FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Collagen Extraction
2.2.2. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.3. Focused Ion Beam–Scanning Electron Microscopy (FIB-SEM)
2.2.4. Image Processing and Directionality Analysis
2.2.5. Volumes of the Less Mineralized Collagen Fibrils
3. Results
3.1. Determining of the Preservation States
Sample No. | Site | SF | Gelatin | C % | C/N | pMC ± 1σ |
---|---|---|---|---|---|---|
(RTD) | wt.% | |||||
10610* | Birgi | 2.73 | 13.2 | 44.26 | 2.80 | 78.7 ± 0.33 |
11184 | Birgi | 3.42 | 8.7 | 43.58 | 2.74 | 76.0 ± 0.38 |
10611 | Birgi | 2.76 | 6.8 | 43.62 | 2.76 | 72.9 ± 0.24 |
11198 | Birgi | 3.43 | 2.7 | 43.25 | 2.77 | 73.4 ± 0.22 |
11199 | Birgi | 3.30 | 2.4 | 46.73 | 2.78 | 73.0 ± 0.22 |
11183 | Birgi | 3.69 | 1.3 | 43.24 | 2.77 | 77.6 ± 0.41 |
11158 | Selinunte | 3.97 | 10.2 | 43.58 | 2.76 | 88.5 ± 0.34 |
10619* | Selinunte | 4.16 | 6.0 | 43.94 | 2.78 | 75.9 ± 0.33 |
11187 | Lilibeo | 3.48 | 1.9 | 43.3 | 2.78 | 77.0 ± 0.20 |
3.2. Petrous Bone Structure Using FIB-SEM
3.2.1. Outer Petrous Bone Layers
3.2.2. Inner Petrous Bone Layers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Currey, J.D. The mechanical properties of bone tissues with greatly differing functions. J. Biomech. 1979, 12, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Doden, E.; Halves, R. On the functional morphology of the human petrous bone. Am. J. Anat. 1984, 169, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.S. Temporal bone dynamics, the hard way: Formation, growth, modeling, repair and quantum type bone remodeling in the otic capsule. Acta Oto-Laryngol. 1994, 114, 5–22. [Google Scholar] [CrossRef]
- Gamba, C.; Jones, E.R.; Teasdale, M.D.; McLaughlin, R.L.; Gonzalez-Fortes, G.; Mattiangeli, V.; Domboróczki, L.; Kővári, I.; Pap, I.; Anders, A.; et al. Genome flux and stasis in a five millenium transect of human history. Nat. Commun. 2014, 5, 5257. [Google Scholar] [CrossRef] [PubMed]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Li, Y.; Lindgreen, S.; Pedersen, J.S.; Albrechtsen, A.; Moltke, I.; Metspalu, M.; Metspalu, E.; Kivisild, T.; Gupta, R.; et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 2010, 463, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Rechav, K.; Boaretto, E.; Weiner, S. Three dimensional structures of the inner and outer pig petrous bone using FIB-SEM: Implications for development and ancient DNA preservation. J. Struct. Biol. 2023, 215, 107998. [Google Scholar] [CrossRef] [PubMed]
- Bloch, S.L.; Sorensen, M.S. The viability and spatial distribution of osteocytes in the human labyrynthine capsule: A quantitative study using vector-based stereology. Hear. Res. 2010, 270, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Brumveld, V.; Addadi, S.; Rubin, S.; Weiner, S.; Boaretto, E. The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PLoS ONE 2022, 17, e0269348. [Google Scholar] [CrossRef]
- Sirak, K.A.; Fernandes, D.M.; Cheronet, O.; Novak, M.; Gamarra, B.; Balassa, T.; Bernert, Z.; Cséki, A.; Dani, J.; Gallina, J.Z.; et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques 2017, 62, 283–289. [Google Scholar] [CrossRef]
- Kulstein, G.; Hadrys, T.; Wiegand, P. As solid as a rock—Comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int. J. Legal Med. 2018, 132, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Pilli, E.; Vai, S.; Caruso, M.G.; D’Errico, G.; Berti, A.; Caramelli, D. Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci. Int. 2018, 283, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.S.; Bretlau, P.; Jørgensen, M.B. Quantum type bone remodeling in the otic capsule of the pig. Acta Oto-Laryngol. 1990, 110, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Miket, R.; van der Veen, M.; Weyman, J. Ritual enclosures at Whitton Hill, Northumberland. Proc. Prehist. Soc. 1985, 51, 137–148. [Google Scholar] [CrossRef]
- Wolska, B. Applying isotope analyses of cremated human bones in archaeological research—A review. Analecta Archaeol. Ressoviensia 2020, 15, 7–16. [Google Scholar] [CrossRef]
- Chmielewski, T.J.; Hałuszko, A.; Goslar, T.; Cheronet, O.; Hajdu, T.; Szeniczey, T.; Virag, C. Increase in 14C dating accuracy of prehistoric skeletal remains by optimised bone sampling: Chronometric studies on eneolithic burials from Mikulin 9 (Poland) and Urziceni-Vada Ret (Romania). Geochronometria 2020, 47, 196–208. [Google Scholar] [CrossRef]
- Boaretto, E.; Wu, X.; Yuan, J.; Bar-Yosef, O.; Chu, V.; Pan, Y.; Liu, K.; Cohen, D.; Jiao, T.; Li, S.; et al. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. Proc. Natl. Acad. Sci. USA 2009, 106, 9595–9600. [Google Scholar] [CrossRef] [PubMed]
- Brock, F.; Higham, T.F.G.; Bronk Ramsey, C. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. J. Archaeol. Sci. 2010, 37, 855–865. [Google Scholar] [CrossRef]
- Weiner, S.; Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 1990, 17, 187–196. [Google Scholar] [CrossRef]
- Glasbey, C.A. An analysis of histogram-based thresholding algorithms. CVGIP Graph. Models Image Process. 1993, 55, 532–537. [Google Scholar] [CrossRef]
- Asscher, Y.; Regev, L.; Weiner, S.; Boaretto, E. Atomic disorder in fossil tooth and bone mineral: An FTIR study using the grinding curve method. ArchaeoSciences 2011, 35, 135–141. [Google Scholar] [CrossRef]
- Asscher, Y.; Weiner, S.; Boaretto, E. Variations in atomic disorder in biogenic carbonate hydroxyapatite using the infrared spectrum grinding curve method. Adv. Funct. Mat. 2011, 21, 3308–3313. [Google Scholar] [CrossRef]
- Raguin, E.; Rechav, K.; Shahar, R.; Weiner, S. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: Lamellae and cement sheath structures. Acta Biomater. 2021, 121, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Rohrlach, A.B.; Friederich, S.; Nagel, S.; Meyer, M.; Krause, J.; Bos, K.I.; Haak, W. A systematic investigation of human DNA preservation in medieval skeletons. Sci. Rep. 2020, 10, 18225. [Google Scholar] [CrossRef] [PubMed]
- Currey, J.D. Bones: Structure and Mechanics, 2nd ed.; Princeton University Press: Oxford, UK, 2002. [Google Scholar]
- Termine, J.D.; Posner, A.S. Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 1966, 211, 268–270. [Google Scholar] [CrossRef]
- Weiner, S. Microarchaeology; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Fernandes, D.M.; Sirak, K.A.; Cheronet, O.; Novak, M.; Brück, F.; Zelger, E.; Llanos-Lizcano, A.; Wagner, A.; Zettl, A.; Mandl, K.; et al. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res. 2023, 33, 622–631. [Google Scholar] [CrossRef]
Sample | Petrous Layer | Average (vol.%) | Std. Dev. |
---|---|---|---|
10610 | Outer | 1.0 | 0.2 |
Inner | 0.7 | 0.2 | |
10619 | Outer | 7.3 | 3.2 |
Inner | 4.3 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, J.; Mintz, E.; Regev, L.; Regev, D.; Gronau, I.; Weiner, S.; Boaretto, E. FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis. Minerals 2024, 14, 729. https://doi.org/10.3390/min14070729
Ibrahim J, Mintz E, Regev L, Regev D, Gronau I, Weiner S, Boaretto E. FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis. Minerals. 2024; 14(7):729. https://doi.org/10.3390/min14070729
Chicago/Turabian StyleIbrahim, Jamal, Eugenia Mintz, Lior Regev, Dalit Regev, Ilan Gronau, Steve Weiner, and Elisabetta Boaretto. 2024. "FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis" Minerals 14, no. 7: 729. https://doi.org/10.3390/min14070729
APA StyleIbrahim, J., Mintz, E., Regev, L., Regev, D., Gronau, I., Weiner, S., & Boaretto, E. (2024). FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis. Minerals, 14(7), 729. https://doi.org/10.3390/min14070729