Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
3. Results
3.1. Zircon U-Pb Dating
3.2. Apatite Fission Track Dating
3.3. U-Th/He Dating
Sample Number | 4He (nmol) | Mass (μg) | a FT | U (ppm) | Th (ppm) | Sm (ppm) | Th/U | b eU (ppm) | Uncorr. Age (Ma) | Corr. Age (Ma) | ±1σ (Ma) | c ESR (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Apatite | ||||||||||||
FK-637-1 | 6.45 × 10−4 | 27.21 | 0.757 | 32.51 | 27.27 | 35.97 | 0.85 | 38.7 | 11.8 | 15.5 | 9.1 | 50.9 |
FK-637-3 | 9.28 × 10−4 | 33.38 | 0.745 | 33.25 | 8.09 | 29.94 | 0.25 | 34.9 | 15.2 | 20.4 | 3.7 | 55.6 |
FK-637-2 | 3.03 × 10−3 | 29.07 | 0.731 | 47.42 | 1.64 | 34.88 | 0.03 | 47.5 | 41.5 | 56.8 | 23.5 | 52.4 |
18.0 | 2.4 | |||||||||||
FK-638-1 | 1.28 × 10−3 | 15.55 | 0.68 | 115.61 | 0.49 | 44.02 | 0.00 | 114.9 | 13.6 | 19.9 | 31.0 | 44.2 |
FK-638-2 | 4.88 × 10−3 | 24.33 | 0.718 | 199.78 | 3.45 | 57.02 | 0.02 | 199.1 | 18.7 | 26.0 | 5.0 | 50.8 |
FK-638-3 | 4.71 × 10−4 | 12.48 | 0.66 | 63.81 | 21.43 | 51.33 | 0.34 | 68.4 | 10.7 | 16.2 | 1.3 | 41.4 |
21.1 | 4.9 | |||||||||||
FK-639B-1 | 3.86 × 10−4 | 19.00 | 0.696 | 29.68 | 12.85 | 34.77 | 0.44 | 32.5 | 12.3 | 17.7 | 3.2 | 46.1 |
FK-639B-2 | 3.98 × 10−4 | 6.18 | 0.571 | 146.75 | 1.12 | 46.71 | 0.01 | 145.9 | 8.5 | 14.9 | 25.3 | 31.5 |
FK-639B-3 | 2.60 × 10−3 | 13.11 | 0.653 | 255.40 | 11.65 | 46.88 | 0.05 | 256.3 | 14.4 | 22.1 | 2.6 | 40.0 |
19.9 | 2.2 | |||||||||||
FK-640-1 | 1.93 × 10−3 | 44.35 | 0.749 | 41.20 | 0.59 | 23.89 | 0.01 | 41.0 | 20.0 | 26.7 | 12.5 | 56.9 |
FK-640-2 | 6.07 × 10−4 | 13.61 | 0.647 | 50.74 | 59.83 | 31.61 | 1.19 | 64.4 | 13.4 | 20.7 | 11.6 | 39.3 |
FK-640-3 | 7.26 × 10−4 | 17.66 | 0.674 | 49.58 | 4.97 | 29.95 | 0.10 | 50.4 | 15.8 | 23.4 | 10.4 | 42.8 |
23.6 | 2.5 | |||||||||||
FK-641-1 | 8.27 × 10−4 | 17.23 | 0.685 | 85.18 | 2.61 | 41.64 | 0.03 | 85.2 | 10.7 | 15.6 | 5.3 | 45.0 |
FK-641-2 | 1.30 × 10−3 | 36.75 | 0.75 | 60.53 | 0.75 | 32.98 | 0.01 | 60.3 | 11.0 | 14.7 | 6.7 | 56.7 |
FK-641-3 | 3.53 × 10−4 | 19.12 | 0.687 | 33.78 | 13.95 | 27.66 | 0.42 | 36.8 | 9.8 | 14.3 | 1.3 | 44.6 |
14.9 | 0.5 | |||||||||||
SG-2-1 | 6.14 × 10−4 | 16.74 | 0.687 | 52.37 | 46.44 | 12.14 | 0.89 | 62.9 | 11.2 | 16.3 | 0.3 | 45.3 |
SG-2-2 | 5.66 × 10−5 | 27.23 | 0.719 | 5.12 | 6.36 | 3.78 | 1.25 | 6.6 | 7.6 | 10.5 | 0.6 | 50.3 |
SG-2-3 | 3.13 × 10−4 | 15.70 | 0.675 | 35.06 | 12.02 | 17.76 | 0.35 | 37.6 | 10.5 | 15.5 | 0.8 | 42.9 |
14.1 | 2.5 | |||||||||||
SG-3-1 | 3.50 × 10−5 | 9.38 | 0.626 | 19.78 | 28.33 | 4.23 | 1.44 | 26.3 | 3.1 | 5.0 | 0.3 | 37.4 |
SG-3-2 | 4.31 × 10−4 | 24.96 | 0.73 | 43.75 | 37.10 | 9.92 | 0.85 | 52.1 | 6.3 | 8.6 | 3.3 | 52.9 |
SG-3-3 | 9.47 × 10−5 | 13.66 | 0.646 | 46.66 | 12.51 | 7.53 | 0.27 | 49.2 | 2.8 | 4.3 | 1.0 | 39.1 |
SG-3-4 | 1.60 × 10−4 | 14.90 | 0.664 | 27.14 | 4.36 | 4.09 | 0.16 | 27.9 | 7.9 | 11.9 | 3.1 | 42.1 |
6.0 | 1.9 | |||||||||||
Zircon | ||||||||||||
FKZ-637-1 | 1.14 × 10−2 | 27.21 | 0.757 | 239.54 | 164.99 | 0.97 | 0.69 | 276.6 | 28.1 | 37.1 | 0.3 | 37.6 |
FKZ-637-2 | 1.05 × 10−2 | 29.07 | 0.731 | 228.76 | 44.40 | 0.72 | 0.20 | 237.5 | 28.1 | 38.4 | 0.9 | 37.5 |
FKZ-637-3 | 1.87 × 10−2 | 33.38 | 0.745 | 343.01 | 98.24 | 1.03 | 0.29 | 363.6 | 28.4 | 38.1 | 0.4 | 41.5 |
37.9 | 0.6 | |||||||||||
FKZ-638-1 | 1.23 × 10−2 | 15.55 | 0.68 | 697.61 | 66.31 | 2.34 | 0.10 | 708.1 | 20.7 | 30.4 | 0.6 | 31.8 |
FKZ-638-2 | 1.02 × 10−3 | 24.33 | 0.718 | 6.94 | 7.44 | 1.09 | 1.08 | 8.6 | 110.4 | 153.8 | 16.6 | 37.5 |
FKZ-640-1 | 1.38 × 10−2 | 44.35 | 0.749 | 250.81 | 17.98 | 0.37 | 0.07 | 253.2 | 22.7 | 30.4 | 0.6 | 60.8 |
FKZ-640-2 | 1.35 × 10−2 | 13.61 | 0.647 | 418.68 | 251.72 | 1.61 | 0.61 | 474.8 | 38.7 | 59.8 | 0.5 | 41.5 |
FKZ-640-3 | 1.16 × 10−3 | 17.66 | 0.674 | 12.61 | 10.21 | 4.17 | 0.82 | 14.9 | 95.9 | 142.3 | 13.2 | 44.9 |
45.1 | 14.7 | |||||||||||
FKZ-641-1 | 1.21 × 10−2 | 17.23 | 0.685 | 413.64 | 56.13 | 1.38 | 0.14 | 423.8 | 30.6 | 44.7 | 0.8 | 47.6 |
FKZ-641-2 | 5.82 × 10−2 | 36.75 | 0.75 | 956.96 | 26.67 | 0.55 | 0.03 | 956.2 | 30.5 | 40.7 | 1.8 | 54.9 |
42.7 | 2.0 | |||||||||||
SGZ-1-1 | 6.08 × 10−2 | 18.84 | 0.751 | 1519.39 | 158.67 | 0.68 | 0.11 | 1545.6 | 38.4 | 51.2 | 0.7 | 45.7 |
SGZ-1-2 | 6.08 × 10−2 | 17.11 | 0.738 | 1039.36 | 216.72 | 1.09 | 0.21 | 1082.7 | 60.3 | 81.7 | 1.0 | 43.1 |
SGZ-1-3 | 6.08 × 10−2 | 9.70 | 0.695 | 764.81 | 128.30 | 2.41 | 0.17 | 789.4 | 145.3 | 209.1 | 6.5 | 36.8 |
66.5 | 15.3 | |||||||||||
SGZ-2-1 | 6.08 × 10−2 | 53.02 | 0.821 | 615.98 | 98.11 | 0.45 | 0.16 | 634.5 | 33.3 | 40.5 | 0.4 | 64.4 |
SGZ-2-3 | 3.32 × 10−2 | 16.44 | 0.731 | 988.08 | 610.67 | 1.74 | 0.62 | 1124.4 | 33.1 | 45.3 | 0.4 | 36.2 |
SGZ-2-2 | 6.08 × 10−2 | 11.02 | 0.692 | 1922.78 | 1047.15 | 2.87 | 0.55 | 2154.8 | 47.1 | 68.1 | 0.5 | 41.8 |
42.9 | 2.4 | |||||||||||
SGZ-3-1 | −5.63 × 10−6 | 5.54 | 0.639 | 9.02 | 24.25 | 5.23 | 2.73 | 14.6 | −2.6 | −4.1 | −1.7 | 30.6 |
SGZ-3-2 | 2.41 × 10−2 | 14.69 | 0.732 | 1258.40 | 100.58 | 2.33 | 0.08 | 1272.8 | 23.8 | 32.5 | 0.7 | 42.2 |
3.4. Thermal History Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oberhänsli, R.; Bousquet, R.; Candan, O.; Okay, A. Dating Subduction Events in East Anatolia, Turkey. Turk. J. Earth Sci. 2012, 21, 1–17. [Google Scholar]
- Oberhänsli, R.; Candan, O.; Bousquet, R.; Rimmele, G.; Okay, A.; Goff, J. Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform; Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., Starostenko, V., Eds.; Special Publications; Geological Society: London, UK, 2010; Volume 340, pp. 461–483. [Google Scholar]
- Robertson, A.H.F.; Parlak, O.; Taslı, K. Testing alternative tectonic models for the Permian-Pleistocene tectonic development of the Kyrenia Range, N Cyprus: Implications for E Mediterranean Tethyan palaeogeography. Gondwana Res. 2024, 132, 343–379. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Parlak, O.; Ustaomer, T. Overview of the Palaeozoic-neogene evolution of neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Pet. Geosci. 2012, 18, 381–404. [Google Scholar] [CrossRef]
- Garfunkel, Z. Neotethyan ophiolites: Formation and obduction within the life cycle of the host basins. In Tectonic Development of the Eastern Mediterranean Region; Robertson, A.H.F., Mountrakis, D., Eds.; Special Publications; Geological Society: London, UK, 2006; Volume 260, pp. 301–326. [Google Scholar]
- Garfunkel, Z. Origin of the Eastern Mediterranean basin: A reevaluation. Tectonophysics 2004, 391, 11–34. [Google Scholar] [CrossRef]
- Okay, A.I.; Zattin, M.; Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 2010, 38, 35–38. [Google Scholar] [CrossRef]
- Parlak, O.; Rizaoglu, T.; Bagci, U.; Karaoglan, F.; Hock, V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 2009, 473, 173–187. [Google Scholar] [CrossRef]
- Allen, M.B.; Armstrong, H.A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 265, 52–58. [Google Scholar] [CrossRef]
- Yılmaz, Y. Southeast Anatolian Orogenic Belt revisited (geology and evolution). Can. J. Earth Sci. 2019, 56, 1163–1180. [Google Scholar] [CrossRef]
- Karaoğlan, F.; Parlak, O.; Hejl, E.; Neubauer, F.; Klötzli, U. The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Res. 2016, 33, 190–208. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yiğitbaş, E.; Çemen, İ. Tectonics of the Southeast Anatolian Orogenic Belt. In Compressional Tectonics; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 203–222. [Google Scholar]
- Rolland, Y.; Perincek, D.; Kaymakci, N.; Sosson, M.; Barrier, E.; Avagyan, A. Evidence for ∼80–75Ma subduction jump during Anatolide–Tauride–Armenian block accretion and ∼48 Ma Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. J. Geodyn. 2012, 56–57, 76–85. [Google Scholar] [CrossRef]
- Oberhänsli, R.; Koralay, E.; Candan, O.; Pourteau, A.; Bousquet, R. Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif. Geodin. Acta 2014, 26, 175–190. [Google Scholar] [CrossRef]
- Cavazza, W.; Cattò, S.; Zattin, M.; Okay, A.I.; Reiners, P. Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey. Geosphere 2018, 14, 2277–2293. [Google Scholar] [CrossRef]
- Karaoğlan, F.; Parlak, O.; Robertson, A.; Thöni, M.; Klötzli, U.; Koller, F.; Okay, A.İ. Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia). In Geological Development of Anatolia and the Easternmost Mediterranean Region; Robertson, A.H.F., Parlak, O., Ünlügenç, U.C., Eds.; Special Publications; Geological Society: London, UK, 2013; Volume 372, pp. 249–272. [Google Scholar]
- Aktaş, G.; Robertson, A.H.F. The Maden Complex, SE Turkey: Evolution of a Neotethyan active margin. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Fleet, A.J., Eds.; Special Publications; Geological Society: London, UK, 1984; Volume 17, pp. 375–402. [Google Scholar]
- Yılmaz, Y. New Evidence and Model on the Evolution of the Southeast Anatolian Orogen. Geol. Soc. Am. Bull. 1993, 105, 251–271. [Google Scholar] [CrossRef]
- Yiğitbaş, E.; Yılmaz, Y. New evidence and solution to the Maden complex controversy of the Southeast Anatolian orogenic belt (Turkey). Geol. Rundsch. 1996, 85, 250–263. [Google Scholar] [CrossRef]
- Bialik, O.M.; Frank, M.; Betzler, C.; Zammit, R.; Waldmann, N.D. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean. Sci. Rep. 2019, 9, 8842. [Google Scholar] [CrossRef] [PubMed]
- Harzhauser, M.; Kroh, A.; Mandic, O.; Piller, W.E.; Gohlich, U.; Reuter, M.; Berning, B. Biogeographic responses to geodynamics: A key study all around the Oligo-Miocene Tethyan Seaway. Zool. Anz. 2007, 246, 241–256. [Google Scholar] [CrossRef]
- Hüsing, S.K.; Zachariasse, W.-J.; van Hinsbergen, D.J.J.; Krijgsman, W.; Inceöz, M.; Harzhauser, M.; Mandic, O.; Kroh, A. Oligocene–Miocene basin evolution in SE Anatolia, Turkey: Constraints on the closure of the eastern Tethys gateway. In Collision and Collapse at the Africa-Arabia-Eurasia Subduction Zone; Van Hinsbergen, D.J.J., Edwards, M.A., Govers, R., Eds.; Special Publications; Geological Society: London, UK, 2009; Volume 311, pp. 107–132. [Google Scholar]
- Şengör, A.M.C.; Özeren, M.S.; Keskin, M.; Sakinç, M.; Özbakır, A.D.; Kayan, İ. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Sci. Rev. 2008, 90, 1–48. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan Evolution of Turkey—A Plate Tectonic Approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Topak, Y. Growth of the imbrication zone along the southeast Anatolian orogenic belt: Evidence from fission track thermochronology from Gölbaşı region (SE Turkey). Turk. J. Earth Sci. 2022, 31, 178–192. [Google Scholar] [CrossRef]
- Gülyüz, E.; Durak, H.; Özkaptan, M.; Krijgsman, W. Paleomagnetic constraints on the early Miocene closure of the southern Neo-Tethys (Van region; East Anatolia): Inferences for the timing of Eurasia-Arabia collision. Glob. Planet. Chang. 2020, 185, 103089. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey—A synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef]
- Elitok, Ö.; Dolmaz, M.N. Tectonic Escape Mechanism in the Crustal Evolution of Eastern Anatolian Region (Turkey). In New Frontiers in Tectonic Research—At the Midst of Plate Convergence; Schattner, U., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 11. [Google Scholar]
- Koç, A.; Kaymakçı, N. Kinematics of Surgu Fault Zone (Malatya, Turkey): A remote sensing study. J. Geodyn. 2013, 65, 292–307. [Google Scholar] [CrossRef]
- Westaway, R.; Arger, J. Kinematics of the Malatya-Ovacik fault zone. Geodin. Acta 2001, 14, 103–131. [Google Scholar] [CrossRef]
- Westaway, R.; Demir, T.; Seyrek, A. Geometry of the Turkey-Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: The role of the Malatya-Ovacık Fault Zone in eastern Turkey. eEarth 2008, 3, 27–35. [Google Scholar] [CrossRef]
- Westaway, R.; Demir, T.; Seyrek, A.; Beck, A. Kinematics of active left-lateral faulting in SE Turkey from offset Pleistocene river gorges: Improved constraint on the rate and history of relative motion between the Turkish and Arabian plates. J. Geol. Soc. Lond. 2006, 163, 149–164. [Google Scholar] [CrossRef]
- Kaymakci, N.; Inceöz, M.; Ertepinar, P.; Koç, A. Late Cretaceous to Recent kinematics of SE Anatolia (Turkey); Special Publications; Geological Society: London, UK, 2010; Volume 340, pp. 409–435. [Google Scholar] [CrossRef]
- Whitney, D.L.; Delph, J.R.; Thomson, S.N.; Beck, S.L.; Brocard, G.Y.; Cosca, M.A.; Darin, M.H.; Kaymakcı, N.; Meijers, M.J.M.; Okay, A.I.; et al. Breaking plates: Creation of the East Anatolian fault, the Anatolian plate, and a tectonic escape system. Geology 2023, 51, 673–677. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Saroglu, F.; Olgun, S.; Elmaci, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Hisarlı, Z.M.; Çinku, M.; Ustaömer, T.; Keskin, M.; Orbay, N. Neotectonic deformation in the Eurasia–Arabia collision zone, the East Anatolian Plateau, E Turkey: Evidence from palaeomagnetic study of Neogene–Quaternary volcanic rocks. Int. J. Earth Sci. 2015, 1–27. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dai, J.; Xu, G.; Hou, Y.; Li, X. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review. Earth-Sci. Rev. 2015, 143, 36–61. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yiğitbaş, E.; Çemen, İ. Tectonics of the Southeast Anatolian Orogenic Belt. Earth Space Sci. Open Arch. 2022, 1–40. [Google Scholar] [CrossRef]
- Hozatlıoğlu, D.; Bozkaya, Ö.; Yalçın, H. Göksun, Afşin ve Ekinözü (Kahramanmaraş, Türkiye) Metamorfitlerindeki Fillosilikatların Jeokimyasal Özellikleri. Türkiye Jeoloji Bülteni 2020, 64, 41–74. [Google Scholar] [CrossRef]
- Yılmaz, A.; Bedi, Y.; Uysal, Ş.; Yusufoğlu, H.; Atabey, E.; ve Aydın, N. Doğu Toroslar’da Uzunyayla ile Beritdağı Arasının jeolojik yapısı. TPJD Bülteni 1993, 5, 69–87. [Google Scholar]
- Bedi, Y.; Yusufoğlu, H.; Beyazpirinç, M.; Özkan, M.K.; Usta, D.; Yıldız, H. Doğu Toroslar’ın Jeodinamik Evrimi (Afşin-Elbistan-Goksun-Sariz Dolayı) [Geodynaic Evolution of Eattern Taurides (Afşin-Elbitan-Göksun-Sarız)]; 11150; Maden Tetkik Ve Arama Genel Müdürlüğü: Ankara, Turkey, 2009; p. 388. [Google Scholar]
- Hozatlıoğlu, D.; Bozkaya, Ö.; Yalçın, H.; Yılmaz, H. Mineralogical characteristics of metamorphic massif units outcropping in Göksun, Afşin and Ekinözü (Kahramanmaraş) region. Bull. Miner. Res. Explor. 2019, 1–10. [Google Scholar] [CrossRef]
- Bilgiç, T. Turkey Geological Map, Sheet Sivas: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/SIVAS.pdf (accessed on 11 June 2024).
- Günay, Y.; Şenel, M. Turkey Geological Map, Sheet Cizre: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/CIZRE.pdf (accessed on 11 June 2024).
- Şenel, M.; Ercan, T. Turkey Geological Map, Sheet Van: Ankara, Turkey, Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/VAN.pdf (accessed on 11 June 2024).
- Ulu, U. Turkey Geological Map, Sheet Hatay: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/HATAY.pdf (accessed on 11 June 2024).
- Tarhan, N. Turkey Geological Map, Sheet Erzurum: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, Scale 1:500,000. 2002. Available online: https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/Erzurum.pdf (accessed on 11 June 2024).
- Bozkurt, E.; Mittwede, S.K. Introduction to the Geology of Turkey—A Synthesis. Int. Geol. Rev. 2001, 43, 578–594. [Google Scholar] [CrossRef]
- Žák, J.; Svojtka, M.; Hajná, J.; Ackerman, L. Detrital zircon geochronology and processes in accretionary wedges. Earth-Sci. Rev. 2020, 207, 103214. [Google Scholar] [CrossRef]
- Gulyuz, E. Apatite fission track dating of the Beypazari Granitoid: Insight for the inception of collision along the Northern Neotethys, Turkey. Geodin. Acta 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Farley, K.A. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Rev. Mineral. Geochem. 2002, 47, 819–844. [Google Scholar] [CrossRef]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Flowers, R.M.; Ketcham, R.A.; Shuster, D.L.; Farley, K.A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 2009, 73, 2347–2365. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Drake, H.; Tillberg, M. Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden. Tectonics 2017, 36, 1254–1274. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Gautheron, C.; Tassan-Got, L. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochim. Cosmochim. Acta 2011, 75, 7779–7791. [Google Scholar] [CrossRef]
- Linnemann, U.; Ouzegane, K.; Drareni, A.; Hofmann, M.; Becker, S.; Gärtner, A.; Sagawe, A. Sands of West Gondwana: An archive of secular magmatism and plate interactions—A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb–LA-ICP-MS detrital zircon ages. Lithos 2011, 123, 188–203. [Google Scholar] [CrossRef]
- Vermeesch, P. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiat. Meas. 2009, 44, 409–410. [Google Scholar] [CrossRef]
- He, J.; Thomson, S.N.; Reiners, P.W.; Hemming, S.R.; Licht, K.J. Rapid erosion of the central Transantarctic Mountains at the Eocene-Oligocene transition: Evidence from skewed (U-Th)/He date distributions near Beardmore Glacier. Earth Planet. Sci. Lett. 2021, 567, 117009. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Reilinger, R.E.; McClusky, S.C.; Oral, M.B.; King, R.W.; Toksoz, M.N.; Barka, A.A.; Kinik, I.; Lenk, O.; Sanli, I. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
- Ural, M.; Arslan, M.; Göncüoglu, M.C.; Tekin, K.U.; Kürüm, S. Late Cretaceous arc and back-arc formation within the Southern Neotethys: Whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazığ, SE Turkey). Ofioliti 2015, 40, 57–72. [Google Scholar]
- Ural, M.; Sayit, K.; Tekin, U.T. Whole-Rock and Nd-Pb Isotope Geochemistry and Radiolarian Ages of the Volcanics from the Yüksekova Complex (Maden Area, Elaziğ, E Turkey): Implications for A Late Cretaceous (Santonian-Campanian) Back-Arc Basin in the Southern Neotethys. Ofioliti 2022, 47, 65–83. [Google Scholar] [CrossRef]
- Göncüoğlu, C.; Turhan, N. Geology of the Bitlis Metamorphic Belt. In Geology of the Taurus Belt; Tekeli, O., Göncüoğlu, M.C., Eds.; Mineral Research and Expolaration Instutute of Turkey (MTA): Ankara, Turkey, 1984; pp. 237–244. [Google Scholar]
- Okay, A.I.; Zattin, M.; Özcan, E.; Sunal, G. Uplift of Anatolia. Turk. J. Earth Sci. 2020, 29, 696–713. [Google Scholar] [CrossRef]
- Pişkin, Ö.; Delaloye, M. Petrologie et G eochronologie des ophiolites de Çelikhan (Taurus Oriental, Turquie). Schweiz. Mineral. Petrogr. Mitteilungen 1981, 61, 133–145. [Google Scholar]
- Pişkin, Ö. Çelikhan Doğusu Lökokuvars-monzonitleri Üzerine Petrokimya ve Jeokronoloji Verileri (Adıyaman-Türkiye). Türkiye Jeoloji Kurumu Bülteni 1978, 21, 107–111. [Google Scholar]
- Tuncer, M. Neotethyan Tectonostratigraphic Evolution of SE Anatolian Basin, Türkiye. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2023. [Google Scholar]
- Yılmaz, H.; Alpaslan, M.; Temel, A. Two-stage felsic volcanism in the western part of the southeastern Anatolian orogen: Petrologic and geodynamic implications. Int. Geol. Rev. 2007, 49, 120–141. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Structure and Stratigraphy of Forearc Regions. AAPG Bull. 1979, 63, 2–31. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Seely, D.R. Forearc Stratigraphy and Structure. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2 May 1977. [Google Scholar]
- Pişkin, Ö. Çelikhan Çevresi Ultrabazikleri içindeki Rodenjitler ve Kimyasal Analizleri. Türkiye Jeoloji Kurumu Bülteni 1975, 18, 17–20. [Google Scholar]
- Gradstein, F.M.; Ogg, J.G.; Smith, A.G. A Geologic Time Scale 2004; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; AllÉ, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards For U-Th-Pb, Lu-Hf, Trace Element And REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Hasebe, N.; Barbarand, J.; Jarvis, K.; Carter, A.; Hurford, A.J. Apatite fission-track chronometry using laser ablation ICP-MS. Chem. Geol. 2004, 207, 135–145. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.S.; Yang, Y.H.; Hu, Z.C. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
Sample | Lithology | Lat | Long | Altitude (m) |
---|---|---|---|---|
FK637 | mica–quartz schist | 38.021438 | 37.17277 | 1180 |
FK638 | muscovite schist | 38.019075 | 37.1873 | 1181 |
FK639a | amphibole schist | 38.017914 | 37.18866 | 1180 |
FK639b | mica–quartz schist | 38.017914 | 37.18866 | 1180 |
FK640 | mica–quartz schist | 38.018566 | 37.19313 | 1185 |
FK641 | mica–quartz schist | 38.092591 | 37.14769 | 1157 |
SG-1 | plg + bio + quartz schist | 38.00113 | 37.12302 | 1275 |
SG-2 | bio + chlorite schist | 38.001756 | 37.11594 | 1190 |
SG-3 | bio + plg + quartz schist | 38.000647 | 37.11036 | 1130 |
Sample Number | No. of Grains | Ns | ρs (105 cm−2) | 238U (μg/g) | Dpar (μm) | P(χ2) | Pooled Age (Ma ± 1σ) | Central Age (Ma ± 1σ) | NL | MTL (μm ) | SD (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|
FK637 | 33 | 583 | 0.29 | 29.24 | 1.96 | 0.19 | 24.1 ± 1.1 | 26.6 ± 1.2 | 91 | 11.26 | 2.08 |
FK638 | 40 | 3562 | 0.12 | 86.24 | 1.94 | 0.26 | 17.9 ± 0.3 | 21.3 ± 0.4 | 163 | 11.04 | 2.02 |
FK639b | 43 | 1019 | 0.39 | 103.54 | 1.31 | 0.12 | 15.3 ± 0.5 | 18.0 ± 0.7 | 208 | 11.32 | 1.92 |
FK640 | 47 | 737 | 0.26 | 30.82 | 1.64 | 0.95 | 23.5 ± 0.9 | 26.2 ± 0.9 | 79 | 11.57 | 1.99 |
FK641 | 35 | 707 | 0.30 | 36.87 | 1.54 | 0.08 | 29.1 ± 1.3 | 31.0 ± 1.5 | 79 | 10.61 | 2.29 |
SG-1 | 42 | 711 | 0.27 | 28.30 | 1.64 | 0.03 | 29.6 ± 1.2 | 33.1 ± 1.6 | 44 | 11.38 | 2.38 |
SG-2 | 14 | 168 | 0.22 | 17.71 | 1.98 | 0.40 | 16.9 ± 3.2 | 30.0 ± 5.4 | 5 | 11.03 | 2.93 |
SG-3 | 13 | 181 | 0.15 | 20.31 | 1.96 | 0.87 | 17.7 ± 2.8 | 22.8 ± 3.4 | 20 | 11.27 | 2.41 |
Durango | 39 | 2036 | 1.97 | 12.90 | 0.98 | 28.9 ± 1.29 | 29.3 ± 1.3 |
Sample | Altitude (m) | AHe Age ± 1σ (Ma) | AFT Age ± 1σ (Ma) | ZHe Age ± 1σ (Ma) |
---|---|---|---|---|
FK637 | 1180 | 18 ± 2.4 | 26.7 ± 1.6 | 37.9 ± 0.6 |
FK638 | 1181 | 21.1 ± 4.9 | 20.4 ± 1.3 | 30.4 ± 0.6 |
FK639b | 1180 | 19.9 ± 2.2 | 18.1 ± 0.9 | |
FK640 | 1185 | 23.6 ± 2.5 | 25.8 ± 0.9 | 30.4 ± 0.6 |
FK641 | 1157 | 14.9 ± 0.5 | 31 ± 1.5 | 42.7 ± 2 |
SG1 | 1275 | 33.1 ± 1.6 | 51.2 ± 0.7 | |
SG2 | 1185 | 14.1 ± 2.5 | 32.3 ± 9.9 | 42.9 ± 2.4 |
SG3 | 1130 | 6 ± 1.9 | 23.4 ± 4.9 | 32.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gildir, S.; Karaoğlan, F.; Gülyüz, E. Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals 2024, 14, 614. https://doi.org/10.3390/min14060614
Gildir S, Karaoğlan F, Gülyüz E. Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals. 2024; 14(6):614. https://doi.org/10.3390/min14060614
Chicago/Turabian StyleGildir, Semih, Fatih Karaoğlan, and Erhan Gülyüz. 2024. "Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt" Minerals 14, no. 6: 614. https://doi.org/10.3390/min14060614
APA StyleGildir, S., Karaoğlan, F., & Gülyüz, E. (2024). Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt. Minerals, 14(6), 614. https://doi.org/10.3390/min14060614