In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Syntheses
2.2.1. Synthesis of 1-(2′,5′-Dihydroxyphenyl)-4-Decanylpyridinium Chloride, C10-Punicine
2.2.2. Synthesis of 1-(2′,5′-Dihydroxyphenyl)-4-Heptadecanylpyridinium Chloride, C17-Punicine)
2.3. Comminution
2.4. Froth Flotation
2.5. Analytics
2.5.1. Laser Diffraction
2.5.2. BET Adsorption
2.5.3. ICP–OES
2.5.4. SEM Imaging
3. Results and Discussion
3.1. Effect of Punicine Additives on the Comminution Process and Grinding Results
3.2. Froth Flotation of Punicine-Functionalized Minerals
3.3. Investigations of the Mechanism of In Situ Hydrophobization: Variation of the Addition Methods, IR-Spectroscopy, SEM Imaging and ICP–OES Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Critical Raw Materials Act. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/green-deal-industrial-plan/european-critical-raw-materials-act_en (accessed on 18 March 2024).
- Demand for Lithium Worldwide in 2020 and 2021 with a Forecast from 2022 to 2035. Available online: https://www.statista.com/statistics/452025/projected-total-demand-for-lithium-globally/ (accessed on 18 March 2024).
- Yang, D.; Chen, G.; Zhang, L.; Chen, Z.; Zhang, R.; Asghar, M.I.; Geng, S.; Lund, P.D. Low temperature ceramic fuel cells employing lithium compounds: A review. J. Power Sources 2021, 503, 120070. [Google Scholar] [CrossRef]
- Venkateswaran, C.; Sreemoolanadhan, H.; Vaish, R. Lithium aluminosilicate (LAS) glass-ceramics: A review of recent progress. Int. Mater. Rev. 2022, 67, 620–657. [Google Scholar] [CrossRef]
- Bahel, S.; Singh, R.; Kaur, G.; Narang, S.B. Low fire M-phase lithium based dielectric ceramics for microwave applications: A review. Ferroelectrics 2016, 502, 49–56. [Google Scholar] [CrossRef]
- Naumov, A.S.; Alkeseev, R.O.; Savinkov, V.I.; Sigaev, V.N. Nucleation and Crystals Growth in the Volume of Glass Li2O-Al2O3-SiO2 System. Glass Ceram. 2023, 96, 3–11. [Google Scholar] [CrossRef]
- Huang, S.J.; Wang, W.Z.; Jiang, H.; Zhao, H.F.; Ma, Y.P. Network Structure and Properties of Lithium Aluminosilicate Glass. Materials 2022, 15, 4555. [Google Scholar] [CrossRef]
- Yeh, F.M.; Volli, V.; Bin, L.W.; Tung, P.H.; Shu, C.M. Oxidative stability and thermal performance of ester based lube oil with lithium salt additives. Appl. Therm. Eng. 2019, 150, 1328–1336. [Google Scholar] [CrossRef]
- Song, Z.H.; Liang, Y.M.; Fan, M.J.; Zhou, F.; Liu, W.M. Lithium-based ionic liquids functionalized by sym-triazine and cyclotriphosphazene as high temperature lubricants. Tribol. Int. 2014, 70, 136–141. [Google Scholar] [CrossRef]
- Rivera, W.; Moreno-Quintanar, G.; Rivera, C.O.; Best, R.; Martinez, F. Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate. Sol. Energy 2011, 85, 38–45. [Google Scholar] [CrossRef]
- Sedighi, K.; Farhadi, M.; Liaghi, M. Exergy analysis: Parametric study on lithium bromide-water absorption refrigeration systems. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2007, 221, 1345–1351. [Google Scholar] [CrossRef]
- Stefanelli, E.; Puccini, M.; Pesetti, A.; Lo Frano, R.; Aquaro, D. Lithium orthosilicate as nuclear fusion breeder material: Optimization of the drip casting production technology. Nuclear Mater. Energy 2022, 30, 101131. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, S.L.; Cheung, E.J.H.; Siew, S.Y.; Li, C.J.; Liu, Y.; Tan, C.S.; Lal, M.; Chen, G.Y.; Dogheche, K.; et al. A Barium Titatnate-on-Oxide Insulator Optoelectronics Platform. Adv. Mater. 2021, 33, 2101128. [Google Scholar] [CrossRef]
- Schirmer, T.; Qiu, H.; Li, H.; Goldmann, D.; Fischlschweiger, M. Li-Distribution in Compounds of the Li2O-MgO-Al2O3-SiO2-CaO System–A First Survey. Metals 2020, 10, 1633. [Google Scholar] [CrossRef]
- Schirmer, T.; Qiu, H.; Goldmann, D.; Stallmeister, C.; Friedrich, B. Influence of P and Ti on Phase Formation at Solidification of Synthetic Slag Containing Li, Zr, La, and Ta. Minerals 2022, 12, 310. [Google Scholar] [CrossRef]
- Wittkowski, A.; Schirmer, T.; Qiu, H.; Goldmann, D.; Fittschen, U.E.A. Speciation of Manganese in a Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries. Metals 2021, 11, 188. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Parian, M.; Parapari, P.S.; Ghorbani, Y.; Rosenkranz, J. A Comparative Study on the Effects of Dry and Wet Grinding on Mineral Flotation Separation—A Review. J. Mater. Res. Technol. 2019, 8, 5004–5011. [Google Scholar] [CrossRef]
- Li, J.; Hitch, M. Ultra-Fine Grinding and Mechanical Activation of Mine Waste Rock Using a Planetary Mill for Mineral Carbonation. Int. J. Miner. Process. 2017, 158, 18–26. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Provis, J.L.; van Deventer, J.S.J. Effects of Grinding on the Preg-Robbing Potential of Quartz in an Acidic Chloride Medium. Miner. Eng. 2013, 52, 31–37. [Google Scholar] [CrossRef]
- Liu, J.; Long, H.; Corin, K.C.; O’Connor, C.T. A Study of the Effect of Grinding Environment on the Flotation of Two Copper Sulphide Ores. Miner. Eng. 2018, 122, 339–345. [Google Scholar] [CrossRef]
- Jung, H.J.; Sohn, Y.; Sung, H.G.; Hyun, H.S.; Shin, W.G. Physicochemical Properties of Ball Milled Boron Particles: Dry vs. Wet Ball Milling Process. Powder Technol. 2015, 269, 548–553. [Google Scholar] [CrossRef]
- Bocharov, V.A.; Ignatkina, V.A. On Regularities Observed in Formation of Liquid Phase Composition in Flotation Sulfide Pulp. J. Min. Sci. 2007, 43, 98–108. [Google Scholar] [CrossRef]
- Lin, H.K.; Walsh, D.E.; Yen, H. Effects of Tramp Grinding Steel and Iron Fines on Comminution, Flotation and Cyanidation. Min. Metall. Explor. 2013, 30, 191–196. [Google Scholar] [CrossRef]
- Feng, D.; Aldrich, C. A Comparison of the Flotation of Ore from the Merensky Reef after Wet and Dry Grinding. Int. J. Miner. Process. 2000, 60, 115–129. [Google Scholar] [CrossRef]
- Seke, M.D.; Pistorius, P.C. Effect of Cuprous Cyanide, Dry and Wet Milling on the Selective Flotation of Galena and Sphalerite. Miner. Eng. 2006, 19, 1–11. [Google Scholar] [CrossRef]
- Palm, N.A.; Shackleton, N.J.; Malysiak, V.; O’Connor, C.T. The Effect of Using Different Comminution Procedures on the Flotation of Sphalerite. Miner. Eng. 2010, 23, 1053–1057. [Google Scholar] [CrossRef]
- Koleini, S.M.J.; Abdollahy, M.; Soltani, F. Wet and dry Grinding Methods effect on the Flotation of Taknar Cu-Zn Sulfide ore using a mixed collector. In Proceedings of the 26th International Mineral Processing Congress, IMPC, New Delhi, India, 24–28 September 2012. [Google Scholar] [CrossRef]
- Peltoniemi, M.; Kallio, R.; Tanhua, A.; Luukkanen, S.; Perämäki, P. Mineralogical and Surface Chemical Characterization of Flotation Feed and Products after Wet and Dry Grinding. Miner. Eng. 2020, 156, 106500. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.; Liu, X.; Yu, F.; Lu, D. The Cleavage and Surface Properties of Wet and Dry Ground Spodumene and Their Flotation Behavior. Appl. Surf. Sci. 2015, 357, 333–339. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Wu, H.; Tian, J.; Liu, J.; Gao, Z.; Wang, L. Surface Crystal Chemistry of Spodumene with Different Size Fractions and Implications for Flotation. Sep. Purif. Technol. 2016, 169, 33–42. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.; Wang, X.; Miller, J.D.; Lu, D.; Zheng, X.; Zhao, Y.; Zheng, H. Effects of Grinding Environment and Lattice Impurities on Spodumene Flotation. Trans. Nonferrous Met. Soc. China 2019, 29, 1527–1537. [Google Scholar] [CrossRef]
- Tanhua, A.; Peltoniemi, M.; Kallio, R.; Peräniemi, S.; Luukkanen, S. The Effects of Dry Grinding and Chemical Conditioning during Grinding on the Flotation Response of a Cu-Zn Sulphide Ore and a Spodumene Pegmatite Silicate Ore. Miner. Eng. 2022, 189, 107865. [Google Scholar] [CrossRef]
- Wills, B.A.; Napier-Munn, T. Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier: Amsterdam, The Netherlands, 2006; p. 267. ISBN 0750644508. [Google Scholar]
- Nguyen, A.V.; Schulze, H.J. Colloidal Science of Flotation; Marcel Dekker: New York, NY, USA, 2004; ISBN 0824747828. [Google Scholar]
- Weng, X.; Mei, G.; Zhao, T. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Sep. Purif. Technol. 2013, 103, 187–194. [Google Scholar] [CrossRef]
- Lima, R.N.G.; Brandao, P.R.G.; Peres, A.E.C. The infrared spectra of amine collectors used in the flotation of iron ores. Miner. Eng. 2005, 18, 267–273. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, M.; Gui, X.; Cao, Y.; Babel, B.; Rudolph, M.; Weber, S.; Kappl, M.; Butt, H.-J. The application of atomic force microscopy in mineral flotation. Adv. Colloid Interface Sci. 2018, 256, 373–392. [Google Scholar] [CrossRef]
- Hunter, T.N.; Pugh, R.J.; Franks, G.V.; Jameson, G.J. The role of particles in stabilizing foams and emulsions. Adv. Colloid Interface Sci. 2008, 137, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Polat, H.; Erdogan, D.J. Heavy metal removal from waste waters by ion flotation. Hazardous Mater. 2007, 148, 267–273. [Google Scholar] [CrossRef]
- Rahman, R.M.; Ata, S.; Jameson, G.J. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. Int. J. Miner. Process. 2012, 106, 70–77. [Google Scholar] [CrossRef]
- Zamboulis, D.; Pataroudi, S.; Zouboulis, A.; Matis, K. The application of sorptive flotation for the removal of metal ions. Desalination 2004, 162, 159–168. [Google Scholar] [CrossRef]
- Filippov, L.; Farrokhpay, S.; Lyo, L.; Filippova, I. Spodumen Flotation Mechanism. Minerals 2019, 9, 372. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Wu, H.; Fang, S.; Deng, W.; Peng, T.; Sun, W.; Hu, Y. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. J. Clean. Prod. 2018, 174, 625–633. [Google Scholar] [CrossRef]
- Lithium Aluminate. Available online: https://www.chemicalbook.com (accessed on 18 March 2024).
- Zgheib, A.; Fischer, M.H.; Namyslo, J.C.; Fittschen, U.E.A.; Wollmann, A.; Weber, A.P.; Schmidt, A. Photo-switchable Collectors for the Flotation of Lithium Aluminate for the Recycling of the Critical Raw Material Lithium. ChemSusChem 2024. in print. [Google Scholar] [CrossRef]
- Thiel, J.P.; Chiang, C.K.; Poeppelmeier, K.R. Structure of lithium aluminum hydroxide dihydrate (LiAl2(OH)7 . 2H2O). Chem. Mater. 1993, 5, 297–304. [Google Scholar] [CrossRef]
- Kropachev, A.; Kalabskiy, I. Hydrometallurgical preparation of lithium aluminum carbonate hydroxide hydrate Li2Al4(CO3)(OH)12 . 3H2O from aluminate solution. Miner. Eng. 2020, 155, 106470. [Google Scholar] [CrossRef]
- Beckermann, S.J.; Ford, R.B.; Nemeth, M.T. Conversion of gamma lithium aluminate to lithium aluminum carbonate hydroxide hydrate. Powder Diffr. 1996, 11, 312–317. [Google Scholar] [CrossRef]
- Nemeth, M.T.; Ford, R.B.; Taylor, T.A. Analysis of Mixtures of Gamma Lithium Aluminate, Lithium Aluminum Carbonate Hydroxide Hydrate, and Lithium Carbonate. MRS Online Proc. Libr. 1997, 496, 159–165. [Google Scholar] [CrossRef]
- Zgheib, A.; Acker, S.; Fischer, M.H.; Namyslo, J.C.; Strube, F.; Rudolph, M.; Fittschen, U.E.A.; Wollmann, A.; Weber, A.P.; Nieger, M.; et al. Lithium aluminate flotation by pH- and light-switchable collectors based on the natural product Punicine. RSC Adv. 2024, 14, 9353–9364. [Google Scholar] [CrossRef] [PubMed]
- Nawwar, M.A.; Hussein, S.A.; Merfort, I. Leaf phenolics of Punica granatum. Phytochemistry 1994, 37, 1175. [Google Scholar] [CrossRef]
- Schmidt, A.; Mordhorst, T.; Nieger, M. Investigation of a betainic alkaloid from Punica granatum. Nat. Prod. Res. 2005, 19, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Mordhorst, T. Conjugated, cross-conjugated, and pseudo-cross-conjugated derivatives of a pyridinium alkaloid from Punica granatum. Arkivoc 2003, 14, 233–245. [Google Scholar] [CrossRef]
- Otto, C.F.; Liu, M.; Herzberger, C.; Namyslo, J.C.; Nieger, M.; Hübner, E.G.; Lederle, F.; Freese, T.; Schmidt, A. Borane adducts of Punicine and of its dehydroxy derivatives (pyridinium-1-yl)-2- and 3-phenolates. Tetrahedron 2020, 76, 131627. [Google Scholar] [CrossRef]
- Nagorny, S.; Lederle, F.; Udachin, V.; Weingartz, T.; Hübner, E.G.; Dahle, S.; Maus-Friedrichs, W.; Adams, J.; Schmidt, A. Switchable Mesomeric Betaines Derived from Pyridinium-Phenolates and Bis(thienyl)ethane. Eur. J. Org. Chem. 2021, 2021, 3178–3189. [Google Scholar] [CrossRef]
- Albrecht, M.; Yulikov, M.; Kohn, T.; Jeschke, G.; Adams, J.; Schmidt, A. Pyridinium salts and ylides as partial structures of photoresponsive Merrifield resins. J. Mater. Chem. 2010, 20, 3025–3034. [Google Scholar] [CrossRef]
- Schmidt, A.; Albrecht, M.; Mordhorst, T.; Topp, M.; Jeschke, G. Studies on photocatalytically active materials containing structure elements of a pyridinium alkaoid from Punica granatum. J. Mater. Chem. 2007, 17, 2793–2800. [Google Scholar] [CrossRef]
- Schmidt, A.; Mordhorst, T.; Fleischhauer, H.; Jeschke, G. Coupled photocatalytic electron-transfers with 4,4’- bipyridinium derivatives of a betaine alkaloid from Punica granatum. Arkivoc 2005, 10, 150–164. [Google Scholar] [CrossRef]
- Albrecht, M.; Gjikaj, M.; Schmidt, A. Intermolecular interactions of punicin derivatives. Tetrahedron 2010, 66, 7149–7154. [Google Scholar] [CrossRef]
- Enguita, F.J.; Leitã, A.L. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers. BioMed Res. Int. 2013, 2013, 542168. [Google Scholar] [CrossRef] [PubMed]
- Deisinger, P.J.; Hill, T.S.; English, J.C. Human exposure to naturally occurring hydroquinone. J. Toxicol. Environ. Health 1996, 47, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Sims, G.K.; O’Loughlin, E.J.; Crawford, R.L. Degradation of pyridines in the environment. Crit. Rev. Environ. Control. 1989, 19, 309–340. [Google Scholar] [CrossRef]
- Minegishi, S.; Kobayashi, S.; Mayr, H. Solvent Nucleophilicity. J. Am. Chem. Soc. 2004, 126, 5174–5181. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.J.; Breugst, M.; Hampel, N.; Ofial, A.R.; Mayr, H. Ambident Reactivity of Phenolate Anions Revisited: A Quantitative Approach to Phenolate Reactivities. J. Org. Chem. 2019, 84, 8837–8858. [Google Scholar] [CrossRef] [PubMed]
- Kwade, A. A Stressing Model for the Description and Optimization of Grinding Processes. Chem. Eng. Technol. 2003, 26, 199–205. [Google Scholar] [CrossRef]
- Kwade, A. Mill Selection and Process Optimization Using a Physical Grinding Model. Int. J. Miner. Process. 2004, 74, S93–S101. [Google Scholar] [CrossRef]
- Burmeister, C.; Titscher, L.; Breitung-Faes, S.; Kwade, A. Dry Grinding in Planetary Ball Mills: Evaluation of a Stressing Model. Adv. Powder Technol. 2018, 29, 191–201. [Google Scholar] [CrossRef]
- Miethke, L.; Prziwara, P.; Finke, J.H.; Breitung-Faes, S. Opposing Effects of Additives in Dry Milling and Tableting of Organic Particles. Pharmaceutics 2021, 9, 1434. [Google Scholar] [CrossRef]
- Prziwara, P.; Breitung-Faes, S.; Kwade, A. Impact of Grinding Aids on Dry Grinding Performance, Bulk Properties and Surface Energy. Adv. Powder Technol. 2018, 29, 416–425. [Google Scholar] [CrossRef]
- Norori-McCormac, A.; Brito-Parada, P.R.; Hadler, K.; Cole, K.; Cilliers, J.J. The effect of particle size distribution on froth stability in flotation. Sep. Purif. Technol. 2017, 184, 240–247. [Google Scholar] [CrossRef]
- Weichert, R.; Schönert, K. Heat Generation at the Tip of a Moving Crack. J. Mech. Phys. Solids 1978, 26, 151–161. [Google Scholar] [CrossRef]
- Guduru, P.R.; Zehnder, A.T.; Rosakis, A.J.; Ravichandran, G. Dynamic Full Field Measurements of Crack Tip Temperatures. Eng. Fract. Mech. 2001, 68, 1535–1556. [Google Scholar] [CrossRef]
- Pandey, K.N.; Chand, S. Analysis of Temperature Distribution near the Crack Tip under Constant Amplitude Loading. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 316–326. [Google Scholar] [CrossRef]
- Sonoda, R.; Horibe, M.; Oshima, T.; Iwasaki, T.; Watano, S. Improvement of Dissolution Property of Poorly Water-Soluble Drug by Novel Dry Coating Method Using Planetary Ball Mill. Chem. Pharm. Bull. 2008, 56, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, P.; Teng, S.; Qian, Z.; Zhu, L.; Gogos, C.G. Simultaneous Milling and Coating of Inorganic Particulates with Polymeric Coating Materials Using a Fluid Energy Mill. Polym. Eng. Sci. 2010, 50, 2366–2374. [Google Scholar] [CrossRef]
- Dutta, P.K.; Puri, M. Anion Exchange in Lithium Aluminate Hydroxides. J. Phys. Chem. 1989, 93, 376–381. [Google Scholar] [CrossRef]
Flotation Yield [%] with 95% Confidence Interval | |||
---|---|---|---|
Em,eq = 1100 J g−1 | Em,eq = 8000 J g−1 | Em,eq = 2000 J g−1 | |
Daylight | 25.22 (8.39) | 27.13 (2.70) | 24.01 (9.76) |
UV-C | 19.98 (6.47) | 25.98 (11.63) | 23.44 (10.65) |
Concentration Al in mg/L | Concentration Li in mg/L | |
---|---|---|
LiAlO2 pure | 47.70 | 17.16 |
LiAlO2 + 5% C17-Punicine | 16.82 | 10.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, F.; Zgheib, A.; Fischer, M.H.; Büttner, L.; Schmidt, A.; Breitung-Faes, S. In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines. Minerals 2024, 14, 650. https://doi.org/10.3390/min14070650
Steiner F, Zgheib A, Fischer MH, Büttner L, Schmidt A, Breitung-Faes S. In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines. Minerals. 2024; 14(7):650. https://doi.org/10.3390/min14070650
Chicago/Turabian StyleSteiner, Frédéric, Ali Zgheib, Maximilian Hans Fischer, Lukas Büttner, Andreas Schmidt, and Sandra Breitung-Faes. 2024. "In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines" Minerals 14, no. 7: 650. https://doi.org/10.3390/min14070650
APA StyleSteiner, F., Zgheib, A., Fischer, M. H., Büttner, L., Schmidt, A., & Breitung-Faes, S. (2024). In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines. Minerals, 14(7), 650. https://doi.org/10.3390/min14070650