Hydrocarbon Accumulation and Overpressure Evolution in Deep–Ultradeep Reservoirs in the Case of the Guole Area of the Tarim Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Collection of Cores and Data
3.2. Petrographic Analysis
3.3. Microanalysis of Trace Elements
3.4. U–Pb Dating of Carbonate Veins
3.5. Paleo-Pressure Calculation of Gas- and Oil-Bearing Inclusions
3.6. Basin Model
4. Results and Discussion
4.1. Developmental Stages of Veins
4.2. Fluid Source of Fracture-Filling Veins
4.3. Fluid Inclusion Characteristics
4.4. Oil and Gas Accumulation Time
4.5. Paleo-Pressure Recovery
4.6. Fault Activity and Hydrocarbon Accumulation
5. Conclusions
- The analysis of cathodoluminescence and rare earth elements in the Guole area showed that the reservoir only developed first-stage calcite veins, the color of the cathodoluminescence was dark red, the total amount of rare earth elements was low, the light rare earth elements (LREEs) were rich, and the heavy rare earth elements (HREEs) were lacking, which belonged to a typical marine diagenetic environment. No oxidized fluid intruded into the reservoir.
- The U–Pb dating results revealed that calcite veins containing primary oil-bearing inclusions formed at 395 ± 21 Ma. The comprehensive temperature data revealed that the first-stage oil was charged during the Late Caledonian Period, and the second-stage natural gas was charged during the Middle Yanshanian Period.
- The evolution of the paleo-pressure showed that the charging of natural gas in the Middle Yanshanian was the main reason for the formation of reservoir overpressure. The strike–slip fault zone was basically inactive in the Middle Yanshanian. During this period, the charged natural gas mainly migrated to the reservoir along the unconformity surface and the unenclosed strike–slip fault zone in the upper part of the Ordovician reservoir. The source of the fluid showed that the reservoir in the late stage had good sealing properties, and there was no intrusion of exogenous fluid. The overpressure in the reservoir is well preserved at present.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kihle, J. Adaptation of fluorescence excitation-emission microspectroscopy for characterization of single hydrocarbon fluid inclusions. Org. Geochem. 1995, 23, 1029–1042. [Google Scholar] [CrossRef]
- Song, X.; Chen, S.; Xie, Z.; Kang, P.; Li, T.; Yang, M.; Liang, M.; Peng, Z.; Shi, X. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin. Oil Gas Geol. 2023, 44, 335–349. [Google Scholar]
- Wang, Y.; Chang, X.; Sun, Y.; Shi, B.; Qin, S. Investigation of fluid inclusion and oil geochemistry to delineate the charging history of Upper Triassic Chang 6, Chang 8, and Chang 9 tight oil reservoirs, Southeastern Ordos Basin, China. Mar. Petrol. Geol. 2020, 113, 104115. [Google Scholar] [CrossRef]
- Wang, P.; Wang, G.; Chen, Y.; Hao, F.; Yang, X.; Hu, F.; Zhou, L.; Yi, Y.; Yang, G.; Wang, X.; et al. Formation and preservation of ultradeep high-quality dolomite reservoirs under the coupling of sedimentation and diagenesis in the central Tarim Basin, NW China. Mar. Petrol. Geol. 2023, 149, 106084. [Google Scholar] [CrossRef]
- Han, X.; Deng, S.; Tang, L.; Cao, Z. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data. Mar. Petrol. Geol. 2017, 88, 410–427. [Google Scholar] [CrossRef]
- Ma, A.; Jin, Z.; Zhu, C.; Bai, Z. Cracking and thermal maturity of Ordovician oils from Tahe Oilfield, Tarim Basin, NW China. J. Nat. Gas. Geosci. 2017, 2, 239–252. [Google Scholar] [CrossRef]
- Yang, X.; Tian, J.; Wang, Q.; Li, Y.L.; Yang, H.; Li, Y.; Tang, Y.; Yuan, W.; Huang, S. Geological understanding and favorable exploration fields of ultradeep formations in Tarim Basin. China Pet. Explor. 2021, 26, 17–28. [Google Scholar]
- Zhang, S.; Jin, Q.; Sun, J.; Wei, H.; Cheng, F.; Zhang, X. Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China. Petrol. Explor. Dev. 2021, 48, 354–366. [Google Scholar] [CrossRef]
- Huang, Y.; He, Z.; He, S.; Tao, Z.; Liu, X.; Luo, T.; Guo, X.; Zhang, D.; Sun, Z.; Dong, T. Fluid geochemical response recorded in the alteration of marine carbonate reservoirs: The Silurian Shiniulan Formation, southeast Sichuan Basin, China. J. Petrol. Sci. Eng. 2022, 208, 109625. [Google Scholar] [CrossRef]
- Liseroudi, M.H.; Ardakani, O.H.; Pedersen, P.K.; Sanei, H. Fluid flow and water/rock interaction during the Early Triassic evolution of the western Canada sedimentary basin as revealed by carbonate diagenesis. Mar. Petrol. Geol. 2022, 142, 105765. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Pan, Z.; Huang, Z.; Luo, Q.; Song, Y.; Jiang, Z. Natural fractures in carbonate-rich tight oil reservoirs from the Permian Lucaogou Formation, southern Junggar Basin, NW China: Insights from fluid inclusion microthermometry and isotopic geochemistry. Mar. Petrol. Geol. 2020, 119, 104500. [Google Scholar] [CrossRef]
- Qiao, Z.; Shen, A.; Zhang, S.; Hu, A.; Liang, F.; Luo, X.; Shao, G.; Wang, Y.; Zhao, J.; Cao, P. Origin of giant Ordovician cavern reservoirs in the Halahatang oil field in the Tarim Basin, northwestern China. AAPG Bulletin 2023, 7, 107. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Chen, F.; Li, M.; Wen, Z.; Luo, X.; Ding, Z.; Li, B.; Xue, Y. Hydrocarbon fluid evolution and accumulation process in ultradeep reservoirs of the northern Fuman Oilfield, Tarim Basin. Front. Earth Sci. 2024, 12, 1399595. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, K.; Zhao, M.; Liu, S.; Zhuo, Q.; Lu, X. Petrological record of hydrocarbon accumulation in the Kela-2 gas field, Kuqa Depression, Tarim Basin. J. Nat. Gas. Sci. Eng. 2017, 41, 63–81. [Google Scholar] [CrossRef]
- Cao, J.; Jin, Z.; Hu, W.; Zhang, Y.; Yao, S.; Wang, X.; Zhang, Y.; Tang, Y. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements. Mar. Petrol. Geol. 2010, 27, 61–68. [Google Scholar] [CrossRef]
- Jia, L.; Cai, C.; Li, K.; Liu, L.; Chen, Z.; Tan, X. Impact of fluorine-bearing hydrothermal fluid on deep burial carbonate reservoirs: A case study from the Tazhong area of Tarim Basin, northwest China. Mar. Petrol. Geol. 2022, 139, 105579. [Google Scholar] [CrossRef]
- Nomura, S.F.; Sawakuchi, A.O.; Bello, R.M.S.; Méndez-Duque, J.; Fuzikawa, K.; Giannini, P.C.F.; Dantas, M.S.S. Paleotemperatures and paleofluids recorded in fluid inclusions from calcite veins from the northern flank of the Ponta Grossa dyke swarm: Implications for hydrocarbon generation and migration in the Paraná Basin. Mar. Petrol. Geol. 2014, 52, 107–124. [Google Scholar] [CrossRef]
- Rddad, L.; Kraemer, D.; Walter, B.F.; Darling, R.; Cousens, B. Unraveling the fluid flow evolution precipitation mechanisms recorded in calcite veins in relation to Pangea rifting–Newark Basin, U.S.A. Geochemistry 2022, 82, 125918. [Google Scholar] [CrossRef]
- Wei, D.; Gao, Z.; Zhang, L.; Fan, T.; Wang, J.; Zhang, C.; Zhu, D.; Ju, J.; Luo, W. Application of blocky calcite vein LA–MC–ICP–MS U–Pb dating and geochemical analysis to the study of tectonic–fault–fluid evolutionary history of the Tabei Uplift, Tarim Basin. Sediment. Geol. 2023, 453, 106425. [Google Scholar] [CrossRef]
- Fornero, S.A.; Millett, J.M.; Fernandes De Lima, E.; Menezes De Jesus, C.; Bevilaqua, L.A.; Marins, G.M. Emplacement dynamics of a complex thick mafic intrusion revealed by borehole image log facies analyses: Implications for fluid migration in the Parnaíba Basin petroleum system, Brazil. Mar. Petrol. Geol. 2023, 155, 106378. [Google Scholar] [CrossRef]
- Jaya, A.; Nishikawa, O.; Sufriadin; Jumadil, S. Fluid migration along faults and gypsum vein formation during basin inversion: An example in the East Walanae fault zone of the Sengkang Basin, South Sulawesi, Indonesia. Mar. Petrol. Geol. 2021, 133, 105308. [Google Scholar] [CrossRef]
- Zhu, C.; Gang, W.; Zhao, X.; Chen, G.; Pei, L.; Wang, Y.; Yang, S.; Pu, X. Reconstruction of oil charging history in the multisource petroleum system of the Beidagang buried-hill structural belt in the Qikou Sag, Bohai Bay Basin, China: Based on the integrated analysis of oil-source rock correlations, fluid inclusions and geologic data. J. Petrol. Sci. Eng. 2022, 208, 109197. [Google Scholar]
- Ping, H.; Thiéry, R.; Chen, H.; Liu, H. New methods to reconstruct paleo-oil and gas compositions and P–T trapping conditions of hydrocarbon fluid inclusions in sedimentary basins. Mar. Petrol. Geol. 2023, 155, 106403. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Wang, M.; Steele-MacInnis, M.; Ni, R.; Zhang, H.; Fan, J.; Ma, X.; Zhou, Z. In situ cracking of oil into gas in reservoirs identified by fluid inclusion analysis: Theoretical model and case study. Mar. Petrol. Geol. 2023, 147, 105959. [Google Scholar] [CrossRef]
- Duschl, F.; van den Kerkhof, A.; Sosa, G.; Leiss, B.; Wiegand, B.; Vollbrecht, A.; Sauter, M. Fluid inclusion and microfabric studies on Zechstein carbonates (Ca2) and related fracture mineralizations–New insights on gas migration in the Lower Saxony Basin (Germany). Mar. Petrol. Geol. 2016, 77, 300–322. [Google Scholar] [CrossRef]
- Fu, J.; Deng, X.; Wang, Q.; Li, J.; Qiu, J.; Hao, L.; Zhao, Y. Densification and hydrocarbon accumulation of Triassic Yanchang Formation Chang 8 Member, Ordos Basin, NW China: Evidence from geochemistry and fluid inclusions. Pet. Explor. Dev. 2017, 44, 48–57. [Google Scholar] [CrossRef]
- Shu, Y.; Lin, Y.; Liu, Y.; Yu, Z. Control of magmatism on gas accumulation in Linxing area, Ordos Basin, NW China: Evidence from fluid inclusions. J. Petrol. Sci. Eng. 2019, 180, 1077–1087. [Google Scholar] [CrossRef]
- Guo, C.; Chen, D.; Qing, H.; Dong, S.; Li, G.; Wang, D.; Qian, Y.; Liu, C. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China. Mar. Petrol. Geol. 2016, 72, 295–316. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, T.; Tao, Z.; He, Z.; Tarantola, A.; He, S.; Guo, X.; Zhang, D.; Sun, Z. Fluid evolution and petroleum accumulation in the precambrian gas reservoirs of the Sichuan Basin, SW China. Mar. Petrol. Geol. 2023, 150, 106171. [Google Scholar] [CrossRef]
- Gong, F.; Song, Y.; Zeng, L.; Zou, G. The heterogeneity of petrophysical and elastic properties in carbonate rocks controlled by strike-slip fault: A case study from yangjikan outcrop in the tarim basin. J. Petrol. Sci. Eng. 2023, 220, 111170. [Google Scholar] [CrossRef]
- Wang, R.; Nie, H.; Hu, Z.; Liu, G.; Xi, B.; Liu, W. Controlling effect of pressure evolution on shale gas reservoirs:A case study of the Wufeng–Longmaxi Formation in the Sichuan Basin. Natural Gas Industry 2020, 40, 1–11. [Google Scholar]
- Wu, G.; Ma, B.; Han, J.; Guan, B.; Chen, X.; Yang, P.; Xie, Z. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Petrol. Explor. Dev. 2021, 48, 595–607. [Google Scholar] [CrossRef]
- Li, F.; Lü, X.; Zhu, G.; Chen, J.; Wang, R.; Wu, Z.; He, T.; Xue, N. Formation and preservation of ultradeep liquid petroleum in the Ordovician sedimentary succession in Tarim Basin during the neotectonic phase. J. Asian Earth Sci. 2023, 250, 105645. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Yang, J.; Gao, S.; Ning, C.; Yu, Y.; Jiang, T.; Wan, F. Different depositional models of wave-dominated shoreface deposits: An integrated process-oriented analysis (“Donghe sandstones” in Tarim Basin, China). Mar. Petrol. Geol. 2023, 153, 106288. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, L.; Mao, Z.; Han, J.; Cao, D.; Lin, B. Differential deformation of a strike-slip fault in the Paleozoic carbonate reservoirs of the Tarim Basin, China. J. Struct. Geol. 2023, 173, 104908. [Google Scholar] [CrossRef]
- Sun, J.; He, J.; Tao, X.; Guo, S.; Pan, X.; Zhao, K.; Zhang, H.; Yuan, J. Stratigraphic correlation and sedimentology of the Ediacaran succession in the Tarim Basin, NW China: Implications for paleogeographic reconstruction and hydrocarbon exploration. J. Asian Earth Sci. 2023, 247, 105607. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, C.; Ma, B.; Li, F.; Xue, X.; Lv, C.; Cai, Q. Characteristics and genetic mechanisms of fault-controlled ultradeep carbonate reservoirs: A case study of Ordovician reservoirs in the Tabei paleo-uplift, Tarim Basin, western China. J. Asian Earth Sci. 2023, 254, 105745. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, S.; Zhang, Y.; Yang, M.; Yan, L.; Zhao, Y.; Zhang, J.; Wang, X.; Zhou, X.; Wang, H. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng Area, Tarim Basin, China. Pet. Explor. Dev. 2019, 46, 1165–1181. [Google Scholar] [CrossRef]
- Shen, W.; Chen, J.; Wang, Y.; Zhang, K.; Chen, Z.; Luo, G.; Fu, X. The origin, migration and accumulation of the Ordovician gas in the Tazhong III region, Tarim Basin, NW China. Mar. Petrol. Geol. 2019, 101, 55–77. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Z.; Wang, S.; Wang, R.; Zhang, Y.; Du, W. Bedding-parallel calcite veins as a proxy for shale reservoir quality. Mar. Petrol. Geol. 2021, 127, 104975. [Google Scholar] [CrossRef]
- Du, Y.; Fan, T.; Machel, H.G.; Gao, Z. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Mar. Petrol. Geol. 2018, 91, 43–70. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Wang, X.; Jiang, L.; Feng, Y.; Wallace, M.W. Tectonic-fluid evolution of an ultradeep carbonate reservoir in the southern Halahatang Oilfield area, Tarim Basin, NW China. Mar. Petrol. Geol. 2022, 145, 105870. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Cao, Y.; Han, J.; Wu, K.; Liu, Y.; Liu, K.; Xie, M. Characteristics, formation mechanism and evolution model of Ordovician carbonate fault-controlled reservoirs in the Shunnan area of the Shuntuogole lower uplift, Tarim Basin, China. Mar. Petrol. Geol. 2022, 145, 105878. [Google Scholar] [CrossRef]
- Ping, H.; Chen, H.; George, S.C.; Li, C.; Hu, S. Relationship between the fluorescence color of oil inclusions and thermal maturity in the Dongying Depression, Bohai Bay Basin, China: Part 2. fluorescence evolution of oil in the context of petroleum generation, expulsion and cracking under geological conditions. Mar. Petrol. Geol. 2019, 103, 306–319. [Google Scholar]
- Zhou, X.; Lü, X.; Zhu, G.; Cao, Y.; Yan, L.; Zhang, Z. Origin and formation of deep and superdeep strata gas from Gucheng-Shunnan block of the Tarim Basin, NW China. J. Petrol. Sci. Eng. 2019, 177, 361–373. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, T.; Li, M.; Fang, R.; Li, Q.; Tao, X.; Cao, W. An examination of the fluid inclusions of the well RP3-1 at the Halahatang Sag in Tarim Basin, northwest China: Implications for hydrocarbon charging time and fluid evolution. J. Petrol. Sci. Eng. 2016, 146, 326–339. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, L.; Wang, T.; Wu, K.; Gao, X.; Dou, W.; Xiao, F.; Zhang, N.; Song, X.; Ji, H. Application of fluid inclusions to the charging process of the lacustrine tight oil reservoir in the Triassic Yanchang Formation in the Ordos Basin, China. J. Petrol. Sci. Eng. 2017, 149, 40–55. [Google Scholar] [CrossRef]
- Gao, J.; He, S.; Zhao, J.; Yi, J. Geothermometry and geobarometry of overpressured lower Paleozoic gas shales in the Jiaoshiba field, Central China: Insight from fluid inclusions in fracture cements. Mar. Petrol. Geol. 2017, 83, 124–139. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Lei, M.; Li, Q.; Wang, C. Paleo-pressure evolution and its origin in the Pinghu slope belt of the Xihu Depression, East China Sea Basin. Mar. Petrol. Geol. 2019, 107, 198–213. [Google Scholar]
Well | Depth (m) | Toil (°C) | Gas–Liquid Ratio | Thaq (°C) | Trapping Pressure (MPa) | Pressure Coefficient |
---|---|---|---|---|---|---|
GL1 | 7325 | 84.1 | 11 | 108.7 | 35.0 | 1.09 |
GL1 | 7317 | 87.2 | 12 | 102.5 | 31.1 | 0.94 |
GL1 | 7317 | 91.4 | 9 | 113.4 | 30.6 | 0.93 |
GL1 | 7317 | 92.1 | 12 | 104.6 | 29.4 | 0.92 |
GL1 | 7317 | 93.5 | 11 | 114.2 | 32.1 | 1.00 |
GL1 | 7325 | 102.1 | 11 | 117.6 | 28.7 | 0.90 |
GL2 | 7390 | 81.4 | 13 | 96.8 | 32.6 | 0.93 |
GL2 | 7390 | 84.2 | 9 | 106.4 | 31.7 | 0.91 |
GL2 | 7390 | 83.2 | 10 | 108.7 | 34.5 | 1.01 |
GL2 | 7393 | 87.1 | 12 | 121 | 40.0 | 1.18 |
Well | Depth (m) | vtrue (cm−1) | Density (g/cm3) | Th (°C) | Trapping Pressure (MPa) | Pressure Coefficient |
---|---|---|---|---|---|---|
GL1 | 7317 | 2912.53 | 0.2650 | 111.3 | 44.65 | 1.12 |
GL1 | 7317 | 2912.58 | 0.1960 | 111.3 | 43.87 | 1.10 |
GL1 | 7317 | 2912.53 | 0.1982 | 111.3 | 44.65 | 1.12 |
GL1 | 7317 | 2912.65 | 0.1929 | 115.2 | 42.81 | 1.07 |
GL1 | 7317 | 2912.61 | 0.1947 | 115.2 | 43.56 | 1.09 |
GL1 | 7317 | 2912.75 | 0.1885 | 115.2 | 42.06 | 1.05 |
GL1 | 7317 | 2912.76 | 0.1880 | 116.4 | 42.14 | 1.05 |
GL1 | 7317 | 2912.59 | 0.1955 | 116.4 | 44.73 | 1.12 |
GL2 | 7390 | 2911.03 | 0.2684 | 133.5 | 86.79 | 1.74 |
GL2 | 7390 | 2911.02 | 0.2689 | 133.5 | 87.14 | 1.74 |
GL2 | 7390 | 2911.01 | 0.2694 | 133.5 | 87.5 | 1.75 |
GL2 | 7390 | 2911.03 | 0.2684 | 133.5 | 86.79 | 1.74 |
GL2 | 7390 | 2911.05 | 0.2674 | 133.8 | 86.18 | 1.72 |
GL2 | 7390 | 2911.05 | 0.2674 | 133.8 | 86.18 | 1.72 |
GL2 | 7390 | 2911.12 | 0.2640 | 133.8 | 83.75 | 1.68 |
GL2 | 7390 | 2911.05 | 0.2674 | 133.8 | 86.18 | 1.72 |
GL2 | 7390 | 2911.06 | 0.2670 | 133.8 | 85.83 | 1.72 |
GL2 | 7390 | 2911.09 | 0.2655 | 135.6 | 85.4 | 1.71 |
GL2 | 7390 | 2911.1 | 0.2650 | 135.6 | 85.06 | 1.70 |
GL2 | 7390 | 2911.08 | 0.2660 | 135.6 | 85.75 | 1.72 |
GL2 | 7390 | 2911.08 | 0.2660 | 135.6 | 85.75 | 1.72 |
GL2 | 7390 | 2911.07 | 0.2665 | 135.6 | 86.1 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Zhang, T.; Wang, R.; Huang, Y.; Xue, Y.; Chen, J.; Tian, H.; Shen, A.; Si, C. Hydrocarbon Accumulation and Overpressure Evolution in Deep–Ultradeep Reservoirs in the Case of the Guole Area of the Tarim Basin. Minerals 2024, 14, 790. https://doi.org/10.3390/min14080790
Qiao Z, Zhang T, Wang R, Huang Y, Xue Y, Chen J, Tian H, Shen A, Si C. Hydrocarbon Accumulation and Overpressure Evolution in Deep–Ultradeep Reservoirs in the Case of the Guole Area of the Tarim Basin. Minerals. 2024; 14(8):790. https://doi.org/10.3390/min14080790
Chicago/Turabian StyleQiao, Zhanfeng, Tianfu Zhang, Ruyue Wang, Yahao Huang, Yifan Xue, Jiajun Chen, Haonan Tian, Anjiang Shen, and Chunsong Si. 2024. "Hydrocarbon Accumulation and Overpressure Evolution in Deep–Ultradeep Reservoirs in the Case of the Guole Area of the Tarim Basin" Minerals 14, no. 8: 790. https://doi.org/10.3390/min14080790
APA StyleQiao, Z., Zhang, T., Wang, R., Huang, Y., Xue, Y., Chen, J., Tian, H., Shen, A., & Si, C. (2024). Hydrocarbon Accumulation and Overpressure Evolution in Deep–Ultradeep Reservoirs in the Case of the Guole Area of the Tarim Basin. Minerals, 14(8), 790. https://doi.org/10.3390/min14080790