Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud
Abstract
:1. Introduction
2. The Utilization of Red Mud in Various Applications
3. Potential of Metal Contents Present in Red Mud and Their Importance
Importance of Rare-Earth Metals and Their Scarcity
4. REE Extraction from Red Mud and Sustainability
4.1. Hydrometallurgical Recovery of REEs from Red Mud
4.1.1. Extraction of Scandium from Red Mud
4.1.2. Extraction of Scandium in Presence of Iron from Red Mud
4.1.3. Extraction of Other Rare-Earth Metals from Red Mud
4.2. Biometallurgical Recovery of Rare-Earth Metals from Red Mud
5. Recommendation and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1–2, 100007. [Google Scholar] [CrossRef]
- Jouhara, H.; Olabi, A.G. Editorial: Industrial waste heat recovery. Energy 2018, 160, 1–2. [Google Scholar] [CrossRef]
- Rahman, R.; Upadhyaya, H. Aluminium toxicity and its tolerance in plant: A review. J. Plant Biol. 2021, 64, 101–121. [Google Scholar] [CrossRef]
- Perchard, A. The “Age of Aluminium” Out of Acorns Grow Big Trees. Alum. Int. Today 2017, 30, 43–46. Available online: https://search.proquest.com/openview/02c39ff2f434ad061c09c6bd5e53131e/1?pq-origsite=gscholar&cbl=1056345 (accessed on 12 April 2023).
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Granata, G.; Misailidis, N.; Gama, R.; Petrides, D. Primary Aluminum (Aluminium) Production Bayer and Hall-Heroult Process, Process Modeling and Cost Analysis by Simulation, Design, and Scheduling Tools For the Process Manufacturing Industries; Intelligen Inc.: Freehold, NJ, USA, 2021; pp. 1–17. [Google Scholar]
- European Aluminium; CRU Group and PricewaterhouseCoopers GmbH (PwC). A vision for Strategic, low carbon and competitive aluminium. In European Aluminium Vision 2050; European Aluminium: Brussels, Belgium, 2019; pp. 1–47. Available online: https://european-aluminium.eu/wp-content/uploads/2022/10/sample_vision-2050-low-carbon-strategy_20190401.pdf (accessed on 12 April 2023).
- De Silva, H.I. Recovery of Desilication Product in Alumina Industry. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2013. [Google Scholar]
- Agrawal, S.; Dhawan, N. Evaluation of red mud as a polymetallic source—A review. Miner. Eng. 2021, 171, 107084. [Google Scholar] [CrossRef]
- Arıkan, H.; Demir, G.K.; Vural, S. Investigation of lime usage impacts on bauxite processability at ETI Aluminyum Plant. Int. J. Ind. Chem. 2019, 10, 57–66. [Google Scholar] [CrossRef]
- Available online: https://www.etialuminyum.com/urunler/ (accessed on 12 April 2023).
- Svobodova-Sedlackova, A.; Calderón, A.; Fernandez, A.I.; Chimenos, J.M.; Berlanga, C.; Yücel, O.; Barreneche, C.; Rodriguez, R. Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon 2024, 10, e24943. [Google Scholar] [CrossRef]
- Eray, S.; Keskinkilic, E.; Topkaya, Y.A.; Geveci, A. Recovery of Iron from Turkish and Iranian Red Muds. JOM 2022, 74, 456–464. [Google Scholar] [CrossRef]
- Chen, R.; Shi, L.; Huang, H.; Yuan, J. Extraction of Iron and Alumina from Red Mud with a Non-Harmful Magnetization Sintering Process. Minerals 2023, 13, 452. [Google Scholar] [CrossRef]
- Deady, É.A.; Mouchos, E.; Goodenough, K.; Williamson, B.J.; Wall, F. A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral. Mag. 2016, 80, 43–61. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T.; Zhang, B.; Chao, X. Research on Bayer Red Mud Slurry Electrolysis. Bull. Environ. Contam. Toxicol. 2022, 109, 101–109. [Google Scholar] [CrossRef]
- Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar]
- Swain, B.; Akcil, A.; Lee, J. Red mud valorization an industrial waste circular economy challenge; review over processes and their chemistry. Crit. Rev. Environ. Sci. Technol. 2022, 52, 520–570. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, K.K.; Pandey, B.D. Solid waste management in non-ferrous industries in India. Resour. Conserv. Recycl. 2004, 42, 99–120. [Google Scholar] [CrossRef]
- Paramguru, R.K.; Rath, P.C.; Misra, V.N. Trends in red mud utilization—A review. Miner. Process. Extr. 2004, 26, 1–29. [Google Scholar] [CrossRef]
- Thakur, R.S.; Das, S.N. Red Mud: Analysis and Utilisation; Publications & Information Directorate: New Delhi, India, 1994. [Google Scholar]
- Ghosh, P.K. Utilization of Red Mud and Pond Ash for Construction of Embankments. Ph.D. Thesis, National Institute of Technology, Rourkela, Odisha, India, 2009. [Google Scholar]
- Samal, S.; Ray, A.K.; Bandopadhyay, A. Proposal for resources, utilization and processes of red mud in India—A review. Int. J. Miner. Process. 2013, 118, 43–55. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X. Applications of red mud as an environmental remediation material: A review. J. Hazard. Mater. 2021, 408, 124420. [Google Scholar] [CrossRef]
- Jayasankar, K.; Ray, P.K.; Chaubey, A.K.; Padhi, A.; Satapathy, B.K.; Mukherjee, P.S. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 2012, 19, 679–684. [Google Scholar] [CrossRef]
- Pradhan, J.; Das, S.N.; Das, J.; Rao, S.B.; Thakur, R.S. Characterization of Indian red Muds and Recovery of Their Metal Values (No. CONF-960202-); The Minerals, Metals and Materials Society: Warrendale, PA, USA, 1996. [Google Scholar]
- Wang, S.; Ang, H.M.; Tadé, M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 2008, 72, 1621–1635. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef]
- Wang, L.; Hu, G.; Lyu, F.; Yue, T.; Tang, H.; Han, H.; Sun, W. Application of red mud in wastewater treatment. Minerals 2019, 9, 281. [Google Scholar] [CrossRef]
- Shrivastava, B.K.; Vani, A. Comparative study of defluoridation technologies in India. Asian J. Exp. Sci. 2009, 23, 269–274. [Google Scholar]
- Namasivayam, C.; Yamuna, R.T.; Arasi, D.J.S.E. Removal of procion orange from wastewater by adsorption on waste red mud. Sep. Sci. Technol. 2002, 37, 2421–2431. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K. Removal of chlorophenols from wastewater using red mud: An aluminum industry waste. Environ. Sci. Technol. 2004, 38, 4012–4018. [Google Scholar] [CrossRef]
- Khattri, S.D.; Singh, M.K. Adsorption of Basic Dyes from Aqueous Solution by Natural Adsorbent; NISCAIR-CSIR: New Delhi, India, 1999. [Google Scholar]
- Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z.H. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 2005, 39, 129–138. [Google Scholar] [CrossRef]
- Çengeloğlu, Y.; Kır, E.; Ersöz, M. Removal of fluoride from aqueous solution by using red mud. Sep. Purif. Technol. 2002, 28, 81–86. [Google Scholar] [CrossRef]
- Pulford, I.D.; Hargreaves, J.S.J.; Ďurišová, J.; Kramulova, B.; Girard, C.; Balakrishnan, M.; Batra, V.S.; Rico, J.L. Carbonised red mud—A new water treatment product made from a waste material. J. Environ. Manag. 2012, 100, 59–64. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Nimje, M.T.; Kutumbarao, V.V. Conversion of aluminium industry wastes into glass-ceramic products. In Recycling of Metals and Engineered Materials; The Minerals, Metals and Materials Society: Warrendale, PA, USA, 2000. [Google Scholar]
- Chen, X.; Lu, A.; Qu, G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int. 2013, 39, 1923–1929. [Google Scholar] [CrossRef]
- Liu, T.; Tang, Y.; Li, Z.; Wu, T.; Lu, A. Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent. Mater. Lett. 2016, 183, 362–364. [Google Scholar] [CrossRef]
- Mahata, T.; Prakash, D.; Sharma, B.P.; Nair, S.R. Formation of aluminum titanate-mullite composite from bauxite red mud. Metall. Mater. Trans. B 2000, 31, 551–553. [Google Scholar] [CrossRef]
- Satapathy, A.; Mishra, S.C.; Ananthapadmanabhan, P.V.; Sreekumar, K.P. Development of ceramic coatings using redmud-a solid waste of alumina plants. J. Solid Waste Technol. Manag. 2007, 33, 48–53. [Google Scholar]
- Sahoo, K.C.; Pant, A. Preparation of iron ore for use in iron and steel making. SGAT Bull. 2002, 3, 43–51. [Google Scholar]
- Dimis, D.D.; Giannopoulou, I.P.; Panias, D. Utilization of alumina red mud for synthesis of inorganic polymeric materials. Miner. Process. Extr. Metall. Rev. 2009, 30, 211–239. [Google Scholar] [CrossRef]
- Sushil, S.; Batra, V.S. Catalytic applications of red mud, an aluminium industry waste: A review. Appl. Catal. B Environ. 2008, 81, 64–77. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Zheng, G.; Xia, T. Effects of red mud on cadmium uptake and accumulation by rice and chemical changes in rhizospheres by rhizobox method. Minerals 2022, 12, 929. [Google Scholar] [CrossRef]
- Karimipour, A.; Jahangir, H.; Eidgahee, D.R. A thorough study on the effect of red mud, granite, limestone and marble slurry powder on the strengths of steel fibres-reinforced self-consolidation concrete: Experimental and numerical prediction. J. Build. Eng. 2021, 44, 103398. [Google Scholar] [CrossRef]
- Akcil, A.; Akhmadiyeva, N.; Abdulvaliyev, R.; Abhilash Meshram, P. Overview on Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium. Miner. Process. Extr. Metall. Rev. 2018, 39, 145–151. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Panda, S.; Costa, R.B.; Shah, S.S.; Mishra, S.; Bevilaqua, D.; Akcil, A. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)—A review. Resour. Conserv. Recycl. 2021, 171, 105645. [Google Scholar] [CrossRef]
- Radusinović, S.; Papadopoulos, A. The potential for REE and associated critical metals in karstic bauxites and bauxite residue of Montenegro. Minerals 2021, 11, 975. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef]
- Duchna, M.; Cieślik, I. Rare Earth Elements in New Advanced Engineering Applications. In Rare Earth Elements—Emerging Advances, Technology Utilization, and Resource Procurement; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Long, K.R.; Gosen BS, V.; Foley, N.K.; Cordier, D. The principal rare earth elements deposits of the United States: A summary of domestic deposits and a global perspective. In Non-Renewable Resource Issues; Springer: Dordrecht, The Netherlands, 2012; pp. 131–155. [Google Scholar]
- Jyothi, R.K.; Thenepalli, T.; Ahn, J.W.; Parhi, P.K.; Chung, K.W.; Lee, J.Y. Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. J. Clean. Prod. 2020, 267, 122048. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Ferron, C.J.; Henry, P. A review of the recycling of rare earth metals. Can. Metall. Q. 2015, 54, 388–394. [Google Scholar] [CrossRef]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Yuksekdag, A.; Kose-Mutlu, B.; Siddiqui, A.F.; Wiesner, M.R.; Koyuncu, I. A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework—A review. Chemosphere 2022, 293, 133620. [Google Scholar] [CrossRef]
- Balaram, V. Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals 2023, 13, 425. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016, 23, 1120–1132. [Google Scholar] [CrossRef]
- Kinnaird, J.A.; Nex, P.A.M. Critical raw materials. In Routledge Handbook of the Extractive Industries and Sustainable Development; Routledge: Abingdon, UK, 2022; pp. 13–33. [Google Scholar]
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report, Publications Office of the European Union. 2023. Available online: https://data.europa.eu/doi/10.2873/725585 (accessed on 12 April 2023).
- Pangsy-Kania, S.; Flouros, F. Rare Earth Elements as A Huge Economic Challenge For The Future of Green Economy. In Proceedings of the 40th International Business Information Management Association Conference, Virtual, 23–24 November 2022. [Google Scholar]
- U.S. Geological Survey. Mineral commodity summaries 2020. In U.S Department of The Interior, U.S Geological Survey; Issue 703; U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2022. In Angewandte Chemie International Edition; Issue 703; U.S. Geological Survey: Reston, VA, USA, 2022; Volume 6, pp. 951–952. [Google Scholar]
- Akcil, A.; Ibrahim, Y.A.; Meshram, P.; Panda, S.; Abhilash. Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: A review. J. Chem. Technol. Biotechnol. 2021, 96, 1785–1797. [Google Scholar] [CrossRef]
- Wautelet, T. The concept of circular economy: Its origins and its evolution. Res. Gate 2018, Forthcoming. [Google Scholar] [CrossRef]
- Pličanič, S.; Mladenović, A.; Pranjić, A.M.; Vrhovnik, P. Mining waste in circular economy–legislative aspect. Geol. Maced. 2020, 34, 149–156. [Google Scholar] [CrossRef]
- Pan, X.; Wu, H.; Lv, Z.; Yu, H.; Tu, G. Recovery of valuable metals from red mud: A comprehensive review. Sci. Total Environ. 2023, 904, 166686. [Google Scholar] [CrossRef]
- European Comission. The world heritage and foreign direct investment. Cult. Herit. Int. Invest. Law Arbitr. 2014, 2014, 93–136. [Google Scholar]
- Priya, A.; Hait, S. Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling. Environ. Sci. Pollut. Res. 2017, 24, 27445–27456. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Manjón Fernández, Á.; Masaguer Torres, V. Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. J. Sustain. Metall. 2020, 6, 505–540. [Google Scholar] [CrossRef]
- Stopic, S.; Friedrich, B. Advances in understanding of the application of unit operations in metallurgy of rare earth elements. Metals 2021, 11, 978. [Google Scholar] [CrossRef]
- Castro, L.; Blázquez, M.L.; González, F.; Muñoz, J.Á. Biohydrometallurgy for rare earth elements recovery from industrial wastes. Molecules 2021, 26, 6200. [Google Scholar] [CrossRef]
- Dasthaiah, K.; Robert Selvan, B.; Suneesh, A.S.; Venkatesan, K.A.; Antony, M.P.; Gardas, R.L. Ionic liquid modified silica gel for the sorption of americium (III) and europium (III) from dilute nitric acid medium. J. Radioanal. Nucl. Chem. 2017, 313, 515–521. [Google Scholar] [CrossRef]
- Swain, B.; Jeong, J.; Lee, J.; Lee, G. Separation of cobalt and lithium from lithium-ion battery industry waste by solvent extraction and supported liquid membrane: A comparative study. Hydrometallurgy 2007, 84, 10–18. [Google Scholar]
- Li, X.F.; Zhang, T.A.; Lv, G.Z.; Wang, K.; Wang, S. Summary of Research Progress on Metallurgical Utilization Technology of Red Mud. Minerals 2023, 13, 737. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Abhilash Sinha, S.; Sinha, M.K.; Pandey, B.D. Extraction of lanthanum and cerium from Indian red mud. Int. J. Miner. Process. 2014, 127, 70–73. [Google Scholar] [CrossRef]
- Davris, P.; Balomenos, E.; Panias, D.; Paspaliaris, I. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 2016, 164, 125–135. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Romero, J. Solvent extraction of rare-earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements. Curr. Opin. Green Sustain. Chem. 2021, 27, 100428. [Google Scholar] [CrossRef]
- Zhang, W.; Rezaee, M.; Bhagavatula, A.; Li, Y.; Groppo, J.; Honaker, R. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. Int. J. Coal Prep. Util. 2015, 35, 295–330. [Google Scholar] [CrossRef]
- Ochsenkühn-Petropulu, M.; Lyberopulu, T.; Parissakis, G. Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal. Chim. Acta 1994, 296, 305–313. [Google Scholar] [CrossRef]
- Chi, J.; Wang, C.; Zhou, G.; Fu, X.; Chen, X.; Yin, X.; Zhang, Z.; Wang, Y. A critical review on separation and extraction of scandium from industrial wastes: Methods, difficulties, and mechanism. J. Environ. Chem. Eng. 2023, 111, 111068. [Google Scholar] [CrossRef]
- Derevyankin, V.A.; Porotnikova, T.P.; Kocherova, E.K.; Moiseev, V.E.; Bobrov, S.A. Extraction of scandium by sorption from sulfuric acid solutions. Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metal 1981, 3, 47–50. [Google Scholar]
- Ochsenkühn-Petropoulou, M.T.; Hatzilyberis, K.S.; Mendrinos, L.N.; Salmas, C.E. Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind. Eng. Chem. Res. 2002, 41, 5794–5801. [Google Scholar] [CrossRef]
- Ochsenkühn-Petropulu, M.; Lyberopulu, T.; Parissakis, G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal. Chim. Acta 1995, 315, 231–237. [Google Scholar] [CrossRef]
- Petrakova, O.; Klimentenok, G.; Panov, A.; Gorbachev, S. Application of modern methods for red mud processing to produce rare earth elements. In Proceedings of the 1st European Rare Earth Resources Conference (ERES 2014), Milos, Greece, 4–7 September 2014; pp. 221–229. [Google Scholar]
- Rivera, R.M.; Ulenaers, B.; Ounoughene, G.; Binnemans, K.; Van Gerven, T. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner. Eng. 2018, 119, 82–92. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J. Sustain. Metall. 2016, 2, 28–37. [Google Scholar] [CrossRef]
- Ding, W.; Bao, S.; Zhang, Y.; Xiao, J. Efficient selective extraction of scandium from red mud. Miner. Process. Extr. Metall. Rev. 2023, 44, 304–312. [Google Scholar] [CrossRef]
- Habibi, H.; Mokmeli, M.; Shakibania, S.; Pirouzan, D.; Pourkarimi, Z. Separation and recovery of titanium and scandium from the red mud. Sep. Purif. Technol. 2023, 317, 123882. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.X.; Liu, X.M. Recovery of scandium from bauxite residue—Red mud: A review. Rare Met. 2016, 35, 887–900. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Tang, S.; Zeng, M.; Bai, P.; Chen, L. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere 2017, 175, 365–372. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Jorjani, E.; Shahbazi, M. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid. Arab. J. Chem. 2016, 9, S1532–S1539. [Google Scholar] [CrossRef]
- Sun, X.; Ji, Y.; Guo, L.; Chen, J.; Li, D. A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Sep. Purif. Technol. 2011, 81, 25–30. [Google Scholar] [CrossRef]
- Onghena, B.; Borra, C.R.; Van Gerven, T.; Binnemans, K. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis (trifluoromethylsulfonyl) imide. Sep. Purif. Technol. 2017, 176, 208–219. [Google Scholar] [CrossRef]
- Loginova, I.V.; Kyrchikov, A.V.; Lebedev, V.A.; Ordon, S.F. Investigation into the question of complex processing of bauxites of the srednetimanskoe deposit. Russ. J. Non-Ferr. Met. 2013, 54, 143–147. [Google Scholar] [CrossRef]
- Hubicki, Z. Studies on selective separation of Sc (III) from rare earth elements on selective ion-exchangers. Hydrometallurgy 1990, 23, 319–331. [Google Scholar] [CrossRef]
- Hu, Y.; Florek, J.; Larivière, D.; Fontaine, F.G.; Kleitz, F. Recent advances in the separation of rare earth elements using mesoporous hybrid materials. Chem. Rec. 2018, 18, 1261–1276. [Google Scholar] [CrossRef]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction over liquid-liquid extraction: A review. Miner. Eng. 2017, 112, 103–113. [Google Scholar] [CrossRef]
- Wei, D.; Xiao, J.-H.; Yang, P.; Shen, S.Y.; Tao, C.; Kai, Z.; Zhen, W. Extraction of scandium and iron from red mud. Miner. Process. Extr. Metall. Rev. 2022, 43, 61–68. [Google Scholar] [CrossRef]
- Fulford, G.D.; Lever, G.; Sato, T. Recovery of Rare Earth Elements from Bayer Process Red Mud. U.S. Patent 5,030,424, 9 July 1991. [Google Scholar]
- Xiao, J.; Zou, K.; Zhong, N.; Gao, D. Selective separation of iron and scandium from Bayer Sc-bearing red mud. J. Rare Earths 2023, 41, 1099–1107. [Google Scholar] [CrossRef]
- Diev, V.N.; Sabirzyanov, N.A.; Skryabneva, L.M.; Yatsenko, S.P.; Anashkin, V.S.; Aminov, S.N.; Zavadskii, K.F.; Sysoev, A.V.; Ustich, E.P. Recovery of Scandium from Wastes in Processing of Bauxite Ores for Alumina Manufacture. Russian Patent RU2201988, 10 April 2003. [Google Scholar]
- Yatsenko, S.P.; Pyagai, I.N. Red mud pulp carbonization with scandium extraction during alumina production. Theor. Found. Chem. Eng. 2010, 44, 563–568. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhou, K.G.; Chen, W.; Lei, Q.Y.; Huang, Y.; Peng, C.H. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach. J. Cent. South Univ. 2019, 26, 458–466. [Google Scholar] [CrossRef]
- Zhou, K.; Teng, C.; Zhang, X.; Peng, C.; Chen, W. Enhanced selective leaching of scandium from red mud. Hydrometallurgy 2018, 182, 57–63. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Jalhoom, M.G.; Abdullah, T.A.; Le, P.C.; Viktor, S.; Nguyen, D.D. A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study. Environ. Pollut. 2022, 308, 119596. [Google Scholar] [CrossRef]
- Smirnov, D.I.; Molchanova, T.V. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy 1997, 45, 249–259. [Google Scholar] [CrossRef]
- Doronin, A.V.; Kozlovskih, E.N.; Kascheeva, I.D.; Zemlyanoi, K.G.; Morozov, U.P. Development of the technology of red mud complex processing using regenerated sulfuric acid solution. In Proceedings of the International Conference: Scientific Bases and Practice of Processing of Ores and Technogenic Raw Materials; 2014; pp. 120–124. [Google Scholar]
- Abhilash, S.S.; Meshram, P.; Pandey, B.D.; Behera, P.K.; Satpathy, B.K. Red Mud: A secondary resource for rare earth elements. In Proceedings of the International Bauxite, Alumina and Aluminium Symposium, The IBAAS Binder, Visakhapatnam, India, 27–29 November 2014; pp. 148–162. [Google Scholar]
- Abdulvaliyev, R.A.; Akcil, A.; Gladyshev, S.V.; Tastanov, E.A.; Beisembekova, K.O.; Akhmadiyeva, N.K.; Deveci, H.A.C.I. Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process. Hydrometallurgy 2015, 157, 72–77. [Google Scholar] [CrossRef]
- Gladyshev, S.V.; Akcil, A.; Abdulvaliyev, R.A.; Tastanov, E.A.; Beisembekova, K.O.; Temirova, S.S.; Deveci, H.A.C.I. Recovery of vanadium and gallium from solid waste by-products of Bayer process. Miner. Eng. 2015, 74, 91–98. [Google Scholar] [CrossRef]
- Quinn, J.E.; Soldenhoff, K.H.; Stevens, G.W.; Lengkeek, N.A. Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy 2015, 157, 298–305. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Fang, X. Rare earth element recycling from waste nickel-metal hydride batteries. J. Hazard. Mater. 2014, 279, 384–388. [Google Scholar] [CrossRef]
- Akcil, A.; Ciftci, H.; Deveci, H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner. Eng. 2007, 20, 310–318. [Google Scholar] [CrossRef]
- Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694–706. [Google Scholar] [CrossRef]
- Srichandan, H.; Pathak, A.; Singh, S.; Blight, K.; Kim, D.J.; Lee, S.W. Sequential leaching of metals from spent refinery catalyst in bioleaching–bioleaching and bioleaching–chemical leaching reactor: Comparative study. Hydrometallurgy 2014, 150, 130–143. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Loy, A.; Mandl, M.; Barton, L.L. (Eds.) Geomicrobiology: Molecular and Environmental Perspective; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Brown, T.J.; Wrighton, C.E.; Raycraft, E.R.; Shaw, R.A.; Deady, E.A.; Rippingale, J.; Idoine, N. World Mineral Production 2009-13; British Geological Survey: Nottinghamshire, UK, 2015. [Google Scholar]
- Shi, S.; Pan, J.; Dong, B.; Zhou, W.; Zhou, C. Bioleaching of Rare Earth Elements: Perspectives from Mineral Characteristics and Microbial Species. Minerals 2023, 13, 1186. [Google Scholar] [CrossRef]
- Zhuang, W.Q.; Fitts, J.P.; Ajo-Franklin, C.M.; Maes, S.; Alvarez-Cohen, L.; Hennebel, T. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015, 33, 327–335. [Google Scholar] [CrossRef]
- Watling, H. Microbiological advances in biohydrometallurgy. Minerals 2016, 6, 49. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J.C. Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. Chembioeng Rev. 2014, 1, 148–169. [Google Scholar] [CrossRef]
- Cozzolino, A.; Cappai, G.; Cara, S.; Milia, S.; Ardu, R.; Tamburini, E.; Carucci, A. Bioleaching of Valuable Elements from Red Mud: A Study on the Potential of Non-Enriched Biomass. Minerals 2023, 13, 856. [Google Scholar] [CrossRef]
- Qu, Y.; Lian, B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. [Google Scholar] [CrossRef]
- Urík, M.; Polák, F.; Bujdoš, M.; Pifková, I.; Kořenková, L.; Littera, P.; Matúš, P. Aluminium leaching by heterotrophic microorganism Aspergillus niger: An acidic leaching. Arab. J. Sci. Eng. 2018, 43, 2369–2374. [Google Scholar] [CrossRef]
- Brandl, H.; Barmettler, F.; Castelberg, C.; Fabbri, C. Microbial mobilization of rare earth elements (REE) from mineral solids: A mini review. AIMS Microbiol. 2016, 3, 190–204. [Google Scholar]
- Rasoulnia, P.; Barthen, R.; Lakaniemi, A.M. A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Crit. Rev. Environ. Sci. Technol. 2021, 51, 378–427. [Google Scholar] [CrossRef]
- Qu, Y.; Lian, B.; Mo, B.; Liu, C. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 2013, 136, 71–77. [Google Scholar] [CrossRef]
- Qu, Y.; Li, H.; Tian, W.; Wang, X.; Wang, X.; Jia, X.; Shi, B.; Song, G.; Tang, Y. Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Miner. Eng. 2015, 81, 1–4. [Google Scholar] [CrossRef]
- Vakilchap, F.; Mousavi, S.M.; Shojaosadati, S.A. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour. Technol. 2016, 218, 991–998. [Google Scholar] [CrossRef]
- Shah, S.S.; Palmieri, M.C.; Sponchiado, S.R.P.; Bevilaqua, D. Environmentally sustainable and cost-effective bioleaching of aluminum from low-grade bauxite ore using marine-derived Aspergillus niger. Hydrometallurgy 2020, 195, 105368. [Google Scholar] [CrossRef]
- Amin, M.M.; El-Aassy, I.E.; El-Feky, M.G.; Sallam, A.M.; El-Sayed, E.M.; Nada, A.A.; Harpy, N.M. Fungal leaching of rare earth elements from lower carboniferous carbonaceous shales, southwestern Sinai, Egypt. Rom. J. Biophys. 2014, 24, 25–41. [Google Scholar]
- Qu, Y.; Li, H.; Wang, X.; Tian, W.; Shi, B.; Yao, M.; Zhang, Y. Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp. Minerals 2019, 9, 67. [Google Scholar] [CrossRef]
- Zhang, D.R.; Chen, H.R.; Nie, Z.Y.; Xia, J.L.; Li, E.P.; Fan, X.L.; Zheng, L. Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching. J. Chem. Eng. 2020, 401, 125914. [Google Scholar] [CrossRef]
- Reed, D.W.; Fujita, Y.; Daubaras, D.L.; Jiao, Y.; Thompson, V.S. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 2016, 166, 34–40. [Google Scholar] [CrossRef]
- Kiskira, K.; Lymperopoulou, T.; Tsakanika, L.A.; Pavlopoulos, C.; Papadopoulou, K.; Ochsenkühn, K.M.; Ochsenkühn-Petropoulou, M. Study of microbial cultures for the bioleaching of scandium from alumina industry by-products. Metals 2021, 11, 951. [Google Scholar] [CrossRef]
REE Application | Total REE Consumption (%) | LREE | HREE | Others% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
La% | Ce% | Pr% | Nd% | Sm% | Eu% | Gd% | Tb% | Dy% | Y% | |||
Magnets | 23 | – | – | 23.4 | 69.4 | – | – | 2 | 0.2 | 5 | – | – |
Battery alloys | 8 | 50 | 33.4 | 3.3 | 10 | 3.3 | – | – | – | – | – | – |
Metal alloys | 8 | 26 | 52 | 5.5 | 16.5 | – | – | – | – | – | – | – |
Auto catalysts | 5 | 5 | 90 | 2 | 3 | – | – | – | – | – | – | – |
Petroleum refining | 18 | 90 | 10 | – | – | – | – | – | – | – | – | – |
Polishing compounds | 12 | 31.5 | 65 | 3.5 | – | – | – | – | – | – | – | – |
Glass additives | 7 | 24 | 66 | 1 | 3 | – | – | – | – | – | 2 | 4 |
Phosphors | 2 | 8.5 | 11 | – | – | – | 4.9 | 1.8 | 4.6 | – | 69.2 | – |
Ceramics | 6 | 17 | 12 | 6 | 12 | – | – | – | – | – | 53 | – |
Other | 10 | 19 | 39 | 4 | 15 | 2 | – | 1 | – | – | 19 | – |
Country | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|
United stateS | - | 18,000 | 26,000 | 39,000 | 43,000 | 38,000 | 43,000 |
Australia | 19,000 | 21,000 | 21,000 | 21,000 | 22,000 | 17,000 | 18,000 |
Brazil | 1700 | 1100 | 1000 | 600 | 500 | 1000 | 80 |
Burma | NA | 19,000 | 22,000 | 31,000 | 26,000 | 30,000 | 38,000 |
Burundi | - | 630 | 600 | 300 | 100 | 500 | - |
China | 105,000 | 120,000 | 132,000 | 140,000 | 168,000 | 140,000 | 240,000 |
Madagascar | - | 2000 | 2000 | 2800 | 3200 | 8000 | 960 |
India | 1800 | 2900 | 3000 | 2900 | 2900 | 3000 | 2900 |
Russia | 2600 | 2600 | 2700 | 2700 | 2700 | 2700 | 2600 |
Thailand | 1300 | 1000 | 1800 | 3600 | 8000 | 2000 | 7100 |
Vietnam | 200 | 920 | 900 | 700 | 400 | 1000 | 600 |
World total | 132,000 | 190,000 | 210,000 | 240,000 | 280,000 | 243,300 | 350,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akcil, A.; Swami, K.R.; Gardas, R.L.; Hazrati, E.; Dembele, S. Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud. Minerals 2024, 14, 587. https://doi.org/10.3390/min14060587
Akcil A, Swami KR, Gardas RL, Hazrati E, Dembele S. Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud. Minerals. 2024; 14(6):587. https://doi.org/10.3390/min14060587
Chicago/Turabian StyleAkcil, Ata, Kantamani Rama Swami, Ramesh L. Gardas, Edris Hazrati, and Seydou Dembele. 2024. "Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud" Minerals 14, no. 6: 587. https://doi.org/10.3390/min14060587
APA StyleAkcil, A., Swami, K. R., Gardas, R. L., Hazrati, E., & Dembele, S. (2024). Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud. Minerals, 14(6), 587. https://doi.org/10.3390/min14060587