Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. Field Sampling and Sample Preparation
3.2. Mineral Analysis
3.3. Se Content and Speciation Analysis
- Organically bound Se: Amounts of 8 mL of 5% K2S2O8 and 2 mL of concentrated HNO3 were added to each remaining soil sample, and the vial was heated for 3 h in a water bath at 95 ℃. The tube was intermittently shaken from time to time.
- Iron (Fe)/manganese (Mn) oxide-bound Se: An amount of 10 mL of 2.5 mol/L HCl was added to the remaining soil. The capped vials were then heated in a water bath at 90 °C for 50 min. The centrifuge vials were also shaken intermittently.
- Carbonate-bound Se: An amount of 10 mL of 0.7 mol/L KH2PO4 (pH of 5.0) was added to the above tube, and the tube was shaken at 200 rpm and 25 °C for 4 h.
- Exchangeable Se: An amount of 10 mL of 1.0 mol/L magnesium chloride (MgCl2) was added to the above tube, and the tube was shaken at 200 rpm and 25 °C for 4 h.
- Residual Se: The residuals were transferred into Teflon crucibles with 8 mL of concentrated HNO3 and 2 mL of concentrated HClO4. The crucibles were covered and heated to 170 °C in a sand bath until the soil appeared white or gray. After acid digestion, the solution was transferred to a 25 mL volumetric flask with deionized water.
4. Results
4.1. Microphysiography of Samples
4.2. Mineral Content and Particle Size
4.2.1. Quartz
4.2.2. Carbonate Minerals
4.2.3. Biotite and Muscovite
4.2.4. Feldspar
4.2.5. Clay Minerals
4.2.6. Hematite
4.2.7. Pyrite
4.2.8. Accessory Minerals
4.3. Selenium Speciation
5. Discussion
5.1. Se Geochemical Enrichment Mechanism and Heavy-Mineral Sources
5.2. The Relationship between Se Content and Speciation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, L.A.; Peucker, E.B.; Petsch, S.T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering. Earth Planet. Sci. Lett. 2002, 198, 339–353. [Google Scholar] [CrossRef]
- Lipinski, M.; Warning, B.; Brumsack, H.J. Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian shelf and the Barents Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 190, 459–475. [Google Scholar] [CrossRef]
- Piper, D.Z.; Calvert, S.E. A marine biogeochemical perspective on black shale deposition. Earth Sci. Rev. 2009, 95, 63–96. [Google Scholar] [CrossRef]
- Anjum, F.; Bhatti, H.N.; Asgher, M.; Shahid, M. Leaching of metal ions from black shale by organic acids produced by Aspergillus niger. Appl. Clay Sci. 2010, 47, 356–361. [Google Scholar] [CrossRef]
- Baioumy, H.; Ulfa, Y.; Nawawi, M.; Padmanabhan, E.; Anuar, M.N.A. Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: Implications for their origin and maturation. Int. J. Coal Geol. 2016, 165, 90–105. [Google Scholar] [CrossRef]
- Yan, D.T.; Li, S.J.; Fu, H.J.; Jasper, D.M.; Zhou, S.D.; Yang, X.R.; Zhang, B.; Mangi, H.N. Mineralogy and geochemistry of lower Silurian black shales from the Yangtze platform, South China. Int. J. Coal Geol. 2021, 237, 103706. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Yang, J.H.; Ling, H.F.; Chen, Y.Q.; Feng, H.Z.; Zhao, K.D.; Ni, P. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 251, 217–228. [Google Scholar] [CrossRef]
- Fan, D.L.; Yang, R.D.; Huang, Z.X. The Lower Cambrian black shale series and iridium anomaly in South China. In Proceedings of the Development in Geoscience, Contributions to the 27th International Geological Congress, Moscow, Russia, 4–14 August 1984; Science Press: Beijing, China, 1984; pp. 215–224. [Google Scholar]
- Yang, J.H.; Jiang, S.Y.; Ling, H.F.; Chen, Y.Q. Re-Os isotope tracing and dating of black shales and oceanic anoxic events. Earth Sci. Front. 2005, 12, 243–250. [Google Scholar]
- Hsu, K.J.; Oberhänsli, H.; Gao, J.Y.; Sun, S.; Chen, H.D.; Krähenbühl, U. Strangelove ocean before the Cambrian explosion. Nature 1985, 316, 809–811. [Google Scholar] [CrossRef]
- Orberger, B.; Pasava, J.; Gallien, J.P.; Daudin, L.; Trocellier, P. Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from Black Shales (Selwyn Basin, Yukon territories, Canada): A nuclear microprobe study. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 210, 441–448. [Google Scholar] [CrossRef]
- Hu, Y.H.; Sun, W.D.; Ding, X.; Wang, F.Y.; Ling, M.X.; Liu, J. Volcanic event at the Ordovician-Silurian boundary: The message from K-bentonite of Yangtze Block. Acta Petrol. Sin. 2009, 25, 3298–3308. [Google Scholar]
- Jiang, Y.H.; Yue, W.Z.; Ye, Z.Z. Characteristics, sedimentary environment and origin of the Lower Cambrian stone-like coal in southern China. Coal Geol. China 1994, 6, 26–31, (In Chinese with English Abstract). [Google Scholar]
- Su, W.B.; Li, Z.M.; Ettensohn, F.R.; Johnson, M.E.; Huff, W.D.; Wang, W.; Ma, C.; Li, L.; Zhang, L.; Zhao, H.J. Distribution of Black Shale in the Wufeng-Longmaxi Formations (Ordovician-Silurian), South China: Major Controlling Factors and Implications. Earth Sci. 2007, 32, 819–827, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, H.B. Comparative Analysis of Shale Gas Reservoir Between the Marine Shale Gas in the Southern Shaanxi and the Terrestrial Shale Gas in the Northern Shaanxi Province. Geol. Shaanxi 2018, 36, 34–37, (In Chinese with English Abstract). [Google Scholar]
- Chen, N.S. Lower Cambrian black shale series and associated stratiform deposits in southwest China. Chin. J. Geochem. 1990, 9, 244–255. [Google Scholar] [CrossRef]
- Pasava, J.; Hladikova, J.; Dobes, P. Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Econ. Geol. 1996, 91, 63–79. [Google Scholar] [CrossRef]
- Steiner, M.; Wallis, E.; Erdtmann, B.D.; Zhao, Y.L.; Yang, R.D. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 169, 165–191. [Google Scholar] [CrossRef]
- Orberger, B.; Vymazalova, A.; Wagner, C.; Fialin, M.; Gallien, J.P.; Wirth, R.; Pasava, J.; Montagnac, G. Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, Southern China). Chem. Geol. 2007, 238, 213–231. [Google Scholar] [CrossRef]
- Feng, C.X.; Liu, S.; Coulson, I.M. Lithological and Si-O-S isotope geochemistry: Constraints on the origin and genetic environment of the selenium (Se)-rich siliceous rocks in Enshi, Hubei Province, China. Acta Geochim. 2021, 40, 89–105. [Google Scholar] [CrossRef]
- Feng, C.X.; Liu, S.; Hu, R.Z.; Chi, G.X. Geochemistry of the lower Cambrian selenium-rich black rock series in Zunyi: Genesis and selenium enrichment mechanism. Earth Sci. J. China Univ. Geosci. 2010, 35, 947–958, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.L.; Khan, A.; Zang, Q.B.; Wu, Y.P.; Feng, D.H. Sedimentary geochemistry of the Early Cambrian Niutingtang Formation to reconstruct the palaeo-depositonal environments and to evaluate the organic matter enrichment mechanism from the Yangtze Block, South China. Geol. J. 2022, 57, 380–409. [Google Scholar] [CrossRef]
- Luo, K.L.; Xu, L.R.; Tan, J.A.; Wang, D.H. Selenium source in the selenosis area of the Daba region, South Qinling Mountain, China. Environ. Earth Sci. 2004, 45, 426–432. [Google Scholar] [CrossRef]
- Feng, C.X.; Chi, G.X.; Liu, J.J.; Hu, R.Z.; Liu, S.; Ian, M.C. Geochemical constraints on the origin and environment of lower Cambrian, selenium-rich siliceous sedimentary rocks in the Ziyang area, Daba region, central China. Int. Geol. Rev. 2012, 54, 765–778. [Google Scholar] [CrossRef]
- Liu, J.J.; Zheng, M.H.; Liu, J.M.; Su, W.C. Geochemistry of the La’erma and Qiongmo Au-Se deposits in western Qinling Mountains, China. Ore Geol. Rev. 2000, 17, 91–111. [Google Scholar] [CrossRef]
- Song, C.Z. A brief description of the Yutangba sedimentary-type selenium mineralized area in southwestern Hubei. Miner. Depos. 1989, 8, 83–89, (In Chinese with English Abstract). [Google Scholar]
- Wang, H.F.; Li, J.Q. The geological characteristic of Se-deposit in Shuanghe, Enshi, Hubei Province. Hubei Geol. 1996, 10, 10–21, (In Chinese with English Abstract). [Google Scholar]
- Thompson, M.; Rouch, C.; Braddock, W. New occurence of native selenium. Am. Mineral. 1956, 41, 156–157. [Google Scholar]
- Coleman, R.G.; DeleVaux, M.H. Occurrence of selenium in sulfides from some sedimentary rocks of the United States. Econ. Geol. 1956, 51, 112. [Google Scholar] [CrossRef]
- Yi, S.T.; Li, B.H.; Xue, X.T. Mineraligy of Natural Selenium In Yamadu Region, Ili River. Xinjiang Geol. 1988, 6, 12–15, (In Chinese with English Abstract). [Google Scholar]
- Chen, L.M.; Li, D.R.; Wang, G.X.; Zhang, Q.F. Antimonselite—A New Mineral. Acta Mineral. Sin. 1993, 13, 7–11, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zheng, M.H.; Liu, J.J.; Liu, J.M.; Lu, W.Q. The First Discovery and Preliminary study of Selenio-Sulfantimonide in China. Mineral. Petrol. 1993, 13, 9–13, (In Chinese with English Abstract). [Google Scholar]
- Yao, L.B.; Gao, Z.M.; Yang, Z.S.; Long, H.B.; Ye, X.X.; Wang, M.Z. A Study on the Existing Forms of Selenium in Yutangba Independent Selenium Deposit by Electron-Microprobe Analysis. Acta Mineral. Sin. 2001, 21, 49–52, (In Chinese with English Abstract). [Google Scholar]
- Wen, H.J. Mineralogy, Geochemistry and Metallogenic Mechanism of Selenium-Take Laerma Selenium-Gold Deposit and Some Selenium Bearing Formations as Example; Institute of Geochemistry, Chinese Academy of Sciences: Guiyang, China, 1999; (In Chinese with English Abstract). [Google Scholar]
- Jia, B.; Xian, C.G.; Tsau, J.S.; Zuo, X.; Jia, W.F. Status and Outlook of Oil Field Chemistry-Assisted Analysis during the Energy Transition Period. Energy Fuels 2022, 36, 12917–12945. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Moore, J.N. Selenium fractionation and speciation in a wetland system. Environ. Sci. Technol. 1996, 30, 2613–2619. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Moore, J.N.; Frankenberger, W.T. Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry. Environ. Sci. Technol. 1999, 33, 1652–1656. [Google Scholar] [CrossRef]
- Kulp, T.R.; Pratt, L.M. Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim. Cosmochim. Acta 2004, 68, 3687–3701. [Google Scholar] [CrossRef]
- Fan, H.F.; Wen, H.J.; Hu, R.Z.; Zhao, H. Selenium speciation in Lower Cambrian Se-enriched strata in South China and its geological implications. Geochim. Cosmochim. Acta 2011, 75, 7725–7740. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.Q.; Zhang, Q. Speciation of Selenium in Geochemical Samples by Partial Dissolution Technique. Rock Miner. Anal. 1997, 4, 255–261, (In Chinese with English Abstract). [Google Scholar]
- Martens, D.A.; Suarez, D.L. Selenium Speciation of Soil/Sediment Determined with Sequential Extractions and Hydride Generation Atomic Absorption Spectrophotometry. Environ. Sci. Technol. 1997, 31, 133–139. [Google Scholar] [CrossRef]
- Plant, J.A.; Kinniburgh, D.G.; Smedley, P.L.; Fordyce, F.; Klinck, B. 9.02–Arsenic and Selenium. Treatise Geochem. 2003, 9, 17–66. [Google Scholar]
- Mei, Z.Q. Summary on two selenium-rich areas of China. Chin. J. Endem. 1985, 4, 379–385, (In Chinese with English Abstract). [Google Scholar]
- Tian, H.; Ma, Z.Z.; Chen, X.L.; Zhang, H.Y.; Bao, Z.Y.; Wei, C.H.; Xie, S.Y.; Wu, S.T. Geochemical Characteristics of Selenium and Its Correlation to Other Elements and Minerals in Selenium-Enriched Rocks in Ziyang County, Shaanxi Province, China. J. Earth Sci. 2016, 27, 763–776, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.J.; Zheng, M.H.; Liu, J.M.; Zhou, Y.F.; Gu, X.X.; Zhang, B. The geological and geochemical characteristics of Cambrian chert and their sedimentary environmental implications in western Qinling. Acta Petrol. Sin. 1999, 15, 145–154, (In Chinese with English Abstract). [Google Scholar]
- Luo, K.L.; Pan, Y.T.; Wang, W.Y.; Tan, J.A. Selenium contents and distribution patterns in the Palaeozoic strata in Southern Qinling Mountains. Geol. Rev. 2001, 47, 211–217, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Luo, K.L. The Lujiaping Formation of northern Daba Mountain. J. Stratigr. 2006, 30, 149–156, (In Chinese with English Abstract). [Google Scholar]
- Luo, K.L.; Qiu, X.P. Analysis on selenium-rich crops in Ankang district, Shaanxi—The case of Ziyang County. Nat. Resour. 1995, 2, 68–72, (In Chinese with English Abstract). [Google Scholar]
- Zhao, C.Y.; Ren, J.H.; Xue, C.Z. Selenium of soil in rich selenium area-Ziyang. Acta Pedol. Sin. 1993, 30, 253–259, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.S. Study on the Metallogenic Regularity and Geological-Geochemistry for Black Rock Seriesand Related Typical Deposits in Qinling Mounitains, Shaanxi. Ph.D. Thesis, Northwest University, Xi’an, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Gao, X.H. On the poly metal elements occurrence of black rock seris in Zhenping Region of south Qinling-north Dabashan. Value Eng. 2015, 20, 176–177, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tian, H. The Occurrence State and Speciation of Selenium and Its Environmental Behaviors in Rock-Soil-Plant from Typical High-Se Area; A Dissertation Submitted to China University of Geosciences; China University of Geosciences(Wuhan): Wuhan, China, 2017; (In Chinese with English Abstract). [Google Scholar]
- Zhao, H.B.; Feng, C.X.; Liu, S.; Liu, F.X. Organic geochemical characteristics of lower Cambrian black rock series in Ziyang, Shaanxi Province. J. Jilin Univ. Earth Sci. Ed. 2023, 53, 1016–1032, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, Q.; Song, W.L.; Yang, J.K.; Hu, Y.; Huang, J.; Zhang, T.; Zhen, G.S. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCANTIMA. Miner. Depos. 2021, 40, 345–368, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fan, D.L.; Ye, J.; Yang, R.Y.; Huang, Z.X. The Geological Events and Ore Mineralization Nearby the Precambrian-Cambrian Boundary in Yangtze Platform. Acta Sedimentol. Sin. 1987, 5, 81–95, (In Chinese with English Abstract). [Google Scholar]
- Zhang, G.W.; Zhang, B.R.; Yuan, X.C. Qinling Orogenic Belt and Continental Dynamics; Science Press: Beijing, China, 2001; pp. 1–855. (In Chinese) [Google Scholar]
- He, J.K.; Lu, H.X.; Zhu, B. The Tectonic Inversion and Its Geodynamic Processes in Northern Daba Mountains of Eastern Qinling Orogenic Belt. Sci. Geol. Sin. Chin. J. Geol. 1999, 32, 14–28, (In Chinese with English Abstract). [Google Scholar]
- Xie, H. Organic Geochemistry and Ore-Forming Environment of the Large Witherite Deposits in Northern Daba Mountains, China; China University of Geosciences: Beijing, China, 2006; (In Chinese with English Abstract). [Google Scholar]
- Luo, K.L. The age of rock distribution in the selenosis region, south Shaanxi Province. Geol. Rev. 2003, 49, 383–388, (In Chinese with English Abstract). [Google Scholar]
- Shaanxi Bureau of Geology and Mineral Resources. Regional Geology of Shaanxi Province; Geological Publishing House: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Wang, S.X.; Feng, C.C.; Liu, S.; Fan, Y. Geochemistry of the lower Cambrian black rock series in Ziyang, Shaanxi Province: Geochemical characteristics and petrogenesis. Acta Sedimentol. Sin. 2020, 38, 980–993, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hou, C.H.; Feng, C.X.; Liu, S.; Zhao, H.B. Distribution and pollution assessment of selenium and heavy metals in soil: Ziyang, Shaanxi Province as an example. J. Northwest Univ. Nat. Sci. Ed. 2022, 52, 878–890, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cui, Y.Y.; Zhou, Y.L.; Chen, G.X.; Huang, C.C.; Pang, J.L.; Yang, J.M.; Yan, X.J. Mineral quantitative analysis of Mu Us sandy land with QEMSCAN. Arid. Land Geogr. 2020, 43, 1505–1513, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, H.Z.; Lu, H.Y.; Zhou, Y.L.; Cui, Y.Y.; Zhang, J.; Lv, F.; Chen, Y.Z. Quantitative analysis of the clastic mineral composition in sediments from the Weihe River Basin by scanning electron microscope and its implication for provenance. Acta Sedimentol. Sin. 2022, 40, 944–956, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fan, H.F.; Wen, H.J.; Ling, H.W.; Yu, W.X. Determination of trace selenium in geological samples by Hydride generation atomic fluorescence spectrometry-a comparative experiment of two different dissolution methods. Bull. Mineral. Petrol. Geochem. 2005, 24, 200–203, (In Chinese with English Abstract). [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Qu, J.G.; Xu, B.X.; Gong, S.C. Selenium speciation of soil/sediment determined with sequential extractions scheme. Environ. Chem. 1997, 16, 277–283. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Wang, X.P.; Mou, C.L.; Ge, X.Y.; Chen, X.W.; Zhou, K.K.; Wang, Q.Y.; Liang, W. Mineral component characteristics and evaluation of black rock series of Longmaxi Formation in southern Sichuan and its periphery. Acta Pet. Sin. 2015, 36, 150–162, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, Y.J.; Cao, L.M.; Li, Z.L.; Wang, H.N.; Chu, T.Q.; Zhang, J.R. Element Geochemistry; Science Press: Beijing, China, 1984; pp. 1–281. (In Chinese) [Google Scholar]
- Fan, D.L. Polyelements in the Lower Cambrian black shale series in southern China. In The Significance of Trace Metals in Solving Petrogenetic Problems and Controversies; Augustithis, S.S., Ed.; The Ophrastus Publication: Athens, Greece, 1983; pp. 447–474. [Google Scholar]
- Li, S.R.; Gao, Z.M. Silicalites of hydrothermal origin in the Lower Cambrian black rock series of South China. Chin. J. Geochem. 1996, 15, 113–120. [Google Scholar] [CrossRef]
- Li, S.R.; Gao, Z.M. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou Hunan Province, China. Sci. China (Ser. D Earth Sci.) 2000, 43, 625–632. [Google Scholar] [CrossRef]
- Mao, J.W.; Bernd, L.; Du, A.D.; Zhang, G.D.; Ma, D.S.; Wang, Y.T.; Zeng, M.G.; Robert, K. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Econ. Geol. 2002, 97, 1051–1061. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Yang, J.H.; Ling, H.F.; Feng, H.Z.; Chen, Y.Q.; Chen, J.H. Re-Os isoptopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Prog. Nat. Sci. 2003, 13, 788–794. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Chen, Y.Q.; Ling, H.F.; Yang, J.H.; Feng, H.Z.; Ni, P. Trace and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGEAu sulfide ores in Lower Cambrian strata, Yangtze Platform, South China. Miner. Depos. 2006, 41, 453–467. [Google Scholar] [CrossRef]
- Li, J.H.; Chu, F.Y.; Feng, J. Advances in deep-sea hydrothermal microbial mineralisation and the deep biosphere. Prog. Nat. Sci. 2005, 15, 1416–1425, (In Chinese with English Abstract). [Google Scholar]
- Qiu, X.; Wang, H.M.; Liu, D.; Gong, L.F.; Wu, X.P.; Xiang, X. The physiological response of synechococcus elongatus to salinity: A potential biomarker for ancient salinity in evaporative environments. Geomicrobiol. J. 2012, 29, 477–483. [Google Scholar] [CrossRef]
- Han, S.C.; Hu, K.; Cao, J. Organic geochemistry of barite deposits hosted in the Early Cambrian black shales from the Tianzhu County, Guizhou Province. Geochimica 2014, 43, 386–398, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.J.; Zhai, D.G.; Wang, D.Z.; Gao, S.; Yin, C.; Liu, Z.J.; Wang, J.P.; Wang, Y.H.; Zhang, F.F. Classification and mineralization of the Aur-(Ag)-Te-Se deposits. Earth Sci. Front. 2020, 27, 79–98, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, J.; Yi, F.C. A Study on Occurrence Modes and Enrichment Patterns of Lower Cambrian Black Shale Series in Northern Guizhou Province, China. Acta Mineral. Sin. 2012, 32, 281–287, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wen, H.J.; Zhou, Z.B.; Ma, W.P.; Zhu, Y. Research progresses and main scientific issues of strategically critical minerals in black rock series. Bull. Mineral. Petrol. Geochem. 2024, 43, 14–34, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.J.; Zheng, M.H.; Liu, J.M.; Lu, W.Q.; Liu, X.F. Au-Se enrichment and accumulation mechanisms in the Cambrian stratabound gold deposits in Jiangzha, western Qinling Mountains. Geochimica 2001, 30, 155–162, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lv, Z.C.; Liu, C.Q.; Liu, J.J.; Zhao, Z.Q. Study on carbon, oxygen and boron isotopes of Ziyang Huangbaishuwan and Zhushan Wenyuhe witherite deposits. Sci. China 2003, 33, 223–235. [Google Scholar] [CrossRef]
- Zhang, W.G.; Li, H.T.; Wang, F.; Yang, P.; Teng, J.X. Solid-liquid migration of molybdenum in stone coal and coal ash in southern Shaanxi. Coal Geol. Explor. 2020, 48, 64–70, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wen, H.J.; Xiao, H.Y. A Review of Selenium Minerals. Acta Petrol. Mineral. 1998, 3, 260–265, (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.M.; Johnson, T.M.; Finkelman, R.B.; Zheng, B.S.; Sykorova, I.; Pesek, J. The occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their adjacent soils in Yutangba, China. Chem. Geol. 2012, 330–331, 27–38. [Google Scholar] [CrossRef]
- Zhu, J.M.; Li, S.H.; Zuo, W.; Sykorova, J.; Su, H.C.; Zheng, B.S.; Pesek, J. Modes of occurrence of selenium in black S-rich rocks of Yutangba. Geochimica 2004, 33, 634–640, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.J.; Feng, C.X.; Zheng, M.H. The Studying Situation on Selenium Resource and Its Exploiting and Utilizing Prospect. World Sci.-Tech. R D 2001, 16, 16–21, (In Chinese with English Abstract). [Google Scholar]
- Qin, H.B.; Zhu, J.M.; Su, H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere 2012, 86, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.G.; Xu, B.X.; Gong, S.C. Sequential Extraction Techniques for Deter-Mination of Selenium Speciation in Soils and Sediments. Environ. Chem. 1997, 3, 277–283. [Google Scholar]
- Zhu, Z.J.; Guo, F.S. Heavy mineral distribution regularity of Paleogene detrital rocks in Lanping basin, Yunnan Province. Geol. Bull. China 2017, 36, 199–208, (In Chinese with English Abstract). [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstons. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Wang, G.R.; Chen, H.D.; Zhu, Z.J.; Lin, L.B.; Fan, Y. Characteristics and Geological Implications of Heavy Minerals in Lower Silurian Xiaoheba Formation sandstones in Southeast Sichuan-West Hunan. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2011, 38, 7–14, (In Chinese with English Abstract). [Google Scholar]
- Garzanti, E.; Ando, S. Heavy minerals concentration in modern sands: Implications for provenance interpretation. Dev. Sedimentol. 2007, 58, 517–545. [Google Scholar] [CrossRef]
- Luo, K.L.; Jiang, J.S. Selenium content and enrichment law of Lower Cambrian strata in Ziyang and Langao, Shaanxi. Geol. Geochem. 1995, 23, 68–71, (In Chinese with English Abstract). [Google Scholar]
- Huang, Y.H.; Ren, Y.X.; Xia, L.X.; Xia, Z.C.; Zhang, C. Early Paleozoic bimodal igneous suite on Northern Daba Mountains: Gaotan diabase and Haoping trachyte as examples. Acta Petrol. Sin. 1992, 8, 243–256, (In Chinese with English Abstract). [Google Scholar]
- Zhang, F.Y.; Lai, S.C.; Qin, J.F. Magma source and evolution process of Early Paleozoic basalt in the South Qinling Belt. Acta Petrol. Sin. 2020, 36, 2149–2162, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.H.; Wang, W.Y.; Li, H.R. Environmental behaviors of selenium in soil of typical selenosis area, China. J. Environ. Sci. 2008, 20, 859–864. [Google Scholar] [CrossRef]
- Zheng, B.S.; Yan, L.R.; Mao, D.J.; Su, H.C.; Zhou, H.Y.; Xia, W.P.; Hong, Y.T.; Zhao, W.; Chen, F.; Zhu, X.Q.; et al. The Se Resource in Southwestern Hubei Province, China, and Its Exploitation Strategy. J. Nat. Resour. 1993, 8, 204–212. [Google Scholar] [CrossRef]
- Zhang, C.L.; Gao, S.; Zhang, G.W. Geochemistry of early Paleozoic alkali dyke swarms in south Qinling and its geological significance. Sci. China 2003, 32, 1292–1306. [Google Scholar] [CrossRef]
- Zhu, J.M.; Johnson, T.M.; Clark, S.K.; Zhu, X.K.; Wang, X.L. Selenium redox cycling during weathering of Se-rich shales: A selenium isotope study. Geochim. Cosmochim. Acta 2014, 126, 228–249. [Google Scholar] [CrossRef]
- Mao, D.J.; Su, H.C. Selenium migration and environmental selenium capacity of stone coal in aqueous media. Bull. Dis. Control. Prev. (China) 1997, 3, 58–59, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, D.P. The Microelement Feature and A Suggestion of Selenium-Rich Crops to be Developed in Ziyang Area. Geol. Shaanxi 1999, 1, 67–73, (In Chinese with English Abstract). [Google Scholar]
- Fan, H.F.; Wen, H.J.; Hu, R.Z. Enrichment of Multiple Elements and Depositional Environment of Selenium-rich Deposits in Yutangba, Western Hubei. Acta Sedimentol. Sin. 2008, 26, 271–282. [Google Scholar]
- Dhillon, K.; Dhillon, S.; Singh, B. Genesis of seleniferous soils and associated animal and human health problems. Adv. Agron. 2019, 154, 1–80. [Google Scholar] [CrossRef]
- Chang, C.; Yin, R.; Zhang, H.; Yao, L. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil-Rice System in a Typical Seleniferous Area in Central China. Environ. Toxicol. Chem. 2019, 38, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci. Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef]
- Karaj, S.; Dhillon, S.; Dhillon, K. Development and mapping of seleniferous soils in northwestern India. Chemosphere 2014, 99, 56–63. [Google Scholar]
- Long, J.; Luo, K.L. Trace element distribution and enrichment patterns of Ediacaran-early Cambrian, Ziyang selenosis area, Central China: Constraints for the origin of Selenium. J. Geochem. Explor. 2017, 172, 211–230. [Google Scholar] [CrossRef]
- Wei, F.S.; Yang, G.Z.; Jiang, D.Z.; Liu, Z.H.; Sun, B.M. Basic Statistics of Background Values of Soil Elements in China. Environ. Monit. China 1984, 7, 1–6, (In Chinese with English Abstract). [Google Scholar]
- Chen, D.Z. Selenium in soil of Shaanxi Region. Acta Pedol. Sin. 1984, 21, 247–257, (In Chinese with English Abstract). [Google Scholar]
- Tan, J.A. Atlas of Endemic Diseases and Environment in the People’s Republic of China; Science Press: Beijing, China, 1991; (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.D.; Wang, L.; Wang, H.D.; Luo, K.L.; Wu, B.C. Distribution of Soil Total Selenium in Ziyang, Shaanxi. Chin. J. Soil Sci. 2017, 48, 1404–1408, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.B.; Xu, H.G.; Yuan, H.W.; Zhang, X.F. Speciation of selenium in typical meadow soils in Tumed Left Banner, Inner Mongolia, China. Geophys. Geochem. Explor. 2024, 48, 245–254, (In Chinese with English Abstract). [Google Scholar]
- Dinh, T.; Wang, M.K.; Thu, T.A.T.; Zhou, F.; Wang, D.; Zhai, H.; Qin, P.; Xue, M.Y.; Zekun, D.; Gerardo, B.; et al. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit. Rev. Environ. Sci. Technol. 2018, 49, 1–75. [Google Scholar] [CrossRef]
- Tolu, J.; Bouchet, S.; Helfenstein, J.; Hausheer, O.; Chékifi, S.; Frossard, E.; Tamburini, F.; Chadwick, O.A.; Winkel, L.H.E. Understanding soil selenium accumulation and bioavailability through size resolved and elemental characterization of soil extracts. Nat. Commun. 2022, 13, 6974. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.M. Distribution Characteristics and Influencing Factors of Soil Seleniumin Selenium Abnormal Area in Central Guangxi; Nanning Normal University: Nanning, China, 2024; (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.Z.; Wang, F.; Shan, R.Y.; Chen, C.S.; Yu, W.Q.; You, Z.M. Selenium contents and forms in soils at tea plantations of different soil types in northern Fujian. Acta Tea Sin. 2022, 63, 243–250, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, B.; Zhang, H.R.; Sun, Z.B.; Wang, S.T. Study on geochemical background value of soil in Qingzhou City of Shandong Province. Chin. Agric. Sci. Bull. 2022, 4, 66–71, (In Chinese with English Abstract). [Google Scholar]
- Shi, T.C.; Yang, J.F.; Yang, B.G.; Cao, Y.Y.; Ma, G.L. Analysis of selenium content, form and valence in farmland soil of northern Ningxia. J. Ningxia Univ. Nat. Sci. Ed. 2022, 43, 62–67, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.F.; Miao, G.W.; Ma, Q.; Ji, B.Y.; Xu, G. Distribution characteristics of Se speciation of alkaline soil in eastern Qinghai. Geophys. Geochem. Explor. 2019, 43, 1138–1144, (In Chinese with English Abstract). [Google Scholar]
- Yang, K.; Li, L.X.; Zhang, J.Y.; Zhang, L.X.; Shang, S.G.; Zhang, Q.M.; Wang, Y.M. Selenium bioavailability and the influential factors in potentially selenium enriched soils in Lujiang county, Anhui Province. Res. Environ. Sci. 2018, 31, 715–724, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, S.B.; Yang, G.L.; Xiong, W.L.; Ma, Z.C.; Yuan, H.W.; Duan, J.X. Speciation of selenium in the selenium-rich cultivated land in Linhe district, Bayannur city, Inner Mongolia and its influencing factors. Geophys. Geochem. Explor. 2023, 47, 477–486, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
NR-08 | NR-13 | NR-18 | NRT-01 | NRT-05 | |
---|---|---|---|---|---|
Carbonaceous Slate | Siliceous Rock | Carbonaceous Shale | Soil | Soil | |
Quartz | 8.40 | 40.57 | 41.00 | 36.08 | 36.26 |
Albite | 0.00 | 0.00 | 0.00 | 1.88 | 2.90 |
Plagioclase | 0.03 | 0.09 | 0.61 | 1.45 | 1.23 |
Orthoclase | 0.06 | 2.04 | 3.97 | 5.51 | 5.26 |
Calcite | 8.72 | 0.04 | 0.16 | 0.24 | 0.33 |
Dolomite | 71.09 | 0.00 | 13.57 | 1.74 | 0.60 |
Biotite | 1.20 | 24.64 | 20.16 | 22.51 | 18.33 |
Muscovite | 0.17 | 1.73 | 2.74 | 2.92 | 2.93 |
Chlorite-Clinochlore | 0.76 | 0.00 | 0.31 | 0.21 | 0.06 |
Ankerite | 1.04 | 0.00 | 0.32 | 0.03 | 0.02 |
Hematite | 0.20 | 24.62 | 4.75 | 6.29 | 2.42 |
Pyrite | 0.01 | 0.00 | 0.70 | 0.00 | 0.00 |
Schorl | 0.00 | 0.01 | 0.06 | 0.08 | 0.14 |
Almandine-spessartine | 0.00 | 3.82 | 0.58 | 2.86 | 4.92 |
Grossular | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 |
Pyrope | 0.21 | 0.00 | 1.31 | 0.55 | 0.21 |
Kaersutite | 0.01 | 0.08 | 0.59 | 0.60 | 0.73 |
Actinolite | 0.00 | 0.07 | 0.02 | 0.06 | 0.96 |
Kinoshitalite | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Ferro-Actinolite | 0.07 | 0.24 | 0.82 | 0.19 | 0.17 |
Diopside | 0.10 | 0.00 | 0.18 | 0.02 | 0.03 |
Allanite-(Ce) | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 |
Monazite | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 |
Titanite | 0.00 | 0.04 | 1.17 | 0.09 | 0.60 |
Andradite | 0.00 | 0.10 | 0.01 | 0.03 | 0.04 |
Apatite | 1.31 | 0.81 | 1.72 | 1.65 | 1.60 |
Kaolinite | 0.00 | 0.00 | 0.01 | 0.03 | 0.07 |
Olivine | 0.56 | 0.00 | 1.43 | 0.41 | 0.15 |
Enstatite | 0.00 | 0.00 | 0.06 | 0.01 | 0.15 |
Corundum | 0.00 | 0.09 | 0.13 | 0.00 | 0.00 |
Xenotime-(Y) | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
Zircon | 0.01 | 0.11 | 0.52 | 0.47 | 0.40 |
Ilmenite | 0.00 | 0.05 | 0.01 | 0.10 | 0.12 |
Rutile | 0.01 | 0.04 | 0.13 | 0.32 | 0.28 |
Goethite | 0.00 | 0.03 | 0.00 | 0.05 | 0.02 |
Pyrrhotite | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 |
Romanechite | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 |
Zoisite | 0.00 | 0.00 | 0.00 | 0.21 | 0.54 |
Alstonite | 0.01 | 0.04 | 0.04 | 0.10 | 0.06 |
Total | 93.98 | 99.32 | 97.25 | 86.76 | 81.63 |
POS | 18.75 | 0.01 | 5.76 | 1.44 | 1.14 |
ATi | 99.96 | 98.26 | 96.55 | 95.22 | 91.83 |
Residual | Exchangeable | Carbonate Bound | Fe/Mn Oxide Bound | Organically Bound | Sum | Total Se | ||
---|---|---|---|---|---|---|---|---|
NR-1 | 0.86 | 0.21 | <0.02 | 0.16 | 0.65 | 1.87 | 1.81 | |
NR-5 | 0.22 | 0.01 | 0.02 | 0.53 | 0.74 | 1.52 | 1.50 | |
A | NR-7 | 0.11 | 0.33 | <0.02 | 0.02 | 0.56 | 1.02 | 0.83 |
NR-8 | 0.88 | 0.08 | <0.02 | 1.00 | 1.16 | 3.11 | 2.88 | |
NR-10 | 2.12 | 0.09 | 0.04 | 2.53 | 2.88 | 7.66 | 7.40 | |
Percent of speciation (%) | 10.53~45.87 | 0.73~32.7 | <3.00 | 1.95~34.92 | 34.52~54.76 | |||
NR-3 | 18.55 | 0.48 | 0.48 | 0.36 | 1.83 | 21.70 | 18.82 | |
NR-13 | 23.47 | 0.81 | <0.02 | 0.55 | 0.68 | 25.51 | 24.43 | |
B | NR-15 | 20.68 | 0.75 | <0.02 | 0.22 | 0.45 | 22.11 | 21.66 |
NR-17 | 15.92 | 0.73 | <0.02 | 0.27 | 0.66 | 17.57 | 15.46 | |
NR-18 | 22.00 | 1.24 | <0.02 | 0.27 | 1.08 | 24.60 | 23.58 | |
Percent of Se speciation (%) | 85.52~93.55 | 3.19~5.04 | <3.00 | 1.00~2.14 | 2.06~8.44 | |||
NRT-01 | 19.10 | 0.46 | <0.02 | 0.19 | 1.87 | 21.62 | 22.13 | |
NRT-03 | 18.80 | 0.45 | <0.02 | 0.54 | 2.77 | 22.56 | 19.88 | |
NRT-05 | 14.02 | 0.44 | 0.03 | 0.27 | 2.50 | 17.25 | 17.12 | |
Soil | WMT-03 | 0.99 | 0.26 | <0.02 | 0.16 | 1.98 | 3.40 | 3.15 |
GQT-01 | 0.06 | 0.38 | <0.02 | 0.22 | 1.56 | 2.22 | 1.78 | |
GQT-07 | 0.07 | 0.38 | <0.02 | 0.11 | 1.33 | 1.88 | 1.56 |
Residual | Exchangeable | Carbonate Bound | Fe/Mn Oxide Bound | Organically Bound | Water Soluble | Humic Acid Bound | |
---|---|---|---|---|---|---|---|
NRT-01 | 88.32% | 2.15% | 0.09% | 0.86% | 8.66% | ~ | ~ |
NRT-03 | 83.34% | 1.98% | 0.09% | 2.40% | 12.28% | ~ | ~ |
NRT-05 | 81.28% | 2.53% | 0.15% | 1.57% | 14.48% | ~ | ~ |
WMT-03 | 29.19% | 7.74% | 0.90% | 4.83% | 58.24% | ~ | ~ |
GQT-01 | 2.92% | 16.93% | 1.06% | 9.75% | 70.41% | ~ | ~ |
GQT-07 | 3.50% | 20.06% | 1.06% | 5.78% | 70.66% | ~ | ~ |
Mingbei [119] | 34.85% | 9.25% | 7.50% | 46.56% | 1.84% | ~ | |
Shandong [120] | 34.82% | 1.54% | 3.20% | 0.17% | 38.22% | 1.00% | 21.95% |
Ningxia [121] | 50.11% | 5.32% | 2.55% | 2.40% | 23.01% | 5.43% | 11.18% |
Qinghai [122] | 42.95% | 3.06% | 3.06% | 1.47% | 31.83% | 3.32% | 14.31% |
Anhui [123] | 26.69% | 7.50% | 4.19% | 2.75% | 38.46% | 2.05% | 18.36% |
Inner Mongolia [124] | 29.63% | 5.51% | 3.32% | 1.60% | 18.54% | 3.24% | 23.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Liu, S.; Song, W.; Hou, C.; Yang, Y. Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China. Minerals 2024, 14, 612. https://doi.org/10.3390/min14060612
Feng C, Liu S, Song W, Hou C, Yang Y. Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China. Minerals. 2024; 14(6):612. https://doi.org/10.3390/min14060612
Chicago/Turabian StyleFeng, Caixia, Shen Liu, Wenlei Song, Chenhui Hou, and Yanhong Yang. 2024. "Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China" Minerals 14, no. 6: 612. https://doi.org/10.3390/min14060612
APA StyleFeng, C., Liu, S., Song, W., Hou, C., & Yang, Y. (2024). Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China. Minerals, 14(6), 612. https://doi.org/10.3390/min14060612