Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. CheMin Samples
2.2. CheMin X-ray Diffraction Data Collection and Processing
2.3. Crystal Chemical Estimation of Mineral Compositions
2.4. Martian Meteorite Data
3. Results
3.1. Feldspar Group Minerals
3.1.1. Plagioclase Group Minerals
3.1.2. Alkali Feldspar Group Minerals
3.2. Olivine Group Minerals
3.3. Pyroxene Group Minerals
3.3.1. Augite
3.3.2. Pigeonite
3.3.3. Orthopyroxene Group
3.4. Cubic Spinel Oxide Group Minerals
4. Discussion
4.1. Plagioclase
4.2. Alkali Feldspar Group Minerals
4.3. Olivine Group Minerals
4.4. Pyroxene Group Minerals
4.5. Spinel Oxide Group Minerals
4.6. Future Work
4.6.1. Expanding Chemical Complexity
4.6.2. Expanding to Other Mineral Systems
4.6.3. Expanding to Other Planets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grotzinger, J.P. Analysis of Surface Materials by the Curiosity Mars Rover. Science 2013, 341, 1475. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.E.; Farley, K.A.; Baker, M.B.; Malespin, C.A.; Schwenzer, S.P.; Cohen, B.A.; Mahaffy, P.R.; McAdam, A.C.; Ming, D.W.; Vasconcelos, P.M.; et al. A Two-Step K-Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters. J. Geophys. Res. Planets 2017, 122, 2803–2818. [Google Scholar] [CrossRef]
- Rampe, E.B.; Blake, D.F.; Bristow, T.F.; Ming, D.W.; Vaniman, D.T.; Morris, R.V.; Achilles, C.N.; Chipera, S.J.; Morrison, S.M.; Tu, V.M.; et al. Mineralogy and Geochemistry of Sedimentary Rocks and Eolian Sediments in Gale Crater, Mars: A Review after Six Earth Years of Exploration with Curiosity. Geochemistry 2020, 80, 125605. [Google Scholar] [CrossRef]
- Thomson, B.J.; Bridges, N.T.; Milliken, R.; Baldridge, A.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; de Souza Filho, C.R.; Brown, A.J.; Weitz, C.M. Constraints on the Origin and Evolution of the Layered Mound in Gale Crater, Mars Using Mars Reconnaissance Orbiter Data. Icarus 2011, 214, 413–432. [Google Scholar] [CrossRef]
- Blake, D.; Vaniman, D.; Achilles, C.; Anderson, R.; Bish, D.; Bristow, T.; Chen, C.; Chipera, S.; Crisp, J.; Des Marais, D.; et al. Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory. Space Sci. Rev. 2012, 170, 341–399. [Google Scholar] [CrossRef]
- Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; Edgett, K.S.; Rubin, D.; Goetz, W.; et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science 2013, 341, 1239505. [Google Scholar] [CrossRef] [PubMed]
- Bish, D.L.; Blake, D.F.; Vaniman, D.T.; Chipera, S.J.; Morris, R.V.; Ming, D.W.; Treiman, A.H.; Sarrazin, P.; Morrison, S.M.; Downs, R.T.; et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science 2013, 341, 1238932. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.M.; Downs, R.T.; Blake, D.F.; Prabhu, A.; Eleish, A.; Vaniman, D.T.; Ming, D.W.; Rampe, E.B.; Hazen, R.M.; Achilles, C.N.; et al. Relationships between Unit-Cell Parameters and Composition for Rock-Forming Minerals on Earth, Mars, and Other Extraterrestrial Bodies. Am. Mineral. 2018, 103, 848–856. [Google Scholar] [CrossRef]
- Morrison, S.M.; Downs, R.T.; Blake, D.F.; Vaniman, D.T.; Ming, D.W.; Hazen, R.M.; Treiman, A.H.; Achilles, C.N.; Yen, A.S.; Morris, R.V.; et al. Crystal Chemistry of Martian Minerals from Bradbury Landing through Naukluft Plateau, Gale Crater, Mars. Am. Mineral. 2018, 103, 857–871. [Google Scholar] [CrossRef]
- Achilles, C.N.; Downs, R.T.; Ming, D.W.; Rampe, E.B.; Morris, R.V.; Treiman, A.H.; Morrison, S.M.; Blake, D.F.; Vaniman, D.T.; Ewing, R.C.; et al. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars. J. Geophys. Res. Planets 2017, 122, 2344–2361. [Google Scholar] [CrossRef]
- Achilles, C.N.; Rampe, E.B.; Downs, R.T.; Bristow, T.F.; Ming, D.W.; Morris, R.V.; Vaniman, D.T.; Blake, D.F.; Yen, A.S.; McAdam, A.C.; et al. Evidence for Multiple Diagenetic Episodes in Ancient Fluvial-Lacustrine Sedimentary Rocks in Gale Crater, Mars. J. Geophys. Res. Planets 2020, 125, e2019JE006295. [Google Scholar] [CrossRef] [PubMed]
- Bristow, T.F.; Rampe, E.B.; Achilles, C.N.; Blake, D.F.; Chipera, S.J.; Craig, P.; Crisp, J.A.; Des Marais, D.J.; Downs, R.T.; Gellert, R.; et al. Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars. Sci. Adv. 2018, 4, eaar3330. [Google Scholar] [CrossRef] [PubMed]
- Bristow, T.F.; Grotzinger, J.P.; Rampe, E.B.; Cuadros, J.; Chipera, S.J.; Downs, G.W.; Fedo, C.M.; Frydenvang, J.; McAdam, A.C.; Morris, R.V.; et al. Brine-Driven Destruction of Clay Minerals in Gale Crater, Mars. Science 2021, 373, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.W.; Peters, S.; Gonter, K.; Morrison, S.; Schmerr, N.; Vasavada, A.R.; Gabriel, T. A Surface Gravity Traverse on Mars Indicates Low Bedrock Density at Gale Crater. Science 2019, 363, 535–537. [Google Scholar] [CrossRef]
- Mangold, N.; Dehouck, E.; Fedo, C.; Forni, O.; Achilles, C.; Bristow, T.; Downs, R.T.; Frydenvang, J.; Gasnault, O.; L’Haridon, J.; et al. Chemical Alteration of Fine-Grained Sedimentary Rocks at Gale Crater. Icarus 2019, 321, 619–631. [Google Scholar] [CrossRef]
- Morris, R.V.; Rampe, E.B.; Vaniman, D.T.; Christoffersen, R.; Yen, A.S.; Morrison, S.M.; Ming, D.W.; Achilles, C.N.; Fraeman, A.A.; Le, L.; et al. Hydrothermal Precipitation of Sanidine (Adularia) Having Full Al,Si Structural Disorder and Specular Hematite at Maunakea Volcano (Hawai’i) and at Gale Crater (Mars). J. Geophys. Res. Planets 2020, 125, e2019JE006324. [Google Scholar] [CrossRef]
- Morris, R.V.; Vaniman, D.T.; Blake, D.F.; Gellert, R.; Chipera, S.J.; Rampe, E.B.; Ming, D.W.; Morrison, S.M.; Downs, R.T.; Treiman, A.H.; et al. Silicic Volcanism on Mars Evidenced by Tridymite in High-SiO2 Sedimentary Rock at Gale Crater. Proc. Natl. Acad. Sci. USA 2016, 113, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Payré, V.; Siebach, K.L.; Dasgupta, R.; Udry, A.; Rampe, E.B.; Morrison, S.M. Constraining Ancient Magmatic Evolution on Mars Using Crystal Chemistry of Detrital Igneous Minerals in the Sedimentary Bradbury Group, Gale Crater, Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006467. [Google Scholar] [CrossRef]
- Rampe, E.B.; Ming, D.W.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; Grotzinger, J.P.; Morris, R.V.; Morrison, S.M.; Vaniman, D.T.; Yen, A.S.; et al. Mineralogy of an Ancient Lacustrine Mudstone Succession from the Murray Formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 172–185. [Google Scholar] [CrossRef]
- Rampe, E.B.; Lapotre, M.G.A.; Bristow, T.F.; Arvidson, R.E.; Morris, R.V.; Achilles, C.N.; Weitz, C.; Blake, D.F.; Ming, D.W.; Morrison, S.M.; et al. Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit. Geophys. Res. Lett. 2018, 45, 9488–9497. [Google Scholar] [CrossRef]
- Treiman, A.H.; Bish, D.L.; Vaniman, D.T.; Chipera, S.J.; Blake, D.F.; Ming, D.W.D.; Morris, R.V.; Bristow, T.F.; Morrison, S.M.; Baker, M.B.; et al. Mineralogy, Provenance, and Diagenesis of a Potassic Basaltic Sandstone on Mars: CheMin X-ray Diffraction of the Windjana Sample (Kimberley Area, Gale Crater). J. Geophys. Res. Planets 2016, 121, 75–106. [Google Scholar] [CrossRef] [PubMed]
- Treiman, A.H.; Morris, R.V.; Agresti, D.G.; Graff, T.G.; Achilles, C.N.; Rampe, E.B.; Bristow, T.F.; Blake, D.F.; Vaniman, D.T.; Bish, D.L.; et al. Ferrian Saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an Analog for Clay Minerals on Mars with Application to Yellowknife Bay in Gale Crater. Am. Mineral. 2014, 99, 2234–2250. [Google Scholar] [CrossRef]
- Tu, V.M.; Rampe, E.B.; Bristow, T.F.; Thorpe, M.T.; Clark, J.V.; Castle, N.; Fraeman, A.A.; Edgar, L.A.; McAdam, A.; Bedford, C.; et al. A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals 2021, 11, 847. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1243480. [Google Scholar] [CrossRef]
- Yen, A.S.; Ming, D.W.; Vaniman, D.T.; Gellert, R.; Blake, D.F.; Morris, R.V.; Morrison, S.M.; Bristow, T.F.; Chipera, S.J.; Edgett, K.S.; et al. Multiple Stages of Aqueous Alteration along Fractures in Mudstone and Sandstone Strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 186–198. [Google Scholar] [CrossRef]
- Yen, A.S.; Morris, R.V.; Ming, D.W.; Schwenzer, S.P.; Sutter, B.; Vaniman, D.T.; Treiman, A.H.; Gellert, R.; Achilles, C.N.; Berger, J.A.; et al. Formation of Tridymite and Evidence for a Hydrothermal History at Gale Crater, Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006569. [Google Scholar] [CrossRef]
- Thorpe, M.T.; Bristow, T.F.; Rampe, E.B.; Tosca, N.J.; Grotzinger, J.P.; Bennett, K.A.; Achilles, C.N.; Blake, D.F.; Chipera, S.J.; Downs, G.; et al. Mars Science Laboratory CheMin Data From the Glen Torridon Region and the Significance of Lake-Groundwater Interactions in Interpreting Mineralogy and Sedimentary History. J. Geophys. Res. Planets 2022, 127, e2021JE007099. [Google Scholar] [CrossRef]
- Chipera, S.; Vaniman, D.; Rampe, E.; Bristow, T.; Martínez, G.; Tu, V.; Peretyazhko, T.; Yen, A.; Gellert, R.; Berger, J.; et al. Mineralogical Investigation of Mg-Sulfate at the Canaima Drill Site, Gale Crater, Mars. J. Geophys. Res. Planets 2023, 128, e2023JE008041. [Google Scholar] [CrossRef]
- Rampe, E.B.; Bristow, T.F.; Morris, R.V.; Morrison, S.M.; Achilles, C.N.; Ming, D.W.; Vaniman, D.T.; Blake, D.F.; Tu, V.M.; Chipera, S.J.; et al. Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. J. Geophys. Res. Planets 2020, 125, e2019JE006306. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Martínez, G.M.; Rampe, E.B.; Bristow, T.F.; Blake, D.F.; Yen, A.S.; Ming, D.W.; Rapin, W.; Meslin, P.-Y.; Morookian, J.M.; et al. Gypsum, Bassanite, and Anhydrite at Gale Crater, Mars. Am. Mineral. 2018, 103, 1011–1020. [Google Scholar] [CrossRef]
- McLennan, S.M.; Grotzinger, J.P.; Hurowitz, J.A.; Tosca, N.J. The Sedimentary Cycle on Early Mars. Annu. Rev. Earth Planet. Sci. 2019, 47, 91–118. [Google Scholar] [CrossRef]
- McAdam, A.C.; Sutter, B.; Archer, P.D.; Franz, H.B.; Wong, G.M.; Lewis, J.M.T.; Eigenbrode, J.L.; Stern, J.C.; Knudson, C.A.; Clark, J.V.; et al. Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. J. Geophys. Res. Planets 2020, 125, e2019JE006309. [Google Scholar] [CrossRef]
- Tarnas, J.; Mustard, J.; Lollar, B.S.; Stamenković, V.; Cannon, K.; Lorand, J.-P.; Onstott, T.; Michalski, J.; Warr, O.; Palumbo, A.; et al. Earth-like Habitable Environments in the Subsurface of Mars. Astrobiology 2021, 21, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Bedford, C.C.; Schwenzer, S.P.; Bridges, J.C.; Banham, S.; Wiens, R.C.; Gasnault, O.; Rampe, E.B.; Frydenvang, J.; Gasda, P.J. Geochemical Variation in the Stimson Formation of Gale Crater: Provenance, Mineral Sorting, and a Comparison with Modern Martian Dunes. Icarus 2020, 341, 113622. [Google Scholar] [CrossRef]
- Bedford, C.C.; Banham, S.G.; Bridges, J.C.; Forni, O.; Cousin, A.; Bowden, D.; Turner, S.M.R.; Wiens, R.C.; Gasda, P.J.; Frydenvang, J.; et al. An Insight into Ancient Aeolian Processes and Post-Noachian Aqueous Alteration in Gale Crater, Mars, Using ChemCam Geochemical Data from the Greenheugh Capping Unit. J. Geophys. Res. Planets 2022, 127, e2021JE007100. [Google Scholar] [CrossRef]
- Bedford, C.C.; Bridges, J.C.; Schwenzer, S.P.; Wiens, R.C.; Rampe, E.B.; Frydenvang, J.; Gasda, P.J. Alteration Trends and Geochemical Source Region Characteristics Preserved in the Fluviolacustrine Sedimentary Record of Gale Crater, Mars. Geochim. Cosmochim. Acta 2019, 246, 234–266. [Google Scholar] [CrossRef]
- Fraeman, A.A.; Johnson, J.R.; Arvidson, R.E.; Rice, M.S.; Wellington, D.F.; Morris, R.V.; Fox, V.K.; Horgan, B.H.N.; Jacob, S.R.; Salvatore, M.R.; et al. Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. J. Geophys. Res. Planets 2020, 125, e2019JE006294. [Google Scholar] [CrossRef] [PubMed]
- David, G.; Cousin, A.; Forni, O.; Meslin, P.-Y.; Dehouck, E.; Mangold, N.; L’Haridon, J.; Rapin, W.; Gasnault, O.; Johnson, J.R.; et al. Analyses of High-Iron Sedimentary Bedrock and Diagenetic Features Observed with ChemCam at Vera Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. J. Geophys. Res. Planets 2020, 125, e2019JE006314. [Google Scholar] [CrossRef]
- Smith, R.J.; McLennan, S.M.; Achilles, C.N.; Dehouck, E.; Horgan, B.H.N.; Mangold, N.; Rampe, E.B.; Salvatore, M.; Siebach, K.L.; Sun, V. X-ray Amorphous Components in Sedimentary Rocks of Gale Crater, Mars: Evidence for Ancient Formation and Long-Lived Aqueous Activity. J. Geophys. Res. Planets 2021, 126, e2020JE006782. [Google Scholar] [CrossRef]
- Fukushi, K.; Sekine, Y.; Sakuma, H.; Morida, K.; Wordsworth, R. Semiarid Climate and Hyposaline Lake on Early Mars Inferred from Reconstructed Water Chemistry at Gale. Nat. Commun. 2019, 10, 4896. [Google Scholar] [CrossRef]
- Fornaro, T.; Boosman, A.; Brucato, J.R.; ten Kate, I.L.; Siljeström, S.; Poggiali, G.; Steele, A.; Hazen, R.M. UV Irradiation of Biomarkers Adsorbed on Minerals under Martian-like Conditions: Hints for Life Detection on Mars. Icarus 2018, 313, 38–60. [Google Scholar] [CrossRef]
- David, G.; Meslin, P.-Y.; Dehouck, E.; Gasnault, O.; Cousin, A.; Forni, O.; Berger, G.; Lasue, J.; Pinet, P.; Wiens, R.C.; et al. Laser-Induced Breakdown Spectroscopy (LIBS) Characterization of Granular Soils: Implications for ChemCam Analyses at Gale Crater, Mars. Icarus 2021, 365, 114481. [Google Scholar] [CrossRef]
- Hogancamp, J.V.; Sutter, B.; Morris, R.V.; Archer, P.D.; Ming, D.W.; Rampe, E.B.; Mahaffy, P.; Navarro-Gonzalez, R. Chlorate/Fe-Bearing Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars Instrument in Gale Crater, Mars. J. Geophys. Res. Planets 2018, 123, 2920–2938. [Google Scholar] [CrossRef]
- Zhong, J.Q.; Fiore, S.; Chen, X.X.; Zhou, C.H. Enigmatic Issues and Widening Implications of Research on Martian Clay Minerals. ACS Earth Space Chem. 2022, 6, 2118–2141. [Google Scholar] [CrossRef]
- Rizzo, V.; Armstrong, R.; Hua, H.; Cantasano, N.; Nicolò, T.; Bianciardi, G. Life on Mars: Clues, Evidence or Proof? In Solar System Planets and Exoplanets; IntechOpen: London, UK, 2021; ISBN 1-83969-313-4. [Google Scholar]
- Ralston, S.; Hausrath, E.M.; Tschauner, O.; Rampe, E.; Peretyazhko, T.S.; Christoffersen, R.; Defelice, C.; Lee, H. Dissolution Rates of Allophane with Variable Fe Contents: Implications for Aqueous Alteration and the Preservation of X-ray Amorphous Materials on Mars. Clays Clay Miner. 2021, 69, 263–288. [Google Scholar] [CrossRef]
- Sheppard, R.Y.; Thorpe, M.T.; Fraeman, A.A.; Fox, V.K.; Milliken, R.E. Merging Perspectives on Secondary Minerals on Mars: A Review of Ancient Water-Rock Interactions in Gale Crater Inferred from Orbital and in-Situ Observations. Minerals 2021, 11, 986. [Google Scholar] [CrossRef]
- Wong, G.M.; Franz, H.B.; Clark, J.V.; McAdam, A.C.; Lewis, J.M.; Millan, M.; Ming, D.W.; Gomez, F.; Clark, B.; Eigenbrode, J.L.; et al. Oxidized and Reduced Sulfur Observed by the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover within the Glen Torridon Region at Gale Crater, Mars. J. Geophys. Res. Planets 2022, 127, e2021JE007084. [Google Scholar] [CrossRef]
- Smith, R.; McLennan, S.; Sutter, B.; Rampe, E.; Dehouck, E.; Siebach, K.; Horgan, B.; Sun, V.; McAdam, A.; Mangold, N.; et al. X-ray Amorphous Sulfur-Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. J. Geophys. Res. Planets 2022, 127, e2021JE007128. [Google Scholar] [CrossRef]
- Turner, S.M.; Schwenzer, S.; Bridges, J.; Rampe, E.; Bedford, C.; Achilles, C.; McAdam, A.; Mangold, N.; Hicks, L.; Parnell, J.; et al. Early Diagenesis at and below Vera Rubin Ridge, Gale Crater, Mars. Meteorit. Planet. Sci. 2021, 56, 1905–1932. [Google Scholar] [CrossRef]
- Kite, E.S.; Daswani, M.M. Geochemistry Constrains Global Hydrology on Early Mars. Earth Planet. Sci. Lett. 2019, 524, 115718. [Google Scholar] [CrossRef]
- Pandey, A.; Rampe, E.B.; Ming, D.W.; Deng, Y.; Bedford, C.C.; Schwab, P. Quantification of Amorphous Si, Al, and Fe in Palagonitic Mars Analogs by Chemical Extraction and X-ray Spectroscopy. Icarus 2023, 392, 115362. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Sautter, V.; Cousin, A.; Mangold, N.; Le Deit, L.; Forni, O.; Goetz, W.; Wiens, R.C.; Gasnault, O.; et al. Copper Enrichments in the Kimberley Formation in Gale Crater, Mars: Evidence for a Cu Deposit at the Source. Icarus 2019, 321, 736–751. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M. On the Paragenetic Modes of Minerals: A Mineral Evolution Perspective. Am. Mineral. 2022, 107, 1262–1287. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Morrison, S.M.; Tutolo, B.M.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; McSween, H.Y.; Ming, D.; Morris, R.V.; et al. On the Diversity and Formation Modes of Martian Minerals. J. Geophys. Res. Planets 2023, 128, e2023JE007865. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M. An Evolutionary System of Mineralogy, Part I: Stellar Mineralogy (>13 to 4.6 Ga). Am. Mineral. 2020, 105, 627–651. [Google Scholar] [CrossRef]
- Morrison, S.M.; Hazen, R.M. An Evolutionary System of Mineralogy. Part II: Interstellar and Solar Nebula Primary Condensation Mineralogy (>4.565 Ga). Am. Mineral. 2020, 105, 1508–1535. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M.; Prabhu, A. An Evolutionary System of Mineralogy, Part III: Primary Chondrule Mineralogy (4566 to 4561 Ma). Am. Mineral. 2020, 106, 325–350. [Google Scholar] [CrossRef]
- Morrison, S.M.; Hazen, R.M. An Evolutionary System of Mineralogy, Part IV: Planetesimal Differentiation and Impact Mineralization (4566 to 4560 Ma). Am. Mineral. 2020, 106, 730–761. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M. An Evolutionary System of Mineralogy, Part V: Aqueous and Thermal Alteration of Planetesimals (~4565 to 4550 Ma). Am. Mineral. 2020, 106, 1388–1419. [Google Scholar] [CrossRef]
- Morrison, S.M.; Prabhu, A.; Hazen, R.M. An Evolutionary System of Mineralogy, Part VI: Earth’s Earliest Hadean Crust (>4370 Ma). Am. Mineral. 2022, 108, 42–58. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M.; Prabhu, A.; Walter, M.; Williams, J. An Evolutionary System of Mineralogy, Part VII: The Evolution of the Igneous Minerals (>2500 Ma). Am. Mineral. 2023, 108, 1620–1641. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M.; Krivovichev, S.V.; Downs, R.T. Lumping and Splitting: Toward a Classification of Mineral Natural Kinds. Am. Mineral. 2022, 107, 1288–1301. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Hausrath, E.; Thorpe, M.; Rampe, E.B.; Bristow, T.; Blake, D.F.; Vaniman, D.T.; Morrison, S.M.; Chipera, S.; Downs, R.T.; et al. In Situ Evidence of an Active Carbon Cycle on Ancient Mars. In Proceedings of the GSA Connects 2023 Meeting, Pittsburgh, PA, USA, 15–18 October 2023. [Google Scholar]
- Tutolo, B.M.; Hausrath, E.M.; Rampe, E.B.; Bristow, T.F.; Downs, R.T.; Kite, E.; Peretyazhko, T.; Thorpe, M.T.; Grotzinger, J.; Archer, D.; et al. In Situ Evidence for an Active Carbon Cycle on Ancient Mars. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 11–15 March 2024; 3040. p. 1564. [Google Scholar]
- Blake, D.; Tu, V.; Bristow, T.; Rampe, E.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Morris, R.; Morrison, S.; Yen, A.; et al. The Chemistry and Mineralogy (CheMin) X-ray Diffractometer on the MSL Curiosity Rover: A Decade of Mineralogy from Gale Crater, Mars. Minerals 2024, 14, 568. [Google Scholar] [CrossRef]
- Young, R. (Ed.) The Rietveld Method; International Union of Crystallography; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Bish, D.L.; Howard, S. Quantitative Phase Analysis Using the Rietveld Method. J. Appl. Crystallogr. 1988, 21, 86–91. [Google Scholar]
- Jenkins, R. Modern Powder Diffraction. Rev. Miner. 1989, 20, 47–72. [Google Scholar]
- Chipera, S.J.; Bish, D.L. Fitting Full X-ray Diffraction Patterns for Quantitative Analysis: A Method for Readily Quantifying Crystalline and Disordered Phases. Adv. Mater. Phys. Chem. 2013, 3, 47–53. [Google Scholar] [CrossRef]
- Chipera, S.J.; Bish, D.L. FULLPAT: A Full-Pattern Quantitative Analysis Program for X-ray Powder Diffraction Using Measured and Calculated Patterns. J. Appl. Crystallogr. 2002, 35, 744–749. [Google Scholar] [CrossRef]
- Papike, J.J.; Karner, J.M.; Shearer, C.K.; Burger, P.V. Silicate Mineralogy of Martian Meteorites. Geochim. Cosmochim. Acta 2009, 73, 7443–7485. [Google Scholar] [CrossRef]
- Santos, A.R.; Agee, C.B.; McCubbin, F.M.; Shearer, C.K.; Burger, P.V.; Tartèse, R.; Anand, M. Petrology of Igneous Clasts in Northwest Africa 7034: Implications for the Petrologic Diversity of the Martian Crust. Geochim. Cosmochim. Acta 2015, 157, 56–85. [Google Scholar] [CrossRef]
- Wittmann, A.; Korotev, R.L.; Jolliff, B.L.; Irving, A.J.; Moser, D.E.; Barker, I.; Rumble, D., III. Petrography and Composition of Martian Regolith Breccia Meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 2015, 50, 326–352. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Shih, C.Y.; Mccubbin, F.M.; Santos, A.R.; Shearer, C.K.; Peng, Z.X.; Burger, P.V.; Agee, C.B. Rb-Sr and Sm-Nd Isotopic and REE Studies of Igneous Components in the Bulk Matrix Domain of Martian Breccia Northwest Africa 7034. Meteorit. Planet. Sci. 2016, 51, 483–498. [Google Scholar] [CrossRef]
- Hewins, R.H.; Zanda, B.; Humayun, M.; Nemchin, A.; Lorand, J.P.; Pont, S.; Deldicque, D.; Bellucci, J.J.; Beck, P.; Leroux, H.; et al. Regolith Breccia Northwest Africa 7533: Mineralogy and Petrology with Implications for Early Mars. Meteorit. Planet. Sci. 2017, 52, 89–124. [Google Scholar] [CrossRef]
- Kroll, H. Lattice Parameters and Determinative Methods for Plagioclase and Ternary Feldspars. In Mineralogical Society of America Reviews in Mineralogy; De Gruyter: Berlin, Germany, 1983; pp. 101–119. [Google Scholar]
- Smith, J.V.; Brown, W.L. Crystal Structures, Physical, Chemical, and Microtextural Properties, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Lehnert, K.A.; Ji, P.; Mays, J.; Figueroa, J.D.; Johansson, A.; Profeta, L.; Song, L.; Richard, S.; Morrison, S.; Ostroverkhova, A. The Astromaterials Data System: Advancing Access and Preservation of Past, Present, and Future Lab Analytical Data of NASA’S Astromaterials Collections. In Proceedings of the Astromaterials Data Management in the Era of Sample-Return Missions Community Workshop, Arizona, AZ, USA, 8–9 November 2021; p. id.2025. [Google Scholar]
- Mustard, J.; Poulet, F.; Gendrin, A.; Bibring, J.-P.; Langevin, Y.; Gondet, B.; Mangold, N.; Bellucci, G.; Altieri, F. Olivine and Pyroxene Diversity in the Crust of Mars. Science 2005, 307, 1594–1597. [Google Scholar] [CrossRef]
- McSween, H.Y., Jr.; Head, J.W., III; Rogers, A.D.; Schmidt, M.E. Assessing Global Trends in Mars Magma Compositions Using Ground Truth. Meteorit. Planet. Sci. 2023, 58, 1306–1317. [Google Scholar] [CrossRef]
- Turnock, A.C.; Lindsley, D.H.; Grover, J.E. Synthesis and Unit Cell Parameters of Ca-Mg-Fe Pyroxenes. Am. Mineral. 1973, 58, 50–59. [Google Scholar]
- Lindsley, D.H. Pyroxene Thermometry. Am. Mineral. 1983, 68, 477–493. [Google Scholar] [CrossRef]
- Treiman, A.H.; Irving, A.J. Petrology of Martian Meteorite Northwest Africa 998. Meteorit. Planet. Sci. 2008, 43, 829–854. [Google Scholar] [CrossRef]
- Morrison, S.M.; Cantoni, A.; Prabhu, A.; Udry, A.; Hazen, R.; Ostroverkhova, A. Exploring Martian Geology and Habitability via Mineral Network Analysis. In Proceedings of the AGU Fall Meeting 2022, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Liu, Y.; Floss, C.; Day, J.M.; Hill, E.; Taylor, L.A. Petrogenesis of Lunar Mare Basalt Meteorite Miller Range 05035. Meteorit. Planet. Sci. 2009, 44, 261–284. [Google Scholar] [CrossRef]
- Borromeo, L.; Andò, S.; Bersani, D.; Garzanti, E.; Gentile, P.; Mantovani, L.; Tribaudino, M. How to Identify Pigeonite: A Raman and SEM-EDS Study of Detrital Ca-Poor Clinopyroxene from Continental Flood Basalts. Chem. Geol. 2023, 635, 121610. [Google Scholar] [CrossRef]
- Tosca, N.J.; Ahmed, I.A.; Tutolo, B.M.; Ashpitel, A.; Hurowitz, J.A. Magnetite Authigenesis and the Warming of Early Mars. Nat. Geosci. 2018, 11, 635–639. [Google Scholar] [PubMed]
- Goodrich, C.A.; Herd, C.D.; Taylor, L.A. Spinels and Oxygen Fugacity in Olivine-phyric and Lherzolitic Shergottites. Meteorit. Planet. Sci. 2003, 38, 1773–1792. [Google Scholar] [CrossRef]
- Ikeda, Y. Petrology of Magmatic Silicate Inclusions in the Allan Hills 77005 Lherzolitic Shergottite. Meteorit. Planet. Sci. 1998, 33, 803–812. [Google Scholar]
- Mittlefehldt, D.W. ALH84001, a Cumulate Orthopyroxenite Member of the Martian Meteorite Clan. Meteoritics 1994, 29, 214–221. [Google Scholar]
- Shearer, C.; Leshin, L.; Adcock, C. Olivine in Martian Meteorite Allan Hills 84001: Evidence for a High-temperature Origin and Implications for Signs of Life. Meteorit. Planet. Sci. 1999, 34, 331–339. [Google Scholar]
- Floran, R.; Prinz, M.; Hlava, P.; Keil, K.; Nehru, C.; Hinthorne, J. The Chassigny Meteorite: A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions. Geochim. Cosmochim. Acta 1978, 42, 1213–1229. [Google Scholar] [CrossRef]
- Johnson, M.C.; Rutherford, M.J.; Hess, P.C. Chassigny Petrogenesis: Melt Compositions, Intensive Parameters and Water Contents of Martian (?) Magmas. Geochim. Cosmochim. Acta 1991, 55, 349–366. [Google Scholar] [CrossRef]
- Folco, L.; Franchi, I.; D’Orazio, M.; Rocchi, S.; Schultz, L. A New Martian Meteorite from the Sahara: The Shergottite Dar al Gani 489. Meteorit. Planet. Sci. 2000, 35, 827–839. [Google Scholar]
- Wadhwa, M.; Lentz, R.; McSween, H., Jr.; Crozaz, G. A Petrologic and Trace Element Study of Dar al Gani 476 and Dar al Gani 489: Twin Meteorites with Affinities to Basaltic and Lherzolitic Shergottites. Meteorit. Planet. Sci. 2001, 36, 195–208. [Google Scholar] [CrossRef]
- Zipfel, J.; Scherer, P.; Spettel, B.; Dreibus, G.; Schultz, L. Petrology and Chemistry of the New Shergottite Dar al Gani 476. Meteorit. Planet. Sci. 2000, 35, 95–106. [Google Scholar] [CrossRef]
- Mikouchi, T.; Miyamoto, M. Mineralogy and Olivine Cooling Rate of the Dhofar 019 Shergottite. Antarct. Meteor. Res. 2002, 15, 122. [Google Scholar]
- Taylor, L.; Nazarov, M.; Shearer, C.; McSween Jr, H.; Cahill, J.; Neal, C.; Ivanova, M.; Barsukova, L.; Lentz, R.; Clayton, R.; et al. Martian Meteorite Dhofar 019: A New Shergottite. Meteorit. Planet. Sci. 2002, 37, 1107–1128. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kimura, M.; Takeda, H.; Shimoda, G.; Kita, N.T.; Morishita, Y.; Suzuki, A.; Jagoutz, E.; Dreibus, G. Petrology of a New Basaltic Shergottite: Dhofar 378. Antarct. Meteor. Res. 2006, 19, 20–44. [Google Scholar]
- Goodrich, C.A. Petrogenesis of Olivine-Phyric Shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 Lithology A. Geochim. Cosmochim. Acta 2003, 67, 3735–3772. [Google Scholar] [CrossRef]
- McSween, H.Y., Jr.; Jarosewich, E. Petrogenesis of the Elephant Moraine A79001 Meteorite: Multiple Magma Pulses on the Shergottite Parent Body. Geochim. Cosmochim. Acta 1983, 47, 1501–1513. [Google Scholar] [CrossRef]
- Steele, I.M.; Smith, J.V. Petrography and Mineralogy of Two Basalts and Olivine-pyroxene-spinel Fragments in Achondrite EETA79001. J. Geophys. Res. Solid Earth 1982, 87, A375–A384. [Google Scholar] [CrossRef]
- Jiang, Y.; Hsu, W. Petrogenesis of Grove Mountains 020090: An Enriched “Lherzolitic” Shergottite. Meteorit. Planet. Sci. 2012, 47, 1419–1435. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, S.; Miao, B.; Xu, L.; Liu, Y.; Xie, L.; Feng, L.; Yang, J. Grove Mountains 020090 Enriched Lherzolitic Shergottite: A Two-stage Formation Model. Meteorit. Planet. Sci. 2013, 48, 1572–1589. [Google Scholar] [CrossRef]
- Lin, Y.; Guan, Y.; Wang, D.; Kimura, M.; Leshin, L.A. Petrogenesis of the New Lherzolitic Shergottite Grove Mountains 99027: Constraints of Petrography, Mineral Chemistry, and Rare Earth Elements. Meteorit. Planet. Sci. 2005, 40, 1599–1619. [Google Scholar] [CrossRef]
- Bunch, T.; Reid, A.M. The Nakhlites Part I: Petrography and Mineral Chemistry. Meteoritics 1975, 10, 303–315. [Google Scholar] [CrossRef]
- Szymanski, A.; Brenker, F.E.; Palme, H.; El Goresy, A. High Oxidation State during Formation of Martian Nakhlites. Meteorit. Planet. Sci. 2010, 45, 21–31. [Google Scholar] [CrossRef]
- Balta, J.B.; Sanborn, M.; McSween, H.Y., Jr.; Wadhwa, M. Magmatic History and Parental Melt Composition of Olivine-phyric Shergottite LAR 06319: Importance of Magmatic Degassing and Olivine Antecrysts in Martian Magmatism. Meteorit. Planet. Sci. 2013, 48, 1359–1382. [Google Scholar] [CrossRef]
- Peslier, A.; Hnatyshin, D.; Herd, C.D.; Walton, E.L.; Brandon, A.D.; Lapen, T.; Shafer, J. Crystallization, Melt Inclusion, and Redox History of a Martian Meteorite: Olivine-Phyric Shergottite Larkman Nunatak 06319. Geochim. Cosmochim. Acta 2010, 74, 4543–4576. [Google Scholar] [CrossRef]
- Sarbadhikari, A.B.; Day, J.M.; Liu, Y.; Rumble, D., III; Taylor, L.A. Petrogenesis of Olivine-Phyric Shergottite Larkman Nunatak 06319: Implications for Enriched Components in Martian Basalts. Geochim. Cosmochim. Acta 2009, 73, 2190–2214. [Google Scholar] [CrossRef]
- Gleason, J.D.; Kring, D.A.; Hill, D.H.; Boynton, W.V. Petrography and Bulk Chemistry of Martian Lherzolite LEW88516. Geochim. Cosmochim. Acta 1997, 61, 4007–4014. [Google Scholar] [CrossRef]
- Harvey, R.; Wadhwa, M.; McSween, H.Y., Jr.; Crozaz, G. Petrography, Mineral Chemistry, and Petrogenesis of Antarctic Shergottite LEW88516. Geochim. Cosmochim. Acta 1993, 57, 4769–4783. [Google Scholar]
- Treiman, A.; McKay, G.; Bogard, D.; Mittlefehldt, D.; Wang, M.; Keller, L.; Lipschutz, M.; Lindstrom, M.; Garrison, D. Comparison of the LEW88516 and ALHA77005 Martian Meteorites: Similar but Distinct. Meteoritics 1994, 29, 581–592. [Google Scholar] [CrossRef]
- Mikouchi, T. Mineralogical Similarities and Differences between the Los Angeles Basaltic Shergottite and the Asuka-881757 Lunar Mare Meteorite. Antarct. Meteor. Res. 2001, 14, 1. [Google Scholar]
- Warren, P.H.; Greenwood, J.P.; Rubin, A.E. Los Angeles: A Tale of Two Stones. Meteorit. Planet. Sci. 2004, 39, 137–156. [Google Scholar] [CrossRef]
- Day, J.M.; Taylor, L.A.; Floss, C.; McSween, H.Y., Jr. Petrology and Chemistry of MIL 03346 and Its Significance in Understanding the Petrogenesis of Nakhlites on Mars. Meteorit. Planet. Sci. 2006, 41, 581–606. [Google Scholar] [CrossRef]
- Imae, N.; Ikeda, Y. Petrology of the Miller Range 03346 Nakhlite in Comparison with the Yamato-000593 Nakhlite. Meteorit. Planet. Sci. 2007, 42, 171–184. [Google Scholar] [CrossRef]
- Udry, A.; McSween, H.Y., Jr.; Lecumberri-Sanchez, P.; Bodnar, R.J. Paired Nakhlites MIL 090030, 090032, 090136, and 03346: Insights into the Miller Range Parent Meteorite. Meteorit. Planet. Sci. 2012, 47, 1575–1589. [Google Scholar] [CrossRef]
- Sautter, V.; Barrat, J.; Jambon, A.; Lorand, J.; Gillet, P.; Javoy, M.; Joron, J.; Lesourd, M. A New Martian Meteorite from Morocco: The Nakhlite North West Africa 817. Earth Planet. Sci. Lett. 2002, 195, 223–238. [Google Scholar]
- Jambon, A.; Barrat, J.; Sautter, V.; Gillet, P.; Göpel, C.; Javoy, M.; Joron, J.; Lesourd, M. The Basaltic Shergottite Northwest Africa 856: Petrology and Chemistry. Meteorit. Planet. Sci. 2002, 37, 1147–1164. [Google Scholar]
- Barrat, J.; Jambon, A.; Bohn, M.; Gillet, P.; Sautter, V.; Göpel, C.; Lesourd, M.; Keller, F. Petrology and Chemistry of the Picritic Shergottite North West Africa 1068 (NWA 1068). Geochim. Cosmochim. Acta 2002, 66, 3505–3518. [Google Scholar] [CrossRef]
- Gillet, P.; Barrat, J.-A.; Beck, P.; Marty, B.; Greenwood, R.; Franchi, I.; Bohn, M.; Cotten, J. Petrology, Geochemistry, and Cosmic-ray Exposure Age of Iherzolitic Shergottite Northwest Africa 1950. Meteorit. Planet. Sci. 2005, 40, 1175–1184. [Google Scholar]
- Mikouchi, T. Northwest Africa 1950: Mineralogy and Comparison with Antarctic Lherzolitic Shergottites. Meteorit. Planet. Sci. 2005, 40, 1621–1634. [Google Scholar]
- Beck, P.; Barrat, J.-A.; Gillet, P.; Wadhwa, M.; Franchi, I.; Greenwood, R.; Bohn, M.; Cotten, J.; van de Moortèle, B.; Reynard, B. Petrography and Geochemistry of the Chassignite Northwest Africa 2737 (NWA 2737). Geochim. Cosmochim. Acta 2006, 70, 2127–2139. [Google Scholar]
- Treiman, A.H.; Dyar, M.D.; McCanta, M.; Noble, S.K.; Pieters, C.M. Martian Dunite NWA 2737: Petrographic Constraints on Geological History, Shock Events, and Olivine Color. J. Geophys. Res. Planets 2007, 112, e2006JE002777. [Google Scholar]
- Gross, J.; Treiman, A.H.; Filiberto, J.; Herd, C.D. Primitive Olivine-phyric Shergottite NWA 5789: Petrography, Mineral Chemistry, and Cooling History Imply a Magma Similar to Yamato-980459. Meteorit. Planet. Sci. 2011, 46, 116–133. [Google Scholar] [CrossRef]
- Brian Balta, J.; Sanborn, M.E.; Mayne, R.G.; Wadhwa, M.; McSween, H.Y., Jr.; Crossley, S.D. Northwest Africa 5790: A Previously Unsampled Portion of the Upper Part of the Nakhlite Pile. Meteorit. Planet. Sci. 2017, 52, 36–59. [Google Scholar] [CrossRef]
- Howarth, G.H.; Pernet-Fisher, J.F.; Balta, J.B.; Barry, P.H.; Bodnar, R.J.; Taylor, L.A. Two-stage Polybaric Formation of the New Enriched, Pyroxene-oikocrystic, Lherzolitic Shergottite, NWA 7397. Meteorit. Planet. Sci. 2014, 49, 1812–1830. [Google Scholar] [CrossRef]
- Mcsween, H.Y.; Treiman, A.H. Martian Meteorites. Rev. Mineral. Geochem. 1998, 36, 6-01–6-54. [Google Scholar]
- Day, J.M.D.; Tait, K.T.; Udry, A.; Moynier, F.; Liu, Y.; Neal, C.R. Martian Magmatism from Plume Metasomatized Mantle. Nat. Commun. 2018, 9, 4799. [Google Scholar] [CrossRef]
- Nicklas, R.W.; Day, J.M.D.; Vaci, Z.; Udry, A.; Liu, Y.; Tait, K.T. Uniform Oxygen Fugacity of Shergottite Mantle Sources and an Oxidized Martian Lithosphere. Earth Planet. Sci. Lett. 2021, 564, 116876. [Google Scholar] [CrossRef]
- Udry, A.; Day, J.M.D. 1.34 Billion-Year-Old Magmatism on Mars Evaluated from the Co-Genetic Nakhlite and Chassignite Meteorites. Geochim. Cosmochim. Acta 2018, 238, 292–315. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Observational Constraints on the Process and Products of Martian Serpentinization. Sci. Adv. 2023, 9, eadd8472. [Google Scholar] [CrossRef]
- Neuendorf, K.E.; Mehl, J.P., Jr.; Jackson, J.A. (Eds.) Glossary of Geology, 5th ed.; American Geosciences Institute: Alexandria, VA, USA, 2011; ISBN 9780922152896. Available online: https://www.abebooks.com/9780922152896/Glossary-Geology-Fifth-Edition-revised-0922152896/plp (accessed on 4 March 2024).
- Blake, D.F.; Sarrazin, P.; Bristow, T.F.; Treiman, A.H.; Zacny, K.; Morrison, S. Progress in the Development of CheMin-V, a Definitive Mineralogy Instrument for Landed Science on Venus. In Proceedings of the 19th Meeting of the Venus Exploration Analysis Group (VEXAG), Virtual, 8–9 November 2021; 2628. p. 8032. [Google Scholar]
- Blake, D.F.; Treiman, A.; Sarrazin, P.; Bristow, T.S.; Downs, R.; Yen, A.; Zacny, K. CHEMIN-V: A Definitive Mineralogy Instrument for Landed Venus Science. In Proceedings of the 51st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; p. 1814. [Google Scholar]
- Blake, D.; Hazen, R.M.; Morrison, S.M.; Bristow, T.S.; Sarrazin, P.; Zacny, K.; Rampe, E.B.; Downs, R.T.; Yen, A.; Ming, D.W.; et al. In-Situ Crystallographic Investigations of Solar Systems in the next Decade. Bull. AAS 2021, 53, 131. [Google Scholar] [CrossRef]
- Blake, D.; Bristow, T.; Sarrazin, P.; Zacny, K. In-Situ Mineralogical Analysis of the Venus Surface Using X-ray Diffraction. Bull. AAS 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Morrison, S.; Pan, F.; Prabhu, A.; Eleish, A.; Fox, P.; Gagne, O.; Downs, R.; Bristow, T.; Rampe, E.; Blake, D.; et al. Machine Learning in Predicting Multi-Component Mineral Compositions in Gale Crater, Mars. In Proceedings of the Goldschmidt Conference 2019, Barcelona, Spain, 18–23 August 2019; p. 2343. [Google Scholar]
- Eleish, A.; Morrison, S.M.; Pan, F.; Prabhu, A.; Downs, R.T.; Rampe, E.B.; Castle, N.; Blake, D.F.; Bristow, T.; Hazen, R.; et al. Predicting Multi-Component Mineral Compositions from Crystallographic Parameters Using Machine Learning for Spacecraft X-ray Diffraction Instruments. In Proceedings of the AGU Fall Meeting 2023, San Francisco, CA, USA, 11–15 December 2023. [Google Scholar]
- Geng, X. Label Distribution Learning. IEEE Trans. Knowl. Data Eng. 2016, 28, 1734–1748. [Google Scholar] [CrossRef]
- Morrison, S.; Pan, F.; Gagné, O.; Prabhu, A.; Eleish, A.; Fox, P.; Downs, R.; Bristow, T.; Rampe, E.; Blake, D.; et al. Predicting Multi-Component Mineral Compositions in Gale Crater, Mars with Label Distribution Learning. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. P21I-3438. [Google Scholar]
- Hazen, R.M.; Morrison, S.M.; Prabhu, A.; Williams, J.; Wong, M.; Krivovichev, S.V.; Bermanec, M. On the Attributes of Mineral Paragenetic Modes. Can. J. Mineral. Petrol. 2023, 61, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Bristow, T.F.; Haberle, R.M.; Blake, D.F.; Des Marais, D.J.; Eigenbrode, J.L.; Fairén, A.G.; Grotzinger, J.P.; Stack, K.M.; Mischna, M.A.; Rampe, E.B.; et al. Low Hesperian PCO2 Constrained from in Situ Mineralogical Analysis at Gale Crater, Mars. Proc. Natl. Acad. Sci. USA 2017, 114, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Jennings, E.S.; Coull, P. Olivine Microstructure and Thermometry in Olivine-phyric Shergottites Sayh al Uhaymir 005 and Dar al Gani 476. Meteorit. Planet. Sci. 2024, 59, 55–67. [Google Scholar] [CrossRef]
- Dreibus, G.; Wa, H. Volatiles on Earth and Mars: A Comparison. Icarus 1987, 71, 225–240. [Google Scholar] [CrossRef]
- Helffrich, G. Mars Core Structure—Concise Review and Anticipated Insights from InSight. Prog. Earth Planet. Sci. 2017, 4, 24. [Google Scholar] [CrossRef]
- Gilmore, M.; Treiman, A.; Helbert, J.; Smrekar, S. Venus Surface Composition Constrained by Observation and Experiment. Space Sci. Rev. 2017, 212, 1511–1540. [Google Scholar] [CrossRef]
- Weber, I.; Morlok, A.; Bischoff, A.; Hiesinger, H.; Ward, D.; Joy, K.; Crowther, S.; Jastrzebski, N.; Gilmour, J.D.; Clay, P.; et al. Cosmochemical and Spectroscopic Properties of Northwest Africa 7325—A Consortium Study. Meteorit. Planet. Sci. 2016, 51, 3–30. [Google Scholar] [CrossRef]
- Cloutis, E.A. Seeing Through the Atmosphere of Venus: What Is on the Surface? Geophys. Res. Lett. 2021, 48, e2020GL092128. [Google Scholar] [CrossRef]
- Bott, N.; Brunetto, R.; Doressoundiram, A.; Carli, C.; Capaccioni, F.; Langevin, Y.; Perna, D.; Poulet, F.; Serventi, G.; Sgavetti, M.; et al. Effects of Temperature on Visible and Infrared Spectra of Mercury Minerals Analogues. Minerals 2023, 13, 250. [Google Scholar] [CrossRef]
Sample | Abbr. | Offset (µm) | Clay Abund. (wt. %) | Total X-ray Amorphous Abundance (wt. %) | Sample Cell | Sols Analyzed | Sample Type | Lithology | Elevation | Depositional Environment | Stratigraphic Unit | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rocknest | RN | −53 | -- | 27(14) | 7a (Mylar) | 94–119 | Scoop | Eolian sand | −4516 | Modern eolian (inactive) | Bradbury Landing Dune Field | [6,9] |
John Klein | JK | −68 | 22(11) | 28(15) | 13b (Mylar) | 196–273 | Drill | Mudstone | −4519 | Fluviolacustrine | Yellowknife Bay Formation | [9,24] |
Cumberland | CB | −70 | 18(9) | 31(18) | 12b (Mylar) | 282–432 | Drill | Mudstone | −4519 | Fluviolacustrine | Yellowknife Bay Formation | [9,24] |
Windjana | WJ | −74 | 8.2(4) | 20(11) | 13a (Mylar) | 623–694 | Drill | Sandstone | −4481 | Reworked eolian and fluvial | Kimberley Formation | [9,21] |
Confidence Hills | CH | −74 | 7.6(4) | 39(15) | 12a (Mylar) | 765–785 | Drill | Mudstone | −4460 | Fluviolacustrine | Pahrump Hills, Murray Formation | [9,19] |
Mojave 2 | MJ | −25 | 4.7(3) | 53(15) | 6a (Kapton) | 884–944 | Drill | Mudstone | −4459 | Fluviolacustrine | Pahrump Hills, Murray Formation | [9,19] |
Telegraph Peak | TP | −45 | -- | 27(15) | 5b (Kapton) | 922–949 | Drill | Mudstone | −4453 | Fluviolacustrine | Pahrump Hills, Murray Formation | [9,19] |
Buckskin | BK | −76 | -- | 50(15) | 14b (Kapton) | 1061–1078 | Drill | Mudstone | −4446 | Fluviolacustrine | Pahrump Hills, Murray Formation | [9,19] |
Big Sky | BS | −26 | -- | 20(10) | 7b (Mylar) | 1121–1131 | Drill | Sandstone | −4434 | Ancient eolian | Stimson Formation | [9,25] |
Greenhorn | GH | −66 | -- | 65(20) | 8a (Mylar) | 1139–1148 | Drill | Mudstone | −4434 | Ancient eolian (halo) | Stimson Formation | [9,25] |
Gobabeb | GB | −38 | -- | 34(18) | 7a (Mylar) | 1262–1280 | Scoop | Mudstone | −4423 | Ancient eolian (active) | Bagnold Dune Field | [9,10] |
Lubango | LB | −75 | -- | 75(25) | 8a (Mylar) | 1323–1350 | Drill | Mudstone | −4429 | Ancient eolian (halo) | Stimson Formation | [9,10] |
Okoruso | OK | −28 | -- | 35(15) | 7b (Mylar) | 1334–1346 | Drill | Sandstone | −4429 | Ancient eolian | Stimson Formation | [9,10] |
Oudam | OU | −58 | 3(2) | 36(17) | 12a (Mylar) | 1362–1398 | Drill | Siltstone | −4435 | Reworked eolian and fluvial | Hartmann’s Valley Member, Murray Formation | [3] |
Marimba2 | MB | −113 | 23(12) | 40(20) | 8b (Mylar) | 1425–1436 | Drill | Mudstone | −4410 | Fluviolacustrine | Karasburg Member, Murray Formation | [3] |
Quela | QL | −47 | 16(8) | 52(26) | 5a (Kapton) | 1470–1480 | Drill | Mudstone | −4379 | Fluviolacustrine | Karasburg Member, Murray Formation | [3] |
Sebina | SB | −112 | 19(10) | 51(25) | 4b (Kapton) | 1496–1507 | Drill | Mudstone | −4360 | Fluviolacustrine | Sutton Island Member, Murray Formation | [3] |
Ogunquit Beach | OG | −89 | 7(3) | 40(20) | 1a (Kapton) | 1832–1931 | Scoop | Eolian sand | −4300 | Modern eolian (active) | Bagnold Dune Field | [3] |
Duluth | DU | −87 | 15(7) | 35(15) | 13b (Mylar) | 2061–2095 | Drill | Mudstone | −4192 | Fluviolacustrine | Blunts Point Member, Vera Rubin Ridge, Murray Formation | [3,29] |
Stoer | ST | −110 | 10(5) | 35(15) | 10A (Mylar) | 2141–2151 | Drill | Mudstone | −4169 | Fluviolacustrine | Pettegrove Point Member, Vera Rubin Ridge, Murray Formation | [3,29] |
Highfield | HF | −81 | 5(2) | 49(15) | 10A (Mylar) | 2226–2242 | Drill | Mudstone | −4147 | Fluviolacustrine | Jura Member, Vera Rubin Ridge, Murray Formation | [3,29] |
Rockhall | RH | −69 | 13(6) | 34(15) | 7b (Mylar) | 2264–2284 | Drill | Mudstone | −4143 | Fluviolacustrine | Jura Member, Vera Rubin Ridge, Murray Formation | [3,29] |
Aberlady | AL | −97 | 28(12) | 41(20) | 8a (Mylar) | 2373–2384 | Drill | Mudstone | −4157 | Fluviolacustrine | Clay-bearing unit, Jura Member, Murray Formation | [23,27] |
Kilmarie | KM | −142 | 28(12) | 44(20) | 9b (Mylar) | 2388–2400 | Drill | Mudstone | −4158 | Fluviolacustrine | Clay-bearing unit, Jura Member, Murray Formation | [23,27] |
Glen Etive | GE | −107 | 34(17) | 38(19) | 8b (Mylar) | 2492–2503 | Drill | Sandstone | −4133 | Fluviolacustrine | Knockfarril Hill Member, Carolyn Shoemaker Formation | [23,27] |
Glen Etive 2 | GE2 | −103 | 26(13) | 37(19) | 8a (Mylar) | 2543–2555 | Drill | Sandstone | −4129 | Fluviolacustrine | Knockfarril Hill Member, Carolyn Shoemaker Formation | [23,27] |
Hutton | HU | −36 | 6(2) | 38(19) | 12a (Mylar) | 2672–2678 | Drill | Mudstone | −4095 | Fluviolacustrine | Glasgow Member, Carolyn Shoemaker Formation | [23] |
Edinburgh | EB | −160 | 7(4) | 20(10) | 7b (Mylar) | 2715–2723 | Drill | Sandstone | −4088 | Ancient aeolian | Stimson Formation | [23] |
Glasgow | GG | −127 | 24(12) | 47(23) | 7b (Mylar) | 2758–2774 | Drill | Mudstone | −4107 | Fluviolacustrine | Glasgow Member, Carolyn Shoemaker Formation | [23,27] |
Mary Anning | MA | −86 | 28(10) | 27(20) | 7a (Mylar) | 2842–2854 | Drill | Sandstone | −4128 | Fluviolacustrine | Knockfarril Hill Member, Carolyn Shoemaker Formation | [23,27] |
Mary Anning 3 | MA3 | −74 | 30(11) | 25(19) | 7a (Mylar) | 2888–2894 | Drill | Sandstone | −4128 | Fluviolacustrine | Knockfarril Hill Member, Carolyn Shoemaker Formation | [23,27] |
Groken | GR | −122 | 30(16) | 26(14) | 9a (Mylar) | 2912–2930 | Drill | Sandstone | −4127 | Fluviolacustrine | Knockfarril Hill Member, Carolyn Shoemaker Formation | [23,27] |
Nontron | NT | −98 | 18(8) | 40(24) | 9a (Mylar) | 3058–3077 | Drill | Sandstone | −4072 | Fluviolacustrine | Mercou Member, Carolyn Shoemaker Formation | [35] |
Bardou | BD | −106 | 12(6) | 48(25) | 4a (Kapton) | 3097–3113 | Drill | Sandstone | −4066 | Fluviolacustrine | Mercou Member, Carolyn Shoemaker Formation | [35] |
Pontours | PT | −114 | 3(2) | 49(25) | 1a (Kapton) | 3172–3172 | Drill | Strong diagenetic overprint—grain size indeterminate | −4041 | Fluviolacustrine | Pontours Member, Carolyn Shoemaker Formation | [35] |
Maria Gordon | MG | −111 | -- | 54(24) | 1a (Kapton) | 3232–3232 | Drill | Sandstone | −4015 | Fluviolacustrine | Dunnideer Member, Mirador Formation | [35] |
Zechstein | ZE | −102 | -- | 46(25) | 1a (Kapton) | 3292–3310 | Drill | Sandstone | −3991 | Fluviolacustrine | Port Logan Member, Mirador Formation | [35] |
Avanavero | AV | 5.5 | -- | 58(23) | 15a (Kapton) | 3517–3520 | Drill | Sandstone | −3910 | Fluviolacustrine | Contigo Member, Mirador Formation | [35] |
Canaima | CA | −42 | -- | 62(23) | 15a (Kapton) | 3615–3627 | Drill | Sandstone | −3879 | Fluviolacustrine/Aeolian | Contigo Member, Mirador Formation | [28,35] |
Tapo Caparo | TC | −33 | -- | 60(23) | 15a (Kapton) | 3755–3777 | Drill | Mudstone | −3853 | Fluviolacustrine | Amapari Member, Mirador Formation | [64,65] |
Rocknest | John Klein | Cumberland | Windjana | Confidence Hills | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 41(3) | Andesine | 44(3) | Plagioclase | 44(3) | Augite | 29(4) | Plagioclase | 38(3) |
Forsterite | 22.4(19) | Pigeonite | 11(3) | Pigeonite | 16(4) | K-Feldspar | 21(4) | Hematite | 13.4(9) |
Augite | 15(3) | Augite | 8(3) | Magnetite | 8.7(19) | Pigeonite | 17(4) | Augite | 11.4(18) |
Pigeonite | 14(3) | Magnetite | 7.6(16) | Augite | 8(3) | Magnetite | 13.8(13) | Pigeonite | 10(3) |
Magnetite | 2.1(8) | Orthopyroxene | 6(2) | Orthopyroxene | 8(4) | Plagioclase | 5.6(14) | K-Feldspar | 8.0(13) |
Anhydrite | 1.5(7) | Forsterite | 5.7(15) | Akaganeite | 3.4(13) | Forsterite | 5.2(14) | Magnetite | 6.9(8) |
Quartz | 1.4(6) | Anhydrite | 5.3(14) | Sanidine | 3.1(17) | Akaganeite | 2.5(12) | Enstatite | 5(3) |
Sanidine | 1.3(13) | Sanidine | 2.4(15) | Pyrrhotite | 1.9(11) | Anhydrite | 1.49(11) | Forsterite | 3.3(12) |
Hematite | 1.1(9) | Akaganeite | 2.3(12) | Forsterite | 1.8(16) | Pyrrhotite | 1.3(8) | Jarosite | 1.5(5) |
Ilmenite | 0.9(9) | Bassanite | 2.1(7) | Anhydrite | 1.6(12) | Ilmenite | 1.1(7) | Ilmenite | 1.4(6) |
Pyrrhotite | 2.0(9) | Bassanite | 1.4(7) | Enstatite | 1.0(9) | Quartz | 0.8(3) | ||
Albite | 1.3(8) | Hematite | 1.3(10) | Hematite | 0.9(8) | ||||
Hematite | 1.2(11) | Ilmenite | 1.0(9) | Bassanite | 0.2(2) | ||||
Quartz | 0.9(9) | Halite | 0.2(3) | Quartz | 0.2(2) | ||||
Pyrite | 0.6(5) | Quartz | 0.2(3) | ||||||
Halite | 0.3(3) | ||||||||
Mojave2 | Telegraph Peak | Buckskin | Big Sky | Greenhorn | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 55(5) | Plagioclase | 38(4) | Plagioclase | 43(3) | Plagioclase | 47(3) | Plagioclase | 42(2) |
Pigeonite | 13(3) | Opal-Ct | 15(3) | Tridymite | 34(2) | Pigeonite | 19(2) | Magnetite | 17.3(10) |
Magnetite | 6.8(10) | Magnetite | 10.9(7) | Sanidine | 8.4(18) | Orthopyroxene | 14(2) | Anhydrite | 16.1(10) |
Hematite | 7.4(11) | Cristobalite | 8.7(7) | Magnetite | 6.9(8) | Magnetite | 13.1(10) | Orthopyroxene | 8(2) |
Jarosite | 6.8(8) | K-Feldspar | 5.9(11) | Cristobalite | 6.0(8) | Hematite | 2.8(10) | Hematite | 6.0(10) |
Apatite | 4.2(12) | Apatite | 3.0(5) | Anhydrite | 1.8(6) | Tridymite | 1.7(10) | Pigeonite | 4.7(10) |
Augite | 2.6(6) | Enstatite | 2.8(11) | Quartz | 1.5(3) | Bassanite | 4.0(10) | ||
Fe-Forsterite | 2.0(13) | Jarosite | 2.4(5) | Anhydrite | 1.1(00) | Quartz | 2.2(10) | ||
Quartz | 1.5(6) | Augite | 2.1(5) | ||||||
Ilmenite | 0.9(4) | Hematite | 1.6(5) | ||||||
Quartz | 1.2(3) | ||||||||
Ilmenite | 0.9(4) | ||||||||
Anhydrite | 0.5(2) | ||||||||
Bassanite | 0.5(3) | ||||||||
Opal-Ct | 15(3) | ||||||||
Gobabeb | Lubango | Okoruso | Oudam | Marimba | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 36(2) | Plagioclase | 43(2) | Plagioclase | 42(3) | Plagioclase | 51(2) | Plagioclase | 46(4) |
Olivine | 28(2) | Anhydrite | 12.3(10) | Pigeonite | 21(2) | Hematite | 26.0(10) | Hematite | 16(2) |
Augite | 20(2) | Magnetite | 11.1(10) | Magnetite | 17.3(10) | Pyroxene | 10(2) | Anhydrite | 10.2(10) |
Pigeonite | 11(2) | Orthopyroxene | 10(2) | Orthopyroxene | 11(2) | Anhydrite | 5.8(2) | Sanidine | 8(3) |
Magnetite | 2.8(10) | Bassanite | 9.0(10) | K-Feldspar | 2.9(10) | Gypsum | 5.5(10) | Gypsum | 6.4(10) |
Anhydrite | 1.0(2) | Pigeonite | 5.9(10) | Apatite | 1.6(10) | Quartz | 1.9(10) | Forsterite | 5(2) |
Quartz | 0.7(3) | Quartz | 3.5(10) | Quartz | 1.4(3) | Pyroxene | 4(4) | ||
Hematite | 0.5(5) | Hematite | 2.3(10) | Bassanite | 1.2(10) | Bassanite | 1.9(10) | ||
Gypsum | 2.3(10) | Hematite | 1.1(10) | Jarosite | 1.5(10) | ||||
Anhydrite | 0.8(10) | Quartz | 1.2(10) | ||||||
Quela | Sebina | Ogunquit Beach | Duluth | Stoer | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 44(2) | Plagioclase | 38(3) | Plagioclase | 47(3) | Plagioclase | 55.8(18) | Plagioclase | 44.1(17) |
Hematite | 20(2) | Hematite | 20.4(17) | Forsterite | 18.2(12) | Hematite | 13.0(8) | Hematite | 28.3(10) |
Anhydrite | 10.7(10) | Anhydrite | 16.9(11) | Augite | 15.7(18) | Sanidine | 9.0(9) | Pyroxene | 7.3(13) |
Sanidine | 6(2) | Pyroxene | 7(4) | Pigeonite | 10.2(18) | Pyroxene | 9.0(14) | Anhydrite | 5.3(5) |
Pyroxene | 5(2) | Sanidine | 5(2) | Magnetite | 2.5(6) | Bassanite | 5.4(4) | Gypsum | 4.2(3) |
Forsterite | 5(2) | Gypsum | 3.8(13) | Hematite | 2.3(5) | Anhydrite | 3.0(5) | Sanidine | 4.0(7) |
Bassanite | 4.5(10) | Forsterite | 3.0(10) | Anhydrite | 2.3(5) | Gypsum | 1.8(1) | Jarosite | 2.2(3) |
Gypsum | 1.8(10) | Jarosite | 2.6(6) | Quartz | 1.6(4) | Magnetite | 1.6(3) | Akaganeite | 1.6(1) |
Jarosite | 1.4(10) | Bassanite | 1.8(5) | Quartz | 1.3(2) | Quartz | 1.5(3) | ||
Quartz | 1.1(10) | Quartz | 1.2(6) | Bassanite | 0.8(3) | ||||
Magnetite | 0.7(2) | ||||||||
Highfield | Rock Hall | Aberlady | Kilmarie | Glen Etive | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 47(3) | Plagioclase | 38(5) | Plagioclase | 35(4) | Plagioclase | 33(4) | Plagioclase | 40(3) |
Hematite | 20.2(13) | Anhydrite | 21(3) | Anhydrite | 19(3) | Anhydrite | 29.3(13) | Anhydrite | 34.0(13) |
Pyroxene | 10(4) | Pyroxene | 17.1(19) | Bassanite | 18.4(14) | Pyroxene | 13(5) | Hematite | 7(3) |
Anhydrite | 8.2(10) | Akaganeite | 11.3(9) | Pyroxene | 15(6) | Bassanite | 10.0(10) | Pyroxene | 6.0(19) |
Gypsum | 5.2(10) | Hematite | 5.4(4) | Hematite | 5.5(14) | Siderite | 8.0(10) | Sanidine | 5(3) |
Sanidine | 3.7(10) | Jarosite | 4.3(9) | Sanidine | 3.9(16) | Hematite | 3.8(10) | Bassanite | 3.0(12) |
Bassanite | 2.6(6) | Apatite | 2.5(8) | Quartz | 2.1(10) | Sanidine | 2(2) | Siderite | 3.0(9) |
Magnetite | 1.4(13) | Magnetite | 1.9(11) | Quartz | 0.8(4) | Quartz | 2.0(8) | ||
Quartz | 1.3(7) | ||||||||
Glen Etive 2 | Hutton | Edinburgh | Glasgow | Mary Anning | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 63(4) | Plagioclase | 45(7) | Plagioclase | 40(3) | Plagioclase | 50(4) | Plagioclase | 71(5) |
Pyroxene | 11(3) | Pyroxene | 14(2) | Pyroxene | 28(3) | Anhydrite | 19(3) | Pyroxene | 12(4) |
Anhydrite | 10.0(6) | Magnetite | 12(4) | Magnetite | 14.0(18) | Hematite | 13(4) | Sanidine | 6.3(18) |
Sanidine | 6.0(15) | Cristobalite | 9.3(14) | Fe-Forsterite | 12(3) | Pyroxene | 6(4) | Anhydrite | 3.9(13) |
Hematite | 4.0(13) | Hematite | 4.8(12) | Sanidine | 5(3) | Sanidine | 4(9) | Fe-Carbonate | 3.1(9) |
Bassanite | 3.0(8) | Sanidine | 4.7(12) | Apatite | 2.0(13) | Bassanite | 3.2(19) | Hematite | 2.5(16) |
Quartz | 2.0(2) | Apatite | 3.8(18) | Hematite | 0.5(8) | Quartz | 3(3) | Quartz | 2.1(6) |
Anhydrite | 1.2(8) | Quartz | 0.2(4) | Apatite | 1.0(18) | ||||
Cristobalite | 0.7(10) | ||||||||
Mary Anning 3 | Groken | Nontron | Bardou | Pontours | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 64(3) | Plagioclase | 57(3) | Plagioclase | 51.3(15) | Plagioclase | 53.0(18) | Plagioclase | 58(5) |
Pyroxene | 14(6) | Anhydrite | 11.4(10) | Hematite | 17.1(19) | Hematite | 21(3) | Pyroxene | 16.7(18) |
Sanidine | 6(4) | Pyroxene | 10(4) | Pyroxene | 9(4) | Pyroxene | 9(4) | Hematite | 9(2) |
Bassanite | 4.8(5) | Bassanite | 7.8(6) | Anhydrite | 8(2) | Bassanite | 5.5(14) | Sanidine | 6(3) |
Anhydrite | 4.6(12) | Fe-Carbonate | 7(3) | Bassanite | 5.2(14) | Sanidine | 4.2(18) | Bassanite | 3.1(16) |
Fe-Carbonate | 2.5(17) | Sanidine | 4.8(16) | Sanidine | 3.7(12) | Ankerite | 2.6(18) | Gypsum | 2.0(8) |
Quartz | 2.3(10) | Quartz | 1.8(12) | Goethite | 2.4(15) | Anhydrite | 2.0(14) | Quartz | 1.8(10) |
Hematite | 1.9(5) | Ankerite | 2.2(7) | Quartz | 1.7(12) | Goethite | 1.7(12) | ||
Quartz | 1.5(2) | Gypsum | 1.2(8) | Halite | 1.2 | ||||
Maria Gordon | Zechstein | Avanavero | Canaima | Tapo Caparo | |||||
Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % | Phase | wt. % |
Plagioclase | 52(4) | Plagioclase | 38(4) | Plagioclase | 42(6) | Plagioclase | 45(4) | Plagioclase | 38(4) |
Hematite | 16(2) | Gypsum | 33.7(10) | Hematite | 17(5) | Hematite | 12(3) | Siderite | 26(3) |
Pyroxene | 7.6(18) | Pyroxene | 13(3) | Anhydrite | 12(4) | Gypsum | 10.5(11) | Pyroxene | 22(4) |
Alkali Feldspar | 6.1(16) | Hematite | 10(3) | Goethite | 10(4) | Sanidine | 8(3) | Kieserite | 8(3) |
Goethite | 6(4) | Bassanite | 4.4(8) | Pyroxene | 8.7(18) | Pyroxene | 8(6) | Bassanite | 3.8(18) |
Anhydrite | 4.8(10) | Quartz | 1.9(6) | Bassanite | 4.6(12) | Starkeyite | 6.1(16) | Anhydrite | 2.0(12) |
Bassanite | 4.4(16) | Sanidine | 3.5(18) | Goethite | 6(4) | ||||
Gypsum | 2.1(10) | Quartz | 1.0(10) | Anhydrite | 1.6(16) | ||||
Quartz | 1.6(8) | Ilmenite | 1.0(12) | Quartz | 1.3(11) | ||||
Bassanite | 1.1(16) |
Plagioclase Unit-Cell Parameters and Compositions | ||||||||
---|---|---|---|---|---|---|---|---|
Sample | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Ca (apfu) | Na (apfu) |
RK | 8.168(6) | 12.863(6) | 7.108(4) | 93.46(5) | 116.22(3) | 90.12(3) | 0.48(4) | 0.51(4) |
JK | 8.162(5) | 12.860(8) | 7.108(5) | 93.47(5) | 116.29(3) | 90.10(4) | 0.40(4) | 0.60(4) |
CB | 8.162(7) | 12.860(8) | 7.112(7) | 93.42(5) | 116.34(4) | 90.10(4) | 0.32(5) | 0.67(5) |
WJ | 8.17(4) | 12.91(9) | 7.11(5) | 94(1) | 116.3(5) | 89.9(7) | 0.1(7) | 0.8(7) |
CH | 8.166(7) | 12.859(7) | 7.111(4) | 93.44(6) | 116.31(4) | 90.16(4) | 0.38(4) | 0.61(4) |
MJ2 | 8.164(4) | 12.859(3) | 7.110(2) | 93.50(4) | 116.28(1) | 90.10(3) | 0.41(3) | 0.59(3) |
TP | 8.157(3) | 12.858(6) | 7.111(2) | 93.47(2) | 116.28(2) | 90.08(2) | 0.36(3) | 0.64(3) |
BK | 8.155(3) | 12.862(4) | 7.106(4) | 93.32(2) | 116.28(2) | 90.10(2) | 0.39(3) | 0.62(3) |
BS | 8.159(8) | 12.875(8) | 7.103(7) | 93.47(6) | 116.09(4) | 89.97(5) | 0.52(5) | 0.48(5) |
GH | 8.165(7) | 12.891(9) | 7.108(7) | 93.24(7) | 116.10(4) | 90.06(4) | 0.38(6) | 0.60(6) |
GB | 8.181(7) | 12.868(7) | 7.107(6) | 93.49(5) | 116.19(4) | 90.06(3) | 0.63(6) | 0.36(6) |
LB | 8.166(11) | 12.891(11) | 7.111(9) | 93.26(10) | 116.21(5) | 90.04(6) | 0.27(8) | 0.70(8) |
OU | 8.163(5) | 12.852(7) | 7.110(4) | 93.52(4) | 116.31(4) | 90.05(5) | 0.41(4) | 0.59(4) |
OK | 8.160(8) | 12.880(7) | 7.108(6) | 93.59(7) | 116.17(4) | 89.91(6) | 0.38(5) | 0.61(5) |
MB | 8.161(7) | 12.853(10) | 7.112(4) | 93.38(6) | 116.29(4) | 90.10(2) | 0.38(4) | 0.61(4) |
SB | 8.162(9) | 12.875(19) | 7.110(7) | 93.41(16) | 116.22(7) | 90.02(9) | 0.36(8) | 0.63(8) |
QL | 8.162(9) | 12.875(18) | 7.110(7) | 93.41(15) | 116.22(6) | 90.02(9) | 0.36(8) | 0.63(8) |
OG | 8.169(6) | 12.866(12) | 7.107(4) | 93.42(2) | 116.23(4) | 90.17(5) | 0.48(5) | 0.51(5) |
DU | 8.165(6) | 12.864(6) | 7.116(2) | 93.46(4) | 116.27(2) | 90.08(2) | 0.34(4) | 0.64(4) |
ST | 8.151(3) | 12.865(9) | 7.104(5) | 93.32(4) | 116.23(2) | 90.11(2) | 0.42(4) | 0.60(4) |
RH | 8.155(5) | 12.875(1) | 7.113(2) | 93.43(5) | 116.25(2) | 90.15(2) | 0.27(3) | 0.72(3) |
HF | 8.177(8) | 12.879(12) | 7.106(3) | 92.9(3) | 116.33(4) | 90.27(3) | 0.43(7) | 0.56(6) |
EB | 8.149(10) | 12.85(3) | 7.109(8) | 92.9(3) | 116.47(9) | 90.17(10) | 0.24(8) | 0.78(8) |
AL | 8.176(11) | 12.850(11) | 7.112(7) | 93.41(10) | 116.17(5) | 90.23(6) | 0.59(8) | 0.38(8) |
KM | 8.154(6) | 12.871(6) | 7.108(7) | 93.45(4) | 116.17(3) | 90.10(3) | 0.39(5) | 0.61(4) |
GE | 8.157(5) | 12.863(10) | 7.107(5) | 93.41(13) | 116.21(2) | 90.13(6) | 0.43(4) | 0.57(4) |
GE2 | 8.164(6) | 12.854(8) | 7.110(6) | 93.41(4) | 116.28(5) | 90.10(3) | 0.43(5) | 0.57(5) |
HU | 8.163(5) | 12.888(4) | 7.110(4) | 93.51(9) | 116.26(4) | 90.07(5) | 0.25(4) | 0.74(4) |
GG | 8.144(8) | 12.841(9) | 7.105(5) | 93.34(5) | 116.24(3) | 90.16(3) | 0.46(4) | 0.56(4) |
MA | 8.160(3) | 12.865(3) | 7.109(2) | 93.44(2) | 116.26(2) | 90.11(1) | 0.38(3) | 0.62(3) |
MA3 | 8.158(5) | 12.864(6) | 7.110(4) | 93.46(5) | 116.25(2) | 90.13(2) | 0.37(4) | 0.63(4) |
GR | 8.162(4) | 12.862(3) | 7.111(2) | 93.48(4) | 116.24(2) | 90.10(2) | 0.40(3) | 0.59(3) |
NT | 8.162(4) | 12.872(5) | 7.110(3) | 93.43(4) | 116.22(3) | 90.13(2) | 0.37(3) | 0.62(3) |
BD | 8.160(8) | 12.864(4) | 7.108(3) | 93.49(3) | 116.24(3) | 90.09(2) | 0.41(4) | 0.59(4) |
PT | 8.159(7) | 12.862(6) | 7.106(3) | 93.44(6) | 116.26(4) | 90.14(5) | 0.43(4) | 0.57(4) |
MG | 8.157(6) | 12.860(6) | 7.104(4) | 93.50(5) | 116.22(3) | 90.07(2) | 0.47(4) | 0.54(4) |
ZE | 8.167(6) | 12.867(5) | 7.111(5) | 93.45(4) | 116.26(2) | 90.11(3) | 0.40(4) | 0.59(4) |
AV | 8.163(2) | 12.870(5) | 7.108(3) | 93.28(4) | 116.22(2) | 90.19(3) | 0.40(3) | 0.59(3) |
CA | 8.152(3) | 12.841(9) | 7.108(4) | 93.49(11) | 116.26(5) | 90.07(4) | 0.43(3) | 0.55(3) |
TC | 8.161(10) | 12.862(8) | 7.105(2) | 93.34(5) | 116.14(3) | 90.11(11) | 0.53(5) | 0.47(5) |
Alkali Feldspar Unit-Cell Parameters, Compositions, and Ordering State | ||||||
---|---|---|---|---|---|---|
Sample | a (Å) | b (Å) | c (Å) | β (°) | Na (apfu) | Ordering |
JK | 8.55(3) | 12.95(3) | 7.15(3) | 115.73(14) | 0.47(18) | 0.1(4) |
CB | 8.53(3) | 12.97(3) | 7.18(3) | 115.56(18) | 0.23(19) | 0.3(4) |
WJ | 8.578(6) | 13.016(7) | 7.165(7) | 116.00(6) | 0.13(5) | −0.07(10) |
CH | 8.584(13) | 13.009(18) | 7.160(15) | 115.96(13) | 0.18(11) | −0.1(3) |
TP | 8.53(2) | 12.986(16) | 7.152(15) | 115.94(17) | 0.31(11) | −0.1(3) |
BK | 8.540(2) | 13.01(2) | 7.15(2) | 115.80(10) | 0.23(14) | −0.2(3) |
DU | 8.62(4) | 12.91(3) | 7.20(8) | 116.2(4) | 0.3(5) | 1(1) |
GE | 8.61(8) | 12.99(3) | 7.24(4) | 117(2) | −0.2(3) | 1.1(5) |
GE2 | 8.63(5) | 12.89(4) | 7.149(11) | 115.96(8) | 0.70(15) | 0.5(3) |
GG | 8.62(3) | 12.94(5) | 7.22(3) | 116.8(6) | 0.1(3) | 1.1(5) |
CA | 8.625(5) | 12.932(15) | 7.179(19) | 116.62(14) | 0.36(12) | 0.6(3) |
Olivine Unit-Cell Parameters and Compositions | |||||
---|---|---|---|---|---|
Sample | a (Å) | b (Å) | c (Å) | Mg (apfu) | Fe (apfu) |
RK | 4.785(3) | 10.318(4) | 6.025(3) | 1.14(3) | 0.86(3) |
JK | 4.791(19) | 10.289(12) | 6.044(16) | 1.35(9) | 0.65(9) |
CB | 4.81(4) | 10.28(3) | 6.03(5) | 1.44(15) | 0.56(15) |
WJ | 4.773(7) | 10.289(10) | 6.006(11) | 1.35(7) | 0.65(7) |
GB | 4.785(3) | 10.327(3) | 6.033(4) | 1.08(3) | 0.92(3) |
OG | 4.784(6) | 10.311(7) | 6.030(6) | 1.19(6) | 0.81(6) |
EB | 4.760(4) | 10.302(4) | 6.017(6) | 1.26(3) | 0.74(3) |
Augite Unit-Cell Parameters and Compositions | |||||||
---|---|---|---|---|---|---|---|
Sample | a (Å) | b (Å) | c (Å) | β (°) | Mg (apfu) | Ca (apfu) | Fe (apfu) |
RK | 9.77(3) | 8.924(13) | 5.263(11) | 106.5(3) | 0.94(9) | 0.72(4) | 0.34(10) |
WJ | 9.744(9) | 8.925(11) | 5.258(10) | 106.36(6) | 1.03(7) | 0.75(4) | 0.21(9) |
GB | 9.785(15) | 8.922(13) | 5.276(13) | 106.45(9) | 0.89(8) | 0.73(3) | 0.38(9) |
OG | 9.73(5) | 8.91(3) | 5.268(12) | 106.8(4) | 1.27(19) | 0.66(7) | 0.1(3) |
DU | 9.698(13) | 9.00(3) | 5.25(4) | 105.75(19) | 0.57(12) | 0.77(5) | 0.66(16) |
ST | 9.63(8) | 9.01(4) | 5.236(10) | 105.81(16) | 0.7(3) | 0.74(8) | 0.6(4) |
RH | 9.74(3) | 9.005(4) | 5.239(8) | 105.53(15) | 0.41(6) | 0.81(4) | 0.78(7) |
GR | 9.66(16) | 9.00(9) | 5.24(5) | 105.5(12) | 0.8(6) | 0.9(3) | 0.4(8) |
NT | 9.58(16) | 9.02(13) | 5.22(6) | 105.4(3) | 1.0(8) | 1.0(3) | 0(1) |
PT | 9.73(7) | 8.98(6) | 5.25(6) | 106.1(4) | 0.6(3) | 0.72(9) | 0.7(4) |
MG | 9.81(9) | 8.9(1) | 5.23(5) | 106.1(4) | 0.9(4) | 0.89(15) | 0.2(5) |
ZE | 9.69(5) | 9.0(1) | 5.25(5) | 106.0(5) | 1.1(6) | 1.0(3) | −0.1(9) |
CA | 9.79(8) | 8.90(8) | 5.25(3) | 106.3(7) | 1.0(4) | 0.82(13) | 0.1(5) |
TC | 9.742(10) | 8.939(16) | 5.272(4) | 106.3(2) | 0.92(9) | 0.76(5) | 0.32(12) |
Pigeonite Unit-Cell Parameters and Compositions | |||||||
---|---|---|---|---|---|---|---|
Sample | a (Å) | b (Å) | c (Å) | β (°) | Mg (apfu) | Ca (apfu) | Fe (apfu) |
RK | 9.651(15) | 8.942(18) | 5.24(3) | 108.35(18) | 0.97(8) | 0.00(3) | 1.03(9) |
JK | 9.69(2) | 8.917(18) | 5.208(19) | 108.57(14) | 1.17(10) | 0.19(6) | 0.64(14) |
CB | 9.680(19) | 8.93(2) | 5.22(3) | 108.53(10) | 1.08(11) | 0.14(8) | 0.78(16) |
WJ | 9.648(16) | 8.90(3) | 5.210(16) | 108.6(3) | 1.29(13) | 0.01(6) | 0.70(15) |
CH | 9.651(16) | 8.92(3) | 5.210(16) | 108.57(9) | 1.10(9) | 0.00(4) | 0.90(9) |
MJ2 | 9.67(3) | 8.92(4) | 5.20(4) | 108.7(4) | 1.14(16) | 0.08(10) | 0.8(3) |
TP | 9.67(4) | 8.93(6) | 5.19(4) | 108.6(3) | 1.1(3) | 0.06(13) | 0.9(3) |
BS | 9.672(9) | 8.886(10) | 5.222(9) | 108.56(4) | 1.44(7) | 0.17(4) | 0.40(9) |
GB | 9.68(2) | 8.94(3) | 5.25(3) | 108.69(14) | 0.94(12) | 0.06(8) | 1.00(17) |
LB | 9.67(3) | 8.890(3) | 5.21(3) | 108.28(14) | 1.54(17) | 0.28(6) | 0.18(17) |
OK | 9.667(7) | 8.891(8) | 5.217(8) | 108.51(3) | 1.39(7) | 0.13(5) | 0.48(10) |
OG | 9.68(4) | 8.91(5) | 5.25(4) | 108.6(3) | 1.2(3) | 0.15(11) | 0.6(3) |
EB | 9.63(3) | 8.93(7) | 5.17(3) | 108.3(5) | 1.2(3) | 0.00(3) | 0.9(3) |
HU | 9.68(4) | 8.88(9) | 5.189(18) | 108.5(3) | 1.5(5) | 0.24(12) | 0.3(6) |
GG | 9.61(7) | 8.87(7) | 5.26(8) | 108.4(4) | 1.6(3) | 0.00(14) | 0.4(4) |
MA | 9.633(16) | 8.90(3) | 5.206(13) | 108.30(11) | 1.29(10) | 0.00(3) | 0.71(10) |
MA3 | 9.62(5) | 8.92(4) | 5.211(12) | 108.5(3) | 1.18(14) | 0.00(4) | 0.82(14) |
GR | 9.591(8) | 8.99(3) | 5.16(4) | 107.89(13) | 0.79(11) | 0.00(3) | 1.21(12) |
NT | 9.610(19) | 8.95(3) | 5.209(19) | 107.77(17) | 1.03(14) | 0.0(3) | 1.0(4) |
BD | 9.62(3) | 8.98(3) | 5.20(3) | 108.08(15) | 0.80(10) | 0.00(3) | 1.20(10) |
PT | 9.69(4) | 8.82(4) | 5.24(4) | 109.16(18) | 1.75(14) | 0.15(4) | 0.10(13) |
MG | 9.73(5) | 8.83(4) | 5.27(5) | 109.0(3) | 1.62(16) | 0.23(5) | 0.15(14) |
ZE | 9.68(5) | 8.92(6) | 5.223(19) | 108.5(3) | 1.2(3) | 0.17(13) | 0.6(4) |
AV | 9.70(3) | 8.90(3) | 5.262(7) | 109.01(10) | 1.26(12) | 0.19(4) | 0.54(13) |
CA | 9.70(5) | 8.84(5) | 5.25(3) | 109.3(5) | 1.55(18) | 0.16(5) | 0.29(17) |
TC | 9.70(7) | 8.91(5) | 5.25(4) | 108.5(3) | 1.2(3) | 0.29(9) | 0.5(3) |
Orthopyroxene Unit-Cell Parameters and Composition | |||
---|---|---|---|
Sample | Mg (apfu) | Ca (apfu) | Fe (apfu) |
JK | 0.75(8) | 0.00(4) | 1.25(8) |
CB | 0.83(8) | 0.02(5) | 1.16(10) |
BS | 0.69(7) | 0.00(2) | 1.31(7) |
GH | 0.80(8) | 0.04(4) | 1.16(9) |
LB | 0.81(10) | 0.00(6) | 1.19(11) |
OK | 0.9(2) | 0.00(6) | 1.1(2) |
OU | 0.81(11) | 0.01(6) | 1.19(12) |
DU | 1.3(3) | 0.08(2) | 0.6(3) |
ST | 0.73(5) | 0.00(2) | 1.27(5) |
RH | 1.5(3) | 0.08(2) | 0.4(4) |
HF | 0.99(12) | 0.08(2) | 0.93(12) |
GR | 1.24(15) | 0.01(5) | 0.75(16) |
BD | 1.15(8) | 0.00(3) | 0.85(8) |
PT | 1.15(10) | 0.08(2) | 0.77(10) |
MG | 1.0(3) | 0.08(2) | 1.0(3) |
ZE | 1.28(9) | 0.08(2) | 0.64(9) |
AV | 1.5(2) | 0.08(2) | 0.4(3) |
CA | 1.0(3) | 0.01(5) | 1.0(3) |
Cubic Spinel Oxide Unit-Cell Parameters and Compositions | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | RK | JK | CB | WJ | CH | MJ2 | TP | BK | BS | GH | GB | LB | OK | OG | ST | EB | HU | |
a (Å) | 8.381(4) | 8.372(2) | 8.369(2) | 8.373(1) | 8.365(3) | 8.357(2) | 8.355(1) | 8.359(1) | 8.389(1) | 8.387(1) | 8.380(8) | 8.380(3) | 8.383 | 8.370(17) | 8.313(14) | 8.362(3) | 8.391(1) | |
Fe3−x☐xO4 | Fe (apfu) | 2.86(5) | 2.82 (5) | 2.81(5) | 2.83(5) | 2.79(5) | 2.76(5) | 2.75(5) | 2.77(5) | 2.90(5) | 2.89(5) | 2.86(6) | 2.86(5) | 2.87(5) | 2.81(9) | 2.57(8) | 2.78(5) | 2.91(5) |
MgFe2O4 | Fe (apfu) | -- | -- | -- | -- | -- | -- | -- | -- | 2.37(9) | 2.22(9) | -- | -- | -- | -- | -- | -- | 2.52(12) |
Mg (apfu) | -- | -- | -- | -- | -- | -- | -- | -- | 0.63(9) | 0.78(9) | -- | -- | -- | -- | -- | -- | 0.48(12) | |
Fe2TiO4 | Fe (apfu) | -- | -- | -- | -- | -- | -- | -- | -- | 2.99(3) | -- | -- | -- | -- | -- | -- | -- | 2.98(3) |
Ti (apfu) | -- | -- | -- | -- | -- | -- | -- | -- | 0.01(3) | -- | -- | -- | -- | -- | -- | -- | 0.02(3) | |
FeAl2O4 | Fe (apfu) | 2.87(4) | 2.79(3) | 2.77(3) | 2.80(2) | 2.74(3) | 2.67(3) | 2.65(2) | 2.69(2) | 2.93(2) | 2.92(2) | 2.86(7) | 2.86(3) | 2.89(2) | 2.78(14) | 2.31(12) | 2.71(3) | 2.95(2) |
Al (apfu) | 0.13(4) | 0.21(3) | 0.23(3) | 0.20 | 0.26(3) | 0.33(3) | 0.35(2) | 0.31(2) | 0.07(2) | 0.08(2) | 0.14(2) | 0.14(3) | 0.11(2) | 0.22(14) | 0.69(12) | 0.29(3) | 0.05(2) | |
NiFe2O4 | Fe (apfu) | 2.73(4) | 2.57(3) | 2.52(3) | 2.59(2) | 2.44(3) | 2.03(3) | 2.27(2) | 2.34(2) | 2.87(2) | 2.84(2) | 2.71(7) | 2.71(3) | 2.76(2) | 2.53(14) | -- | 2.38(3) | 2.91(2) |
Ni (apfu) | 0.27(4) | 0.43(3) | 0.48(3) | 0.41(2) | 0.56(3) | 0.70(3) | 0.73(2) | 0.66(2) | 0.13(2) | 0.16(2) | 0.29(7) | 0.29(3) | 0.24(2) | 0.47(14) | -- | 0.62(3) | 0.09(2) | |
(FeMgCr3+)3O4 | Fe (apfu) | 1.09(9) | 0.89(5) | 0.82(5) | 0.91(3) | 0.73(7) | 0.55(5) | 0.51(3) | 0.60(3) | -- | -- | 1.07(18) | 1.07(7) | -- | 0.84(38) | -- | 0.66(7) | -- |
Mg (apfu) | −0.09(9) | 0.11(5) | 0.18(5) | 0.09(3) | 0.27(7) | 0.45(5) | 0.49(3) | 0.40(3) | -- | -- | −0.07(18) | −0.07(7) | -- | 0.16(38) | -- | 0.34(7) | -- | |
Cr (apfu) | 2.00(13) | 2.00(7) | 2.00(7) | 2.00(5) | 2.00(10) | 2.00(7) | 2.00(5) | 2.00(5) | -- | -- | 2.00(26) | 2.00(10) | -- | 2.00(54) | -- | 2.00(10) | -- | |
Fe1−xAl2−y☐x+yO4 | Fe (apfu) | 2.76(5) | 2.71(4) | 2.69(4) | 2.71(4) | 2.66(5) | 2.61(4) | 2.60(4) | 2.62(4) | 2.82(4) | 2.80(4) | 2.76(7) | 2.76(5) | 2.78(4) | 2.69(12) | 2.32(10) | 2.64(5) | 2.83(4) |
Al (apfu) | 0.11(6) | 0.14(6) | 0.15(6) | 0.14(6) | 0.16(6) | 0.19(6) | 0.20(6) | 0.19(6) | 0.08(6) | 0.08(6) | 0.11(7) | 0.11(6) | 0.10(6) | 0.15(9) | 0.36(8) | 0.18(6) | 0.07(6) | |
Vac (☐pfu) | 0.13(8) | 0.16(7) | 0.16(7) | 0.15(7) | 0.18(8) | 0.20(7) | 0.20(7) | 0.19(7) | 0.11(7) | 0.11(7) | 0.13(9) | 0.13(8) | 0.12(7) | 0.16(15) | 0.32(13) | 0.18(8) | 0.10(7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, S.M.; Blake, D.F.; Bristow, T.F.; Castle, N.; Chipera, S.J.; Craig, P.I.; Downs, R.T.; Eleish, A.; Hazen, R.M.; Meusburger, J.M.; et al. Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations. Minerals 2024, 14, 773. https://doi.org/10.3390/min14080773
Morrison SM, Blake DF, Bristow TF, Castle N, Chipera SJ, Craig PI, Downs RT, Eleish A, Hazen RM, Meusburger JM, et al. Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations. Minerals. 2024; 14(8):773. https://doi.org/10.3390/min14080773
Chicago/Turabian StyleMorrison, Shaunna M., David F. Blake, Thomas F. Bristow, Nicholas Castle, Steve J. Chipera, Patricia I. Craig, Robert T. Downs, Ahmed Eleish, Robert M. Hazen, Johannes M. Meusburger, and et al. 2024. "Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations" Minerals 14, no. 8: 773. https://doi.org/10.3390/min14080773
APA StyleMorrison, S. M., Blake, D. F., Bristow, T. F., Castle, N., Chipera, S. J., Craig, P. I., Downs, R. T., Eleish, A., Hazen, R. M., Meusburger, J. M., Ming, D. W., Morris, R. V., Pandey, A., Prabhu, A., Rampe, E. B., Sarrazin, P. C., Simpson, S. L., Thorpe, M. T., Treiman, A. H., ... Yen, A. S. (2024). Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations. Minerals, 14(8), 773. https://doi.org/10.3390/min14080773