Monitoring the Geopolymerization Reaction of Geopolymer Foams Using 29Si and 27Al MAS NMR
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Monitoring of Geopolymer foam Geopolymerization Using 27Al MAS NMR
3.2. Monitoring of the Geopolymerization Process of Geopolymer Foam Using 29Si MAS-NMR
3.3. Scanning Electron Microscopy
3.4. Foaming Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Vesely, M.; Garrido, P.; Palma, S. State of the Art of Geopolymers: A Review. E-Polym. 2022, 22, 108–124. [Google Scholar] [CrossRef]
- Kobera, L.; Brus, J.; Klein, P.; Dedecek, J.; Urbanova, M. Biaxial Q-Shearing of 27Al 3QMAS NMR Spectra: Insight into the Structural Disorder of Framework Aluminosilicates. Solid State Nucl. Magn. Reson. 2014, 57–58, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Brus, J.; Abbrent, S.; Kobera, L.; Urbanova, M.; Cuba, P. Advances in 27Al MAS NMR Studies of Geopolymers. In Annual Reports on NMR Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 88, pp. 79–147. ISBN 978-0-12-804713-2. [Google Scholar]
- Gupta, R.; Tomar, A.S.; Mishra, D.; Sanghi, S.K. Multinuclear MAS NMR Characterization of Fly-Ash-Based Advanced Sodium Aluminosilicate Geopolymer: Exploring Solid-State Reactions. ChemistrySelect 2020, 5, 4920–4927. [Google Scholar] [CrossRef]
- Engelhardt, G.; Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Schneider, J.; Mastelaro, V.R.; Panepucci, H.; Zanotto, E.D. 29Si MAS–NMR Studies of Qn Structural Units in Metasilicate Glasses and Their Nucleating Ability. J. Non Cryst. Solids 2000, 273, 8–18. [Google Scholar] [CrossRef]
- Stebbins, J.F.; Xue, X. NMR Spectroscopy of Inorganic Earth Materials. Rev. Mineral. Geochem. 2014, 78, 605–653. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. 29Si NMR Study of Structural Ordering in Aluminosilicate Geopolymer Gels. Langmuir 2005, 21, 3028–3036. [Google Scholar] [CrossRef]
- Chen, X.; Sutrisno, A.; Struble, L.J. Effects of Calcium on Setting Mechanism of Metakaolin-Based Geopolymer. J. Am. Ceram. Soc. 2018, 101, 957–968. [Google Scholar] [CrossRef]
- Yasmin, T.; Müller, K. Synthesis and Surface Modification of Mesoporous Mcm-41 Silica Materials. J. Chromatogr. A 2010, 1217, 3362–3374. [Google Scholar] [CrossRef]
- Greiser, S.; Hunger, M.; Jäger, C. 29Si{27Al} TRAPDOR MAS NMR to Distinguish Qn(mAl) Sites in Aluminosilicates. Test Case: Faujasite-Type Zeolites. Solid State Nucl. Magn. Reson. 2016, 79, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Walkley, B.; Provis, J.L. Solid-State Nuclear Magnetic Resonance Spectroscopy of Cements. Mater. Today Adv. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Gupta, R.; Mishra, D.; Mudgal, M.; Amritphale, S.S. 27Al NMR MAS Spectral Studies Inferring the Initiation of Geopolymerization Reaction on Together Mechanochemical Grinding of Raw Materials. J. Chin. Chem. Soc. 2018, 65, 485–489. [Google Scholar] [CrossRef]
- Palomo, Á.; Alonso, S.; Fernandez-Jiménez, A.; Sobrados, I.; Sanz, J. Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. J. Am. Ceram. Soc. 2004, 87, 1141–1145. [Google Scholar] [CrossRef]
- Oestrike, R.; Yang, W.; Kirkpatrick, R.J.; Hervig, R.L.; Navrotsky, A.; Montez, B. High-Resolution 23Na, 27Al and 29Si NMR Spectroscopy of Framework Aluminosilicate Glasses. Geochim. Cosmochim. Acta 1987, 51, 2199–2209. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Smith, M.E. Multinuclear Solid-State NMR of Inorganic Materials; Pergamon: Oxford, UK; New York, NY, USA, 2002; ISBN 978-0-08-043787-3. [Google Scholar]
- Lippmaa, E.; Maegi, M.; Samoson, A.; Tarmak, M.; Engelhardt, G. Investigation of the Structure of Zeolites by Solid-State High-Resolution Silicon-29 NMR Spectroscopy. J. Am. Chem. Soc. 1981, 103, 4992–4996. [Google Scholar] [CrossRef]
- Palomo, A.; Macias, A.; Blanco, M.T.; Puertas, F. Physical, Chemical and Mechanical Characterization of Geopolymers. In Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi, India, 29 October 1992; Volume 5, pp. 505–511. [Google Scholar]
- Singh, P.S.; Bastow, T.; Trigg, M. Structural Studies of Geopolymers by 29Si and 27Al MAS-NMR. J. Mater. Sci. 2005, 40, 3951–3961. [Google Scholar] [CrossRef]
- Buchwald, A.; Zellmann, H.-D.; Kaps, C. Condensation of Aluminosilicate Gels—Model System for Geopolymer Binders. J. Non-Cryst. Solids 2011, 357, 1376–1382. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer Foam Concrete: An Emerging Material for Sustainable Construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Papa, E.; Landi, E.; Miccio, F.; Medri, V. K2O-Metakaolin-Based Geopolymer Foams: Production, Porosity Characterization and Permeability Test. Materials 2022, 15, 1008. [Google Scholar] [CrossRef] [PubMed]
- Weng, A.; Wan, X.; Hu, J.; Zhang, S.; Han, S.; Du, Z.; Chen, D.; Zhao, Y. Study of the Control and Influence of Humidity on the Mechanical and Structural Properties of Geopolymer Foam Composites Based on Fly Ash and Wood Flour. Mater. Lett. 2024, 365, 136443. [Google Scholar] [CrossRef]
- Chi, H.L.; Hájková, P.; Le Van, S.; Louda, P.; Voleský, L. Water Absorption Properties of Geopolymer Foam after Being Impregnated with Hydrophobic Agents. Materials 2019, 12, 4162. [Google Scholar] [CrossRef] [PubMed]
- Hajimohammadi, A.; Ngo, T.; Mendis, P. How Does Aluminium Foaming Agent Impact the Geopolymer Formation Mechanism? Cem. Concr. Compos. 2017, 80, 277–286. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Mendis, P.; Sanjayan, J. Regulating the Chemical Foaming Reaction to Control the Porosity of Geopolymer Foams. Mater. Des. 2017, 120, 255–265. [Google Scholar] [CrossRef]
- Moutaoukil, G.; Sobrados, I.; Alehyen, S.; Taibi, M. Understanding the Thermomechanical Behavior of Geopolymer Foams: Influence of Rate and Type of Foaming Agent and Stabilizer. Chem. Data Collect. 2024, 50, 101111. [Google Scholar] [CrossRef]
- ASTM C618; Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Moutaoukil, G.; Alehyen, S.; Sobrados, I.; El Mahdi Safhi, A. Effects of Elevated Temperature and Activation Solution Content on Microstructural and Mechanical Properties of Fly Ash-Based Geopolymer. KSCE J. Civ. Eng. 2023, 27, 2372–2384. [Google Scholar] [CrossRef]
- Wattanasiriwech, D.; Yomthong, K.; Wattanasiriwech, S. Characterisation and Properties of Class C-Fly Ash Based Geopolymer Foams: Effects of Foaming Agent Content, Aggregates, and Surfactant. Constr. Build. Mater. 2021, 306, 124847. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; van Riessen, A. A Comparison between Different Foaming Methods for the Synthesis of Light Weight Geopolymers. Ceram. Int. 2014, 40, 13891–13902. [Google Scholar] [CrossRef]
- Moutaoukil, G.; Alehyen, S.; Sobrados, I.; Fadil, M.; Taibi, M. Optimization of Compressive Strength of Fly Ash-Based Geopolymers Using Central Composite Design. Bull. Mater. Sci. 2021, 44, 138. [Google Scholar] [CrossRef]
- Moutaoukil, G.; Alehyen, S.; Sobrados, I.; Fadil, M.; Taibi, M. Effects of Temperature, Time and Alkaline Solution Content on the Mechanical Properties of Class C Fly Ash-Based Geopolymer Using Taguchi Method. Moroc. J. Chem. 2023, 11, 11–76. [Google Scholar] [CrossRef]
- Moutaoukil, G.; Alehyen, S.; Sobrados, I.; Taibi, M. Microstructural and 29Si and 27Al MAS NMR Spectroscopic Evaluations of Alkali Cation and Curing Effects on Class C Fly Ash-Based Geopolymer. Chem. Data Collect. 2022, 41, 100898. [Google Scholar] [CrossRef]
- Moutaoukil, G.; Sobrados, I.; Alehyen, S. Study of Thermomechanical Properties of Foamed and Unfoamed Fly Ash-Based Geopolymer Using FT Raman Spectroscopy and 29Si MAS NMR. Mater. Lett. 2023, 330, 133261. [Google Scholar] [CrossRef]
- Glid, M.; Sobrados, I.; Rhaiem, H.B.; Sanz, J.; Amara, A.B.H. Alkaline Activation of Metakaolinite-Silica Mixtures: Role of Dissolved Silica Concentration on the Formation of Geopolymers. Ceram. Int. 2017, 43, 12641–12650. [Google Scholar] [CrossRef]
- Criado Sanz, M. Nuevos Materiales Cementantes Basados en la Activación Alcalina de Cenizas Volantes: Caracterización de geles N-A-S-H en Función del Contenido de Sílice Soluble: Efecto Del Na2SO4. Ph.D. Thesis, Universidad Autonoma de Madrid, Madrid, Spain, 2007. [Google Scholar]
- Lutz, W.; Heidemann, D.; Hübert, C.; Wieker, W. Contribution of Silica Gels to Superimposed 29Si MAS NMR Spectra of Y Zeolites Dealuminated by Steaming. Z. Für Anorg. Allg. Chem. 2001, 627, 2559–2564. [Google Scholar] [CrossRef]
- Park, S.-M.; Jang, J.-G.; Chae, S.-A.; Lee, H.-K. An NMR Spectroscopic Investigation of Aluminosilicate Gel in Alkali-Activated Fly Ash in a CO2-Rich Environment. Materials 2016, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. The Role Played by the Reactive Alumina Content in the Alkaline Activation of Fly Ashes. Microporous Mesoporous Mater. 2006, 91, 111–119. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, M. Multiscale Micromechanical Analysis of Alkali-Activated Fly Ash-Slag Paste. Cem. Concr. Res. 2020, 135, 106141. [Google Scholar] [CrossRef]
- Fernandezjimenez, A.; Delatorre, A.; Palomo, A.; Lopezolmo, G.; Alonso, M.; Aranda, M. Quantitative Determination of Phases in the Alkali Activation of Fly Ash. Part I. Potential Ash Reactivity. Fuel 2006, 85, 625–634. [Google Scholar] [CrossRef]
- Criado, M.; Aperador, W.; Sobrados, I. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials. Materials 2016, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali Activation of Fly Ash: Effect of the SiO2/Na2O Ratio. Microporous Mesoporous Mater. 2007, 106, 180–191. [Google Scholar] [CrossRef]
- Jeon, D.; Jun, Y.; Jeong, Y.; Oh, J.E. Microstructural and Strength Improvements through the Use of Na2CO3 in a Cementless Ca(OH)2-Activated Class F Fly Ash System. Cem. Concr. Res. 2015, 67, 215–225. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, H.K. Effect of Fly Ash Characteristics on Delayed High-Strength Development of Geopolymers. Constr. Build. Mater. 2016, 102, 260–269. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Weng, L. Dissolution Processes, Hydrolysis and Condensation Reactions during Geopolymer Synthesis: Part II. High Si/Al Ratio Systems. J. Mater. Sci. 2007, 42, 3007–3014. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening Evolution of Geopolymers from Setting to Equilibrium: A Review. Cem. Concr. Compos. 2020, 114, 103729. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C. Influence of Preheating of Fly Ash Precursors to Produce Geopolymers. J. Am. Ceram. Soc. 2017, 100, 3165–3174. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.C.; Labrincha, J.A. Geopolymer Foams: An Overview of Recent Advancements. Prog. Mater. Sci. 2019, 109, 100621. [Google Scholar] [CrossRef]
- Ariffin, N.; Abdullah, M.M.A.B.; Postawa, P.; Zamree Abd Rahim, S.; Mohd Arif Zainol, M.R.R.; Putra Jaya, R.; Śliwa, A.; Omar, M.F.; Wysłocki, J.J.; Błoch, K.; et al. Effect of Aluminium Powder on Kaolin-Based Geopolymer Characteristic and Removal of Cu2+. Materials 2021, 14, 814. [Google Scholar] [CrossRef] [PubMed]
- Boros, A.; Korim, T. Development of Geopolymer Foams for Multifunctional Applications. Crystals 2022, 12, 386. [Google Scholar] [CrossRef]
- Stochero, N.P.; de Souza Chami, J.O.R.; Souza, M.T.; de Moraes, E.G.; de Oliveira, A.P.N. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass Valorization 2021, 12, 1609–1620. [Google Scholar] [CrossRef]
- Kim, T.; Kang, C.; Seo, K. Development and Characteristics of Aerated Alkali-Activated Slag Cement Mixed with Zinc Powder. Materials 2021, 14, 6293. [Google Scholar] [CrossRef] [PubMed]
Oxides | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | Na2O | TiO2 | SO3 | MgO | Others |
---|---|---|---|---|---|---|---|---|---|---|
% | 52.5 | 30.2 | 2.94 | 0.82 | 2.08 | 0.72 | 1.03 | 0.79 | 1.23 | 0.45 |
LOI = 7.12 |
FA | NaOH | Na2SiO4 | Water | Foaming Agent | Stabilizing | |
---|---|---|---|---|---|---|
GF-Al1 | 61.05% | 6.98% | 17.44% | 14.53% | Al powder (0.1%) | 0.1% |
GF-Z1 | 61.05% | 6.98% | 17.44% | 14.53% | Zinc Powder (0.1%) | 0.1% |
GF-H1 | 61.05% | 6.98% | 17.44% | 14.53% | Hydrogen peroxide (1%) | 0.1% |
AlT | AlO | |||
---|---|---|---|---|
GF-Al1-6 days | d (ppm) | 62.20 | 57.25 | −3 |
% | 38.55 | 58.51 | 2.93 | |
GF-Al1-10 days | d (ppm) | 60.93 | 47.0 | −3.0 |
% | 61.68 | 33.62 | 4.70 | |
GF-Al1-15 days | d (ppm) | 61.02 | 50.00 | −3.0 |
% | 66.40 | 30.03 | 3.57 | |
GF-Al1-28 days | d (ppm) | 60.04 | 46.01 | −3.0 |
% | 74.05 | 20.41 | 5.55 | |
GF-H1-6 days | d (ppm) | 60.00 | 42.75 | −2.64 |
% | 56.58 | 36.43 | 6.99 | |
GF-H1-10 days | d (ppm) | 60.51 | 43.94 | −2.45 |
% | 65.18 | 29.40 | 5.42 | |
GF-H1-15 days | d (ppm) | 60.62 | 43.00 | −2.61 |
% | 77.08 | 15.50 | 7.42 | |
GF-H1-28 days | d (ppm) | 59.73 | 43.80 | −3.00 |
% | 72.19 | 20.59 | 7.22 | |
GF-Z1-6days | d (ppm) | 63.32 | 48.00 | −3.00 |
% | 55.77 | 36.27 | 7.96 | |
GF-Z1-10 days | d (ppm) | 62.81 | 46.19 | −3.00 |
% | 56.74 | 36.39 | 6.87 | |
GF-Z1-15 days | d (ppm) | 60.74 | 44.37 | −3.00 |
% | 60.37 | 31.02 | 8.61 | |
GF-Z1-28 days | d (ppm) | 60.16 | 45.58 | −3.00 |
% | 65.93 | 29.09 | 4.97 |
Q0 | Q1 | Q2 | Q3(1Al) and Q4(4Al) | Q3 and Q4(3Al) | Q4(2Al) | Q4(1Al) | Q4(0Al) | Remnant SiO2 | Remnant FA | ||
---|---|---|---|---|---|---|---|---|---|---|---|
GF-Al1-10 days | δ (ppm) | −70.63 | −78.65 | −86.14 | −93.34 | −98.67 | −104.63 | −109.24 | −114.99 | −122.98 | |
% | 8.77 | 12.56 | 15.13 | 8.91 | 9.17 | 13.79 | 14.27 | 10.88 | 6.52 | ||
GF-Al1-15 days | δ (ppm) | −71.96 | −79.36 | −85.81 | −91.40 | −96.25 | −100.80 | −105.40 | −109.25 | −113.52 | −117.25 |
% | 5.67 | 11.16 | 19.46 | 8.78 | 8.52 | 11.36 | 11.66 | 12.99 | 5.65 | 4.75 | |
GF-Al1-28 days | δ (ppm) | −70.46 | −78.99 | −85.68 | −91.40 | −96.86 | −100.80 | −104.90 | −109.25 | −113.38 | −120.04 |
% | 6.87 | 11.14 | 23.98 | 9.44 | 9.86 | 5.99 | 11.22 | 9.98 | 7.84 | 3.66 | |
GF-H1-10 days | δ (ppm) | −72.37 | −80.58 | −87.67 | −93.34 | −98.67 | −102.87 | −109.24 | −116.17 | −125.86 | |
% | 4.61 | 8.68 | 14.85 | 7.66 | 8.26 | 16.84 | 20.60 | 13.02 | 5.48 | ||
GF-H1-15 days | δ (ppm) | −71.16 | −79.37 | −86.64 | −94.02 | −99.49 | −105.59 | −111.75 | −118.0 | −125.77 | |
% | 5.32 | 12.95 | 18.34 | 10.39 | 12.48 | 16.43 | 14.16 | 6.25 | 3.69 | ||
GF-H1-28 days | δ (ppm) | −71.34 | −79.34 | −85.79 | −91.40 | −95.26 | −100.80 | −105.33 | −109.25 | −112.91 | −120.24 |
% | 5.75 | 11.71 | 19.62 | 7.22 | 11.98 | 11.98 | 11.74 | 8.14 | 10.13 | 4.85 | |
GF-Z1-10 days | δ (ppm) | −66.83 | −77.91 | −83.58 | −89.52 | −94.43 | −100.43 | −106.08 | −111.25 | −117.47 | −126.72 |
% | 4.44 | 8.09 | 8.05 | 7.26 | 10.22 | 17.11 | 17.65 | 14.44 | 9.77 | 2.97 | |
GF-Z1-15 days | δ (ppm) | −71.38 | −79.49 | −86.64 | −92.21 | −97.10 | −102.51 | −107.58 | −112.68 | −117.91 | −123.15 |
% | 5.47 | 9.96 | 12.23 | 8.92 | 12.19 | 14.00 | 19.31 | 10.39 | 4.31 | 3.23 | |
GF-Z1-28 days | δ (ppm) | −71.29 | −79.04 | −85.61 | −91.40 | −96.46 | −100.80 | −105.12 | −109.25 | −113.67 | −119.79 |
% | 6.90 | 13.01 | 17.39 | 8.96 | 8.45 | 9.76 | 10.06 | 11.64 | 9.27 | 4.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutaoukil, G.; Sobrados, I.; Alehyen, S.; Taibi, M. Monitoring the Geopolymerization Reaction of Geopolymer Foams Using 29Si and 27Al MAS NMR. Minerals 2024, 14, 516. https://doi.org/10.3390/min14050516
Moutaoukil G, Sobrados I, Alehyen S, Taibi M. Monitoring the Geopolymerization Reaction of Geopolymer Foams Using 29Si and 27Al MAS NMR. Minerals. 2024; 14(5):516. https://doi.org/10.3390/min14050516
Chicago/Turabian StyleMoutaoukil, Ghizlane, Isabel Sobrados, Saliha Alehyen, and M’hamed Taibi. 2024. "Monitoring the Geopolymerization Reaction of Geopolymer Foams Using 29Si and 27Al MAS NMR" Minerals 14, no. 5: 516. https://doi.org/10.3390/min14050516
APA StyleMoutaoukil, G., Sobrados, I., Alehyen, S., & Taibi, M. (2024). Monitoring the Geopolymerization Reaction of Geopolymer Foams Using 29Si and 27Al MAS NMR. Minerals, 14(5), 516. https://doi.org/10.3390/min14050516