Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Water Analysis
2.1.2. Chemical Composition
2.1.3. XRD Analysis
2.1.4. Particle Size Distribution
2.1.5. Specific Surface Area
2.1.6. Bulk Density
2.1.7. Moisture Content
2.1.8. Scanning Electron Microscopy Analysis
2.2. Sample Preparation
2.2.1. Mixture Design
2.2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Density
2.3.2. Uniaxial Compressive Strength (UCS) Test
2.3.3. Elastic Modulus
2.3.4. Slump Test
2.3.5. Microscopic and Spectroscopic Investigations
3. Results and Discussions
3.1. Density
3.2. Uniaxial Compressive Strength (UCS)
3.2.1. Coefficient of Variation (CV)
3.2.2. Strength Development Model
3.3. Elastic Modulus
3.4. Slump Yield Stress
3.5. Microscopic and Spectroscopic Analyses
3.5.1. SEM-EDX Analysis
3.5.2. FTIR Analysis
3.5.3. XRD Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Bakri, A.Y.; Ahmed, H.M.; Hefni, M.A. Cement Kiln Dust (CKD): Potential Beneficial Applications and Eco-Sustainable Solutions. Sustainability 2022, 14, 7022. [Google Scholar] [CrossRef]
- Al-Bakri, A.Y.; Ahmed, H.M.; Hefni, M.A. Eco-Sustainable Recycling of Cement Kiln Dust (CKD) and Copper Tailings (CT) in the Cemented Paste Backfill. Sustainability 2023, 15, 3229. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of Cement Kiln Dust (CKD) in Cement Mortar and Concrete-an Overview. Resour. Conserv. Recycl. 2006, 48, 315–338. [Google Scholar] [CrossRef]
- Kessler, G.R. Cement Kiln Dust (CKD) Methods for Reduction and Control. IEEE Trans. Ind. Appl. 1995, 31, 407–412. [Google Scholar] [CrossRef]
- Abdalla, A.A.; Salih Mohammed, A. Theoretical Models to Evaluate the Effect of SiO2 and CaO Contents on the Long-Term Compressive Strength of Cement Mortar Modified with Cement Kiln Dust (CKD). Arch. Civ. Mech. Eng. 2022, 22, 105. [Google Scholar] [CrossRef]
- Ranjkesh Adarmanabadi, H.; Rasti, A.; Razavi, M. Long-Term Effects of Cement Kiln Dust (CKD) on Erosion Control of a Soil Slope. Int. J. Geotech. Eng. 2021, 16, 225–238. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency. Report to Congress on Cement Kiln Dust (Report:EPA/530-R-94-001); EPA: Washington, DC, USA, 1993. [Google Scholar]
- Kunal; Siddique, R.; Rajor, A. Use of Cement Kiln Dust in Cement Concrete and Its Leachate Characteristics. Resour. Conserv. Recycl. 2012, 61, 59–68. [Google Scholar] [CrossRef]
- Seo, M.; Lee, S.Y.; Lee, C.; Cho, S.S. Recycling of Cement Kiln Dust as a Raw Material for Cement. Environments 2019, 6, 113. [Google Scholar] [CrossRef]
- Ghavami, S.; Jahanbakhsh, H.; Saeedi Azizkandi, A.; Moghadas Nejad, F. Influence of Sodium Chloride on Cement Kiln Dust-Treated Clayey Soil: Strength Properties, Cost Analysis, and Environmental Impact. Environ. Dev. Sustain. 2021, 23, 683–702. [Google Scholar] [CrossRef]
- Pedraza, J.; Zimmermann, A.; Tobon, J.; Schomäcker, R.; Rojas, N. On the Road to Net Zero-Emission Cement: Integrated Assessment of Mineral Carbonation of Cement Kiln Dust. Chem. Eng. J. 2021, 408, 127346. [Google Scholar] [CrossRef]
- Mohamed, A.M.O.; El Gamal, M.M. Solidification of Cement Kiln Dust Using Sulfur Binder. J. Hazard. Mater. 2011, 192, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Lachemi, M.; Hossain, K.M.A.; Shehata, M.; Thaha, W. Controlled Low Strength Materials Incorporating Cement Kiln Dust from Various Sources. Cem. Concr. Compos. 2008, 30, 381–392. [Google Scholar] [CrossRef]
- Abdel-wahed, T.; Dulaimi, A.; Shanbara, H.K.; Nageim, H. Al The Impact of Cement Kiln Dust and Cement on Cold Mix Asphalt Characteristics at Different Climate. Sustainability 2022, 14, 4173. [Google Scholar] [CrossRef]
- Abbas, R.A.H.; Shehata, N.; Elrahman, E.A.; Salah, H.; Abdelzahera, M.A. Environmental Safe Disposal of Cement Kiln Dust for the Production of Geopolymers. Egypt. J. Chem. 2021, 64, 7429–7437. [Google Scholar] [CrossRef]
- Lima, M.S.S.; Hajibabaei, M.; Thives, L.P.; Haritonovs, V.; Buttgereit, A. Environmental Potentials of Asphalt Mixtures Fabricated with Red Mud and Fly Ash. Road Mater. Pavement Des. 2021, 22, S690–S701. [Google Scholar] [CrossRef]
- Abdel-Wahed, T.; AL Nageim, H. Investigating the Effects of Cement and Cement Kiln Dust as a Filler on the Mechanical Properties of Cold Bituminous Emulsion Mixtures. Int. J. Civ. Eng. Technol. 2016, 7, 441–453. [Google Scholar]
- Ghorab, H.Y.; Anter, A.; El Miniawy, H. Building with Local Materials: Stabilized Soil and Industrial Wastes. Mater. Manuf. Process. 2007, 22, 157–162. [Google Scholar] [CrossRef]
- Sreekrishnavilasam, A.; Rahardja, S.; Kmetz, R.; Santagata, M. Soil Treatment Using Fresh and Landfilled Cement Kiln Dust. Constr. Build. Mater. 2007, 21, 318–327. [Google Scholar] [CrossRef]
- Moon, D.H.; Wazne, M.; Yoon, I.H.; Grubb, D.G. Assessment of Cement Kiln Dust (CKD) for Stabilization/Solidification (S/S) of Arsenic Contaminated Soils. J. Hazard. Mater. 2008, 159, 512–518. [Google Scholar] [CrossRef]
- Carlson, K.; Sariosseiri, F.; Muhunthan, B. Engineering Properties of Cement Kiln Dust-Modified Soils in Western Washington State. Geotech. Geol. Eng. 2011, 29, 837–844. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Edil, T.B.; Son, Y.-H. Effectiveness of Cement Kiln Dust in Stabilizing Recycled Base Materials. J. Mater. Civ. Eng. 2012, 24, 1059–1066. [Google Scholar] [CrossRef]
- Albusoda, B.S.; Salem, L.A.K. Stabilization of Dune Sand By Using Cement Kiln Dust (CKD). J. Earth Sci. Geotech. Eng. 2012, 2, 131–143. [Google Scholar]
- Okafor, F.O.; Egbe, E.A. Potentials of Cement Kiln Dust in Sub-Grade Improvement. Niger. J. Technol. 2013, 32, 109–116. [Google Scholar]
- Gupta, S.; Pandey, M.K.; Srivastava, R.K. Evaluation of Cement Kiln Dust Stabilized Heavy Metals Contaminated Expansive Soil-A Laboratory Study. Eur. J. Adv. Eng. Technol. 2015, 2, 37–42. [Google Scholar]
- Arulrajah, A.; Mohammadinia, A.; D’Amico, A.; Horpibulsuk, S. Cement Kiln Dust and Fly Ash Blends as an Alternative Binder for the Stabilization of Demolition Aggregates. Constr. Build. Mater. 2017, 145, 218–225. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; D’Amico, A.; Horpibulsuk, S. Alkali-Activation of Fly Ash and Cement Kiln Dust Mixtures for Stabilization of Demolition Aggregates. Constr. Build. Mater. 2018, 186, 71–78. [Google Scholar] [CrossRef]
- Ekpo, D.U.; Fajobi, A.B.; Ayodele, A.L.; Etim, R.K. Potentials of Cement Kiln Dust-Periwinkle Shell Ash Blends on Plasticity Properties of Two Selected Tropical Soils for Use as Sustainable Construction Materials. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Ota, Nigeria, 27–28 July 2020; IOP Publishing: Bristol, UK, 2021; Volume 1036, p. 012033. [Google Scholar]
- Al-Harthy, A.S.; Taha, R.; Al-Maamary, F. Effect of Cement Kiln Dust (CKD) on Mortar and Concrete Mixtures. Constr. Build. Mater. 2003, 17, 353–360. [Google Scholar] [CrossRef]
- Mohammad, A.M.; Hilal, N. Re-Using The By-Product of Cement Industry (Cement Kiln Dust) To Produce The Concrete. Anbar J. Eng. Sci. 2010, 3, 1–14. [Google Scholar] [CrossRef]
- Marku, J.; Dumi, I.; Lico, E.; Dilo, T.; Çakaj, O. Ckd in Mortar & Conc Prodctn. Mater. Prot. 2012, 53, 334–345. [Google Scholar]
- El-Mohsen, M.A.; Anwar, A.M.; Adam, I.A. Mechanical Properties of Self-Consolidating Concrete Incorporating Cement Kiln Dust. HBRC J. 2015, 11, 1–6. [Google Scholar] [CrossRef]
- Hussain, G.S.; Rao, R. Experimental Studies on Concrete Containing Cement Kiln Dust and Fly Ash. Singaporean J. Sci. Res. 2014, 6, 85–88. [Google Scholar]
- Sadek, D.M.; El-Attar, M.M.; Ali, A.M. Physico-Mechanical and Durability Characteristics of Concrete Paving Blocks Incorporating Cement Kiln Dust. Constr. Build. Mater. 2017, 157, 300–312. [Google Scholar] [CrossRef]
- Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Sustainable Composite of Improved Lightweight Concrete from Cement Kiln Dust with Grated Poly(Styrene). J. Clean. Prod. 2020, 277, 123491. [Google Scholar] [CrossRef]
- Bagheri, S.M.; Koushkbaghi, M.; Mohseni, E.; Koushkbaghi, S.; Tahmouresi, B. Evaluation of Environment and Economy Viable Recycling Cement Kiln Dust for Use in Green Concrete. J. Build. Eng. 2020, 32, 101809. [Google Scholar] [CrossRef]
- Aydin, T.; Tarhan, M.; Tarhan, B. Addition of Cement Kiln Dust in Ceramic Wall Tile Bodies. J. Therm. Anal. Calorim. 2019, 136, 527–533. [Google Scholar] [CrossRef]
- Ewais, E.M.M.; Ahmed, Y.M.Z.; El-Amir, A.A.M.; El-Didamony, H. Cement Kiln Dust-Quartz Derived Wollastonite Ceramics. J. Ceram. Soc. Jpn. 2015, 123, 527–536. [Google Scholar] [CrossRef]
- Ali, M.A.M.; Yang, H.S. Utilization of Cement Kiln Dust in Industry Cement Bricks. Geosystem Eng. 2011, 14, 29–34. [Google Scholar] [CrossRef]
- Ogila, W.A. Recycling of Cement Kiln Dust in Red Clay Bricks and Its Impact on Their Physico-Mechanical Behaviors. Int. J. Sci. Eng. Res. 2014, 5, 1072–1080. [Google Scholar]
- El-Attar, M.M.; Sadek, D.M.; Salah, A.M. Recycling of High Volumes of Cement Kiln Dust in Bricks Industry. J. Clean. Prod. 2017, 143, 506–515. [Google Scholar] [CrossRef]
- Abdel-Gawwad, H.A.; Rashad, A.M.; Mohammed, M.S.; Tawfik, T.A. The Potential Application of Cement Kiln Dust-Red Clay Brick Waste-Silica Fume Composites as Unfired Building Bricks with Outstanding Properties and High Ability to CO2-Capture. J. Build. Eng. 2021, 42, 102479. [Google Scholar] [CrossRef]
- Abdulkareem, A.H.; Eyada, S.O. Production of Building Bricks Using Cement Kiln Dust CKD Waste. In Proceedings of the Sustainable Civil Infrastructures, Cairo, Egypt, 24–28 November 2018; Springer: Cham, Switzerland, 2018; pp. 102–113. [Google Scholar]
- Al-Refeai, T.O.; Al-Karni, A.A. Experimental Study on the Utilization of Cement Kiln Dust for Ground Modification. J. King Saud Univ.-Eng. Sci. 1999, 11, 217–231. [Google Scholar] [CrossRef]
- Daous, M. Utilization of Cement Kiln Dust and Fly Ash in Cement Blends in Saudi Arabia. J. King Abdulaziz Univ. Sci. 2004, 15, 33–45. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Al-Amoudi, O.S.B.; Shameem, M.; Rehman, M.K.; Ibrahim, M. Usage of Cement Kiln Dust in Cement Products—Research Review and Preliminary Investigations. Constr. Build. Mater. 2008, 22, 2369–2375. [Google Scholar] [CrossRef]
- Mahyoup, G. Stabilization of Eastern Saudi Soils Using Heavy Fuel Oil Fly Ash and Cement Kiln Dust. Master’s Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2009. [Google Scholar]
- Ghazaly, M.; Almaghrabi, N.; Ebrahiem, E. Study on the Reuse of Cement Kiln Dust in the Production of Cement Concerts. Minia J. Eng. Technol. 2012, 31, 63–68. [Google Scholar]
- Alawi, M. Utilization of Using Cement Kiln Dust (Ckd) As a Surfacial Clay Soil Stabilizer Underneath Roads. J. Al-Azhar Univ. Eng. Sect. 2016, 11, 1101–1111. [Google Scholar] [CrossRef]
- Al-Homidy, A.A.; Dahim, M.H.; Abd El Aal, A.K. Improvement of Geotechnical Properties of Sabkha Soil Utilizing Cement Kiln Dust. J. Rock Mech. Geotech. Eng. 2017, 9, 749–760. [Google Scholar] [CrossRef]
- Alharthi, Y.M.; Elamary, A.S.; Abo-El-wafa, W. Performance of Plain Concrete and Cement Blocks with Cement Partially Replaced by Cement Kiln Dust. Materials 2021, 14, 5647. [Google Scholar] [CrossRef]
- Badri, A.; Nadeau, S.; Gbodossou, A. A Mining Project Is a Field of Risks: A Systematic and Preliminary Portrait of Mining Risks. Int. J. Saf. Secur. Eng. 2012, 2, 145–166. [Google Scholar] [CrossRef]
- Ivanova, G. The Mining Industry in Queensland, Australia: Some Regional Development Issues. Resour. Policy 2014, 39, 101–114. [Google Scholar] [CrossRef]
- Sheshpari, M. A Review of Underground Mine Backfilling Methods with Emphasis on Cemented Paste Backfill. Electron. J. Geotech. Eng. 2015, 20, 5183–5208. [Google Scholar]
- Qi, C.; Fourie, A. Cemented Paste Backfill for Mineral Tailings Management: Review and Future Perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Tariq, A.; Yanful, E.K. A Review of Binders Used in Cemented Paste Tailings for Underground and Surface Disposal Practices. J. Environ. Manag. 2013, 131, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Belem, T.; Benzaazoua, M. Design and Application of Underground Mine Paste Backfill Technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
- Peyronnard, O.; Benzaazoua, M. Alternative By-Product Based Binders for Cemented Mine Backfill: Recipes Optimisation Using Taguchi Method. Miner. Eng. 2012, 29, 28–38. [Google Scholar] [CrossRef]
- Lutyński, M.; Pierzyna, P. Reuse of Cement Kiln Dust for Backfilling and CO2 Carbonation. In Proceedings of the Mineral Engineering Conference MEC2017, Wisla, Poland, 20–23 September 2017; Volume 18. [Google Scholar]
- Beltagui, H.; Sonebi, M.; Maguire, K.; Taylor, S. Feasibility of Backfilling Mines Using Cement Kiln Dust, Fly Ash, and Cement Blends. In Proceedings of the 2nd International Congress on Materials & Structural Stability (CMSS-2017), Rabat, Morocco, 22–25 November 2017; Volume 149, pp. 1–5. [Google Scholar]
- Zhao, Y.; Soltani, A.; Taheri, A.; Karakus, M.; Deng, A. Application of Slag–Cement and Fly Ash for Strength Development in Cemented Paste Backfills. Minerals 2019, 9, 22. [Google Scholar] [CrossRef]
- ASTM C150-07; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- Alsawalha, M. Assessing Drinking Water Quality in Jubail Industrial City, Saudi Arabia. Am. J. Water Resour. 2017, 5, 142–145. [Google Scholar]
- Hu, J.; Ding, X.; Ren, Q.; Luo, Z.; Jiang, Q. Effect of Incorporating Waste Limestone Powder into Solid Waste Cemented Paste Backfill Material. Appl. Sci. 2019, 9, 2076. [Google Scholar] [CrossRef]
- ASTM C204-0; Standard Test Method for Fineness of Hydraulic Cement by Air Permeability Apparatus. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D7481-18; Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders Using a Graduated Cylinder (Withdrawn 2018). ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Arezou, R.; Maria, P.; Mehrdad, R. Assessment of Soil Moisture Content Measurement Methods: Conventional Laboratory Oven versus Halogen Moisture Analyzer. J. Soil Water Sci. 2020, 4, 151–160. [Google Scholar] [CrossRef]
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Hefni, M.; Ahmed, H.A.M.; Omar, E.S.; Ali, M.A. The Potential Re-use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia. Sustainability 2021, 13, 6204. [Google Scholar] [CrossRef]
- Thiam, M.; Fall, M.; Diarra, M.S. Mechanical Properties of a Mortar with Melted Plastic Waste as the Only Binder: Influence of Material Composition and Curing Regime, and Application in Bamako. Case Stud. Constr. Mater. 2021, 15, e00634. [Google Scholar] [CrossRef]
- ASTM C642-97; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Hefni, M.; Hassani, F. Effect of Air Entrainment on Cemented Mine Backfill Properties: Analysis Based on Response Surface Methodology. Minerals 2021, 11, 81. [Google Scholar] [CrossRef]
- ASTM D2166-06; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- Adewuyi, S.O.; Ahmed, H.A.M. Grinding Behaviour of Microwave-Irradiated Mining Waste. Energies 2021, 14, 3991. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Utilization of Cement Kiln Dust (CKD) to Enhance Mine Tailings-Based Geopolymer Bricks. Constr. Build. Mater. 2013, 40, 1002–1011. [Google Scholar] [CrossRef]
- Niroshan, N.; Yin, L.; Sivakugan, N.; Veenstra, R.L. Relevance of SEM to Long-Term Mechanical Properties of Cemented Paste Backfill. Geotech. Geol. Eng. 2018, 36, 2171–2187. [Google Scholar] [CrossRef]
- Ercikdi, B.; Baki, H.; Izki, M. Effect of Desliming of Sulphide-Rich Mill Tailings on the Long-Term Strength of Cemented Paste Backfill. J. Environ. Manag. 2013, 115, 5–13. [Google Scholar] [CrossRef]
- Xu, W.; Cao, P.; Tian, M. Strength Development and Microstructure Evolution of Cemented Tailings Backfill Containing Different Binder Types and Contents. Minerals 2018, 8, 167. [Google Scholar] [CrossRef]
- Sun, C.; Sun, M.; Tao, T.; Qu, F.; Wang, G.; Zhang, P.; Li, Y.; Duan, J. Chloride Binding Capacity and Its Effect on the Microstructure of Mortar Made with Marine Sand. Sustainability 2021, 13, 4169. [Google Scholar] [CrossRef]
- Zarzuela, R.; Luna, M.; Carrascosa, L.M.; Yeste, M.P.; Garcia-Lodeiro, I.; Blanco-Varela, M.T.; Cauqui, M.A.; Rodríguez-Izquierdo, J.M.; Mosquera, M.J. Producing C-S-H Gel by Reaction between Silica Oligomers and Portlandite: A Promising Approach to Repair Cementitious Materials. Cem. Concr. Res. 2020, 130, 106008. [Google Scholar] [CrossRef]
- Gastaldi, D.; Canonico, F.; Boccaleri, E. Ettringite and Calcium Sulfoaluminate Cement: Investigation of Water Content by near-Infrared Spectroscopy. J. Mater. Sci. 2009, 44, 5788–5794. [Google Scholar] [CrossRef]
Physical/Chemical Parameter | Symbol | Unit | Value |
---|---|---|---|
pH | pH | pH Unit | 7.5 |
Electric conductivity | EC | μS/cm | 122 |
Total dissolved solids | TDS | ppm | 61 |
Turbidity | NTU | <0.05 | |
Total hardness | TH | ppm | 37.21 |
Total alkalinity | T-Alk | ppm | 32.93 |
Bicarbonate | HCO3 | ppm | 32.93 |
Carbonate | CO3 | ppm | 0 |
Calcium | Ca | ppm | 12.89 |
Magnesium | Mg | ppm | 1.22 |
Sodium | Na | ppm | 10.97 |
Potassium | K | ppm | 0.36 |
Iron | Fe | ppm | <0.12 |
Boron | B | ppm | 0.1 |
Phosphate | PO4 | ppm | <2.1 |
Sulphate | So4 | ppm | 2.01 |
Compound (%) | CKD (YCC) | Tailing (F) | Tailing (C) | Binder (OPC) |
---|---|---|---|---|
SiO2 | 10.95 | 45.37 | 53.22 | 19.90 |
Al2O3 | 3.42 | 9.83 | 8.59 | 4.53 |
Fe2O3 | 3.58 | 27.49 | 22.45 | 3.78 |
CaO | 51.87 | 22.43 | 22.68 | 63.15 |
MgO | 2.52 | 13.05 | 9.85 | 4.55 |
SO3 | 7.42 | 5.84 | 5.66 | 2.66 |
K2O | 3.49 | 0.00 | 0.00 | 0.20 |
Na2O | 5.23 | 0.85 | 0.93 | 0.12 |
CL | 5.71 | 0.00 | 0.00 | - |
F-Cao | 17.52 | 1.33 | 1.11 | 1.39 |
LOI | 12.00 | 7.32 | 6.09 | - |
Material Type | Bulk Density | S. Surface Area | Moisture Content |
---|---|---|---|
(g/cm3) | (m²/kg) | (%) | |
CKD | 620 | 192 | <0.1 |
Tailing (F) | 1080 | 540 | 17.70 |
Tailing (C) | 1690 | 139 | 17.26 |
OPC | 1480 | 366 | <0.1 |
Sr. | Recipe ID | Samples Count | Mix Ingredients (Wt. %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Curing Days | Binder | CKD | Tailing | Water | CKD/B | ||||||
7 | 14 | 28 | 56 | 90 | (OPC) | (YCC) | (F + C) | (Tap) | (%) | ||
1 | OPC-CMIX | 3 | 3 | 3 | 3 | 3 | 9.24 | 0.00 | 67.76 | 23 | 0 |
2 | OPC-YCKD1 | 3 | 3 | 3 | 3 | 3 | 8.78 | 0.46 | 67.76 | 23 | 5 |
3 | OPC-YCKD2 | 3 | 3 | 3 | 3 | 3 | 8.32 | 0.92 | 67.76 | 23 | 10 |
4 | OPC-YCKD3 | 3 | 3 | 3 | 3 | 3 | 7.85 | 1.39 | 67.76 | 23 | 15 |
5 | OPC-YCKD4 | 3 | 3 | 3 | 3 | 3 | 7.39 | 1.85 | 67.76 | 23 | 20 |
Curing Days | Mixture ID | CKD (%) | Compressive Strength (kPa) | Standard Deviation | CV (%) | ||
---|---|---|---|---|---|---|---|
Count | Max | Mean | |||||
7 | OPC-CMIX | 0 | 3 | 1063.04 | 1037.73 | 29.74 | 2.9% |
OPC-YCKD1 | 5 | 3 | 1030.70 | 1021.82 | 7.69 | 0.8% | |
OPC-YCKD2 | 10 | 3 | 942.44 | 854.60 | 81.43 | 9.5% | |
OPC-YCKD3 | 15 | 3 | 910.75 | 885.57 | 26.78 | 3.0% | |
OPC-YCKD4 | 20 | 3 | 705.72 | 686.36 | 26.17 | 3.8% | |
14 | OPC-CMIX | 0 | 3 | 1339.97 | 1258.08 | 123.00 | 9.8% |
OPC-YCKD1 | 5 | 3 | 1368.34 | 1303.18 | 56.60 | 4.3% | |
OPC-YCKD2 | 10 | 3 | 1259.57 | 1210.44 | 42.61 | 3.5% | |
OPC-YCKD3 | 15 | 3 | 1226.18 | 1198.04 | 5.10 | 0.4% | |
OPC-YCKD4 | 20 | 3 | 1076.44 | 963.29 | 109.62 | 11.4% | |
28 | OPC-CMIX | 0 | 3 | 1630.29 | 1599.03 | 27.17 | 1.7% |
OPC-YCKD1 | 5 | 3 | 1688.36 | 1602.01 | 78.05 | 4.9% | |
OPC-YCKD2 | 10 | 3 | 1692.83 | 1546.92 | 128.32 | 8.3% | |
OPC-YCKD3 | 15 | 3 | 1473.96 | 1447.17 | 26.80 | 1.9% | |
OPC-YCKD4 | 20 | 3 | 1414.49 | 1228.89 | 160.99 | 13.1% | |
56 | OPC-CMIX | 0 | 3 | 2264.55 | 2035.26 | 203.53 | 10.0% |
OPC-YCKD1 | 5 | 3 | 2188.61 | 1965.29 | 198.50 | 10.1% | |
OPC-YCKD2 | 10 | 3 | 1888.14 | 1747.45 | 172.54 | 9.9% | |
OPC-YCKD3 | 15 | 3 | 2052.52 | 1873.33 | 182.22 | 9.7% | |
OPC-YCKD4 | 20 | 3 | 1737.49 | 1532.03 | 222.75 | 14.5% | |
90 | OPC-CMIX | 0 | 3 | 2523.44 | 2336.85 | 196.08 | 8.4% |
OPC-YCKD1 | 5 | 3 | 2532.32 | 2339.81 | 243.67 | 10.4% | |
OPC-YCKD2 | 10 | 3 | 2176.91 | 2154.70 | 38.47 | 1.8% | |
OPC-YCKD3 | 15 | 3 | 2297.77 | 2165.21 | 159.32 | 7.4% | |
OPC-YCKD4 | 20 | 3 | 1932.56 | 1873.33 | 84.10 | 4.5% |
Phase | Formula | Content (%) | ||
---|---|---|---|---|
M–14 (0% CKD) | 1–14 (5% CKD) | 4–14 (20% CKD) | ||
Quartz | SiO2 | 58 | 60 | 47 |
Ettringite | Ca6 (Al (OH)6)2 (SO4)3 (H2O)25.7 | 10 | 17 | 28 |
Portlandite | Ca (OH)2 | 24 | 16 | 19 |
Sylvite | KCl | 8 | 7 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bakri, A.Y.; Ahmed, H.M.; Hefni, M.A. Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings. Minerals 2024, 14, 750. https://doi.org/10.3390/min14080750
Al-Bakri AY, Ahmed HM, Hefni MA. Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings. Minerals. 2024; 14(8):750. https://doi.org/10.3390/min14080750
Chicago/Turabian StyleAl-Bakri, Ali Y., Haitham M. Ahmed, and Mohammed A. Hefni. 2024. "Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings" Minerals 14, no. 8: 750. https://doi.org/10.3390/min14080750
APA StyleAl-Bakri, A. Y., Ahmed, H. M., & Hefni, M. A. (2024). Experimental Investigation of Recycling Cement Kiln Dust (CKD) as a Co-Binder Material in Cemented Paste Backfill (CPB) Made with Copper Tailings. Minerals, 14(8), 750. https://doi.org/10.3390/min14080750