Acta Crystallogr. B 2013, 69, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Sejkora, J.O.; Vitálo, J.T.; Čejka, J.Ď. Schafarzikite from the type locality Pernek (Male Karpaty Mountains, Slovak Republic) revisited. Eur. J. Miner. 2007, 19, 419–427. [Google Scholar] [CrossRef]
- Castroviejo, R. Kermesite (ker). In A Practical Guide to Ore Microscopy—Volume 1: Mineral Identification; Castroviejo, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 405–408. [Google Scholar]
- Bonazzi, P.; Menchetti, S.; Sabelli, C. Structure refinement of kermesite: Symmetry, twinning, and comparison with stibnite. Neues Jahrb. Mineral. Monatsh 1987, 12, 557–567. [Google Scholar]
- Kupčík, V. Die Kristallstruktur des Kermesits, Sb2S2O. Naturwissenschaften 1967, 54, 114. [Google Scholar] [CrossRef]
- Ďurovič, S.; Hybler, J. OD structures in crystallography—Basic concepts and suggestions for practice. Z. Krist.-Cryst. Mater. 2006, 221, 63–76. [Google Scholar] [CrossRef]
- Mindat. Available online: https://www.mindat.org/min-2187.html (accessed on 7 April 2024).
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Herbst-Irmer, R. Twinning. In Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL; Oxford University Press: Oxford, UK, 2006; pp. 106–149. [Google Scholar] [CrossRef]
- Palmer, D.C. Visualization and analysis of crystal structures using CrystalMaker software. Z. Für Krist.-Cryst. Mater. 2015, 230, 559–572. [Google Scholar] [CrossRef]
- Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Kharbish, S.; Libowitzky, E.; Beran, A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Miner. 2009, 21, 325–333. [Google Scholar] [CrossRef]
- Aquilano, D.; Bruno, M.; Rubbo, M.; Pastero, L.; Massaro, F.R. Twin Laws and Energy in Monoclinic Hydroxyapatite, Ca5(PO4)3(OH). Cryst. Growth Des. 2015, 15, 411–418. [Google Scholar] [CrossRef]
- Rubbo, M.; Bruno, M.; Massaro, F.R.; Aquilano, D. The Five Twin Laws of Gypsum (CaSO4·2H2O): A Theoretical Comparison of the Interfaces of the Penetration Twins. Cryst. Growth Des. 2012, 12, 3018–3024. [Google Scholar] [CrossRef]
- Rubbo, M.; Bruno, M.; Aquilano, D. The (100) Contact Twin of Gypsum. Cryst. Growth Des. 2011, 11, 2351–2357. [Google Scholar] [CrossRef]
- Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Parsons, S. Introduction to twinning. Acta Crystallogr. Sect. D 2003, 59, 1995–2003. [Google Scholar] [CrossRef]
- Palmer, D. SingleCrystal 4: Real-time multi-phase diffraction simulation. J. Appl. Crystallogr. 2020, 53, 860. [Google Scholar] [CrossRef]
A | B | C | |
---|---|---|---|
Data form Hybler and Durovic, 2013 [6] | Present study | ||
Localities | Perneck and Pezinok, Slovakia | Yunnan, China | |
Empirical formula | Sb2S2O | ||
Space group | P | ||
a(Å) | 8.1416 | 8.1372 | 8.153 |
b(Å) | 10.6968 | 10.7840 | 10.717 |
c(Å) | 5.7835 | 5.7840 | 5.796 |
α | 102.758° | 102.787° | 102.836° |
β | 110.657° | 110.606° | 110.556° |
γ | 101.02° | 100.983° | 100.999° |
Cell volume (Å3) | 439.23 | 439.24 | 441.84 |
Z | 4 | 4 | 4 |
Density (g/cm3) | 4.89 | 4.89 | 4.87 |
Crystal size (mm) | 0.03 × 0.03 × 0.63 | 0.01 × 0.07 × 0.95 | 0.16 × 0.08 × 0.05 |
Absorption coefficient (mm−1) | 13.056 | 13.056 | 12.979 |
Index ranges | −11 ≤ h ≤ 12, −16 ≤ k ≤16, −8 ≤ l ≤ 8 | −11 ≤ h ≤ 12, −16 ≤ k ≤16, −8 ≤ l ≤ 8 | −8 ≤ h ≤ 9, −13 ≤ k ≤ 6, −7 ≤ l ≤ 6 |
Independent reflections | 4465 | 4591 | 1580 |
Tmin, Tmax | 0.1091, 0.6671 | 0.0480, 0.7789 | 0.548, 0.746 |
Goodness-of-fit on F2 | 1.11 | 2.40 | 1.152 |
Final R indices [I > 2σ(I)] | R1 = 0.0216 wR2 = 0.0246 | R1 = 0.0301 wR2 = 0.0365 | R1 = 0.1000 wR2 = 0.2428 |
Final R indices (all data) | R1 = 0.0216 wR2 = 0.0247 | R1 = 0.0301 wR2 = 0.0366 | R1 = 0.1169 wR2 = 0.2531 |
Ratio of twin components | 0.9454:0.0546(4) | 0.5836:0.41464(8) | 0.726:0.274(6) |
No. | Co | Sb | Bi | Ag | S | Fe | Ni | As | Cu | Zn | O | Total | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.006 | 75.430 | 0.035 | 0.015 | 19.546 | 0 | 0 | 0.221 | 0 | 0 | 95.253 | ||||
2 | 0.008 | 75.317 | 0 | 0.006 | 19.643 | 0 | 0 | 0.236 | 0 | 0 | 95.240 | ||||
3 | 0 | 75.306 | 0 | 0 | 19.644 | 0.002 | 0 | 0.167 | 0 | 0.004 | 95.123 | ||||
4 | 0 | 75.023 | 0 | 0 | 19.604 | 0.023 | 0.001 | 0.222 | 0.004 | 0.027 | 94.904 | ||||
5 | 0 | 75.150 | 0 | 0 | 19.415 | 0 | 0 | 0.305 | 0 | 0.169 | 95.039 | ||||
6 | 0 | 74.838 | 0 | 0 | 19.397 | 0.004 | 0 | 0.182 | 0 | 0.039 | 94.480 | ||||
Average | 75.177 | 19.542 | 0.222 | 5.068 1 | 100.133 | ||||||||||
Standard Deviation | 0.219 | 0.111 | 0.048 | 0.289 | |||||||||||
Atom Weight | 121.750 | 32.064 | 74.922 | 15.999 | |||||||||||
Mole Fraction | 0.617 | 0.609 | 0.003 | 0.317 | |||||||||||
Structure Coefficient 2 | 2.03 | 2.00 | 1.04 | ||||||||||||
Measured Chemistry 3 | Sb2S1.97O1.03 |
Atom | x | y | z | U(eq) | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|---|---|---|---|
O1 | 0.0980(30) | 0.4320(20) | 0.4640(50) | 0.009(1) | 0.015 | 0.015 | 0.015 | 0.0046 | 0.006 | 0.0046 |
O2 | 0.4130(30) | 0.5720(20) | 0.5690(40) | 0.009(1) | 0.011 | 0.011 | 0.011 | 0.0033 | 0.005 | 0.0032 |
S1 | 0.1911(11) | 0.2966(8) | 0.9992(17) | 0.019(1) | 0.011 | 0.011 | 0.017 | −0.001 | 0.009 | 0.001 |
S2 | 0.2939(13) | 0.6945(8) | 0.0158(17) | 0.021(1) | 0.011 | 0.016 | 0.016 | 0.002 | 0.005 | 0.006 |
S3 | 0.0450(13) | 0.9097(8) | 0.7248(17) | 0.013(2) | 0.0134 | 0.0132 | 0.0138 | 0.0039 | 0.0054 | 0.0041 |
S4 | 0.4782(13) | 0.0892(8) | 0.2715(16) | 0.015(2) | 0.017 | 0.007 | 0.012 | −0.001 | 0.006 | 0.006 |
Sb1 | 0.3387(4) | 0.3702(2) | 0.4829(4) | 0.014(2) | 0.006 | 0.0077 | 0.0138 | 0.0008 | 0.0049 | 0.0041 |
Sb2 | 0.1671(4) | 0.6312(2) | 0.5358(4) | 0.012(2) | 0.0063 | 0.0077 | 0.013 | 0.0008 | 0.0046 | 0.0043 |
Sb3 | 0.1240(4) | 0.8563(4) | 0.1333(5) | 0.015(5) | 0.0085 | 0.027 | 0.0211 | 0.0053 | 0.007 | 0.0062 |
Sb4 | 0.3505(4) | 0.0869(4) | 0.8219(5) | 0.011(5) | 0.0134 | 0.0309 | 0.0248 | 0.0106 | 0.01 | 0.013 |
Atom–Atom | Distances (Å) | Atom–Atom–Atom | Angles | Atom–Atom–Atom | Angles |
---|---|---|---|---|---|
Sb(1)-O(1) | 2.160(3) | O(1) 1-Sb(2)-O(2) | 143.4(9)° | S(3)-Sb(3)-S(2) | 94.3(3)° |
Sb(1)-O(2) | 2.030(2) | O(1) 1-Sb(2)-S(2) | 87.3(7)° | S(3)-Sb(4)-S(4) 3 | 95.4(3)° |
Sb(1)-O(2) 2 | 2.150(2) | O(1)-Sb(1)-S(1) | 85.6(7)° | S(4)-Sb(4)-S(3) | 91.2(3)° |
Sb(2)-O(1) | 2.010(2) | O(1)-Sb(2)-O(1) 1 | 71.9(11)° | S(4)-Sb(4)-S(4) 3 | 86.6(3)° |
Sb(2)-O(1) 1 | 2.140(3) | O(1)-Sb(2)-O(2) | 73.3(9)° | Sb(1) 2-O(2)-Sb(2) | 141.1(11)° |
Sb(2)-O(2) | 2.170(2) | O(1)-Sb(2)-S(2) | 97.0(7)° | Sb(1)-O(2)-Sb(1) 2 | 107.2(10)° |
Sb(1)-S(1) | 2.493(9) | O(2) 2-Sb(1)-O(1) | 141.4(9)° | Sb(1)-O(2)-Sb(2) | 106.2(10)° |
Sb(2)-S(2) | 2.478(9) | O(2) 2-Sb(1)-S(1) | 84.0(6)° | Sb(1)-S(1)-Sb(3) 1 | 106.4(3)° |
Sb(3)-S(1) 1 | 2.515(9) | O(2)-Sb(1)-O(1) | 73.1(9)° | Sb(2) 1-O(1)-Sb(1) | 143.3(12)° |
Sb(3)-S(2) | 2.538(9) | O(2)-Sb(1)-O(2) 2 | 72.8(10)° | Sb(2)-O(1)-Sb(1) | 107.4(11)° |
Sb(3)-S(3) | 2.454(9) | O(2)-Sb(1)-S(1) | 101.4(7)° | Sb(2)-O(1)-Sb(2) 1 | 108.1(11)° |
Sb(4)-S(3) | 2.620(9) | O(2)-Sb(2)-S(2) | 86.0(6)° | Sb(2)-S(2)-Sb(3) | 102.9(3)° |
Sb(4)-S(4) | 2.435(9) | S(1) 1-Sb(3)-S(2) | 102.6(3)° | Sb(3)-S(3)-Sb(4) | 101.1(3)° |
Sb(4)-S(4) 3 | 2.624(9) | S(3)-Sb(3)-S(1) 1 | 94.3(3)° | Sb(4)-S(4)-Sb(4) 3 | 93.4(3)° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Wang, D.; Zhu, Z.; Li, W.; Wang, D.; Chen, Z.; Li, Y.; Ke, C. Twinning Impact on the Structure and Hypotheses on the Growth Mechanism of Kermesite: Insights from Yunnan, China. Minerals 2024, 14, 505. https://doi.org/10.3390/min14050505
Yu H, Wang D, Zhu Z, Li W, Wang D, Chen Z, Li Y, Ke C. Twinning Impact on the Structure and Hypotheses on the Growth Mechanism of Kermesite: Insights from Yunnan, China. Minerals. 2024; 14(5):505. https://doi.org/10.3390/min14050505
Chicago/Turabian StyleYu, Hong, Denghong Wang, Zeying Zhu, Wenyuan Li, Dong Wang, Zhenyu Chen, Yike Li, and Changhui Ke. 2024. "Twinning Impact on the Structure and Hypotheses on the Growth Mechanism of Kermesite: Insights from Yunnan, China" Minerals 14, no. 5: 505. https://doi.org/10.3390/min14050505
APA StyleYu, H., Wang, D., Zhu, Z., Li, W., Wang, D., Chen, Z., Li, Y., & Ke, C. (2024). Twinning Impact on the Structure and Hypotheses on the Growth Mechanism of Kermesite: Insights from Yunnan, China. Minerals, 14(5), 505. https://doi.org/10.3390/min14050505