Exploring Low-Grade Iron Ore Beneficiation Techniques: A Comprehensive Review
Abstract
:1. Introduction
2. Low-Grade Iron Ore Mineralogy
3. Conventional Beneficiation Techniques
3.1. Comminution
3.2. Gravity Separation
3.3. Flotation
3.4. Magnetic Separation
3.5. Reduction Roasting and Magnetic Separation
3.6. Advantages and Limitations of Low-Grade Iron Ore Beneficiation Techniques
3.7. Proposed Methodology
3.8. Reasons for Choice of Proposed Methodology
- Reduction roasting is effective in handling ultra-fine particles and complex mineralogy and eliminates impurities that are finely disseminated within the mineralogical assemblages, which are often difficult to eliminate by other methods.
- The presence of both hematite and magnetite in iron ores means that after magnetization roasting, the separation index is more optimized than with hematite alone.
- It is an energy-efficient process compared to other beneficiation methods, which often require more energy-intensive processes or the use of chemicals.
- Reduction roasting coupled with magnetic separation achieves higher iron recovery rates compared to gravity separation, flotation and direct magnetic separation alone.
- The process is effective in a wide range of ore compositions, offering flexibility in separation processes as it can be optimized to specific ore characteristics.
- Utilization of two under-utilized resources (iron ore, noncooking coal). The use of locally available reductant (semi-bituminous coal) and the potential for high recovery rates make reduction roasting economically attractive.
- The iron ore roasting process operates at moderate temperatures, which reduces energy consumption compared to more energy-intensive methods. The magnetic separation of roasted products is also carried out at low intensity, thus leading to a lower energy input.
- The use of semi-bituminous coal is environmentally friendly in comparison to chemical-inclusive methods, which, in turn, minimizes gas emissions and pollution.
- The process generates less tailings and waste compared to other beneficiation methods, reducing the environmental footprint of mining operations.
- Modern reduction roasting facilities are equipped with advanced emission control technologies to minimize environmental impact.
3.9. Project Contribution to Advancing Knowledge in Low-Grade Iron Ore Beneficiation
- Optimization of reduction roasting parameters: Through this project, reduction roasting of local resource process parameters including temperature, coal-to-ore ratio, and residence time during reduction roasting will be optimized. This optimization process enhances the efficiency of the reduction process, leading to improved iron recovery and product quality and the ore’s economic feasibility is accessed.
- Characterization of upgraded concentrate: This project will provide valuable insights into the upgraded concentrate’s mineralogy and chemical composition, aiding in process optimization and product quality control.
- Environmental considerations: By utilizing abundant semi-bituminous coal with high fixed carbon content as a reductant in the oxide reduction process, this project explores an environmentally friendly approach to iron ore beneficiation. This contributes to the development of sustainable beneficiation practices that minimize environmental impact. Reduction roasting has reduced emissions and lower carbon footprint compared to traditional beneficiation methods like sintering.
- Technology transfer and implementation: The successful implementation of both roasting and magnetic separation techniques in this project demonstrates their practical applicability for upgrading locally sourced low-grade iron ores using locally abundant low-grade coal. This motivates potential technology transfer to industrial-scale operations, contributing to the broader adoption of efficient beneficiation methods in the mining industry which will also address the high iron demand.
4. Innovative Approaches in Low-Grade Iron Ore Beneficiation
4.1. Microwave-Assisted Beneficiation
4.2. Thermal Plasma Technology
4.3. Bio-Beneficiation
4.4. Utilization of Waste Materials
5. Challenges Affecting Low-Grade Iron Ore Beneficiation
5.1. Mineral Liberation
5.2. Environmental Concerns
5.3. Water Consumption
5.4. Tailings Management
6. Conclusions
- In conclusion, low-grade iron ore beneficiation plays a significant role in the usage of iron ore reserves and in meeting the increasing steel demand worldwide.
- This comprehensive review has highlighted various common beneficiation techniques, including comminution, gravity separation, flotation, and magnetic separation used in the beneficiation of low-grade iron ore.
- This review acknowledges the challenges posed by low-grade iron ore, including inferior iron quality and high impurity levels, but also recognizes the potential of these resources due to their significant global reserves.
- Additionally, a case study of iron ore deposits in Botswana has demonstrated the economic prospects and sustainable development opportunities associated with unlocking low-grade iron ores value.
- Further research and advancement in this field are essential to optimize beneficiation techniques and contribute to the advancement of the mineral processing industry.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahin, R. Beneficiation of low/off grade iron ore: A review. Int. J. Res. Granthaalayah 2020, 8, 328–335. [Google Scholar] [CrossRef]
- Özcan, Ö.; Harzanagh, A.A.; Orhan, E.C.; Ergün, Ş.L. Beneficiation and flowsheet development of a low grade iron ore: A case study. Bull. Miner. Res. Explor. 2020, 165, 235–251. [Google Scholar] [CrossRef]
- Umadevi, T.; Abhishek, K.; Sah, R.; Marutiram, K. Development of process for beneficiation of low-grade iron ore consisting of goethite. Miner. Metall. Process. 2018, 35, 35–45. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, X.; Huang, Z.; Li, J.; Yi, L.; Huang, B.; Chen, C. Innovative methodology for comprehensive utilization of refractory low-grade iron ores. Powder Technol. 2023, 418, 118283. [Google Scholar] [CrossRef]
- Dalstra, H.; Flis, M. High-Grade Iron Ore Exploration in an Increasingly Steel-Hungry World: The Past, Current, and Future Role of Exploration Models and Technological Advances. In Banded Iron Formation-Related High-Grade Iron Ore; Hagemann, S., Rosière, C.A., Gutzmer, J., Beukes, N.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2008. [Google Scholar] [CrossRef]
- United States Geological Survey. Iron Ore. Mineral Commodity Summaries 2020. Available online: https://www.google.com/search?q=United+States+Geological+Survey.+(2020).+Iron+Ore.+Mineral+Commodity+Summaries.&oq=United+States+Geological+Survey.+(2020).+Iron+Ore.+Mineral+Commodity+Summaries.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTEwNDdqMGoxNagCALACAA&sourceid=chrome&ie=UTF-8 (accessed on 12 June 2024).
- Rath, S.S.; Sahoo, H.; Dhawan, N.; Rao, D.S.; Das, B.; Mishra, B.K. Optimal Recovery of Iron Values from a Low Grade Iron Ore using Reduction Roasting and Magnetic Separation. Sep. Sci. Technol. 2014, 49, 1927–1936. [Google Scholar] [CrossRef]
- Understanding_the_High-Grade_Iron_Ore_Market_Fastmarkets.pdf. Available online: https://pearlgulliron.com.au/wp-content/uploads/2021/09/Understanding_the_high-grade_iron_ore_market_Fastmarkets.pdf (accessed on 4 May 2024).
- Jankovic, A. Comminution and classification technologies of iron ore. In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Woodhead Publishing: Cambridge, UK, 2022; pp. 269–308. [Google Scholar]
- Rachappa, S.; Prakash, Y. Iron Ore Recovery from Low Grade by using Advance Methods. Procedia Earth Planet. Sci. 2015, 11, 195–197. [Google Scholar] [CrossRef]
- Dash, N.; Rath, S.S.; Angadi, S.I. Thermally assisted magnetic separation and characterization studies of a low-grade hematite ore. Powder Technol. 2019, 346, 70–77. [Google Scholar] [CrossRef]
- Dwari, R.K.; Rao, D.S.; Reddy, P.S.R. Magnetic separation studies for a low grade siliceous iron ore sample. Int. J. Min. Sci. Technol. 2013, 23, 1–5. [Google Scholar] [CrossRef]
- Ogbezode, J.E.; Ajide, O.O.; Oluwole, O.O.; Ofi, O. Recent Trends in the Technologies of the Direct Reduction and Smelting Process of Iron Ore/Iron Oxide in the Extraction of Iron and Steelmaking. In Iron Ores and Iron Oxides—New Perspectives; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Araujo, A.C.; Amarante, S.C.; Souza, C.C.; Silva, R.R.R. Ore mineralogy and its relevance for selection of concentration methods in processing of Brazilian iron ores. Miner. Process. Extr. Metall. 2003, 112, 54–64. [Google Scholar] [CrossRef]
- Haga, K.; Siame, M.C.; Shibayama, A. Removal of Silica and Alumina as Impurities from Low-Grade Iron Ore Using Wet High-Intensity Magnetic Separation and Reverse Flotation. J. Miner. Mater. Charact. Eng. 2018, 6, 382–394. [Google Scholar] [CrossRef]
- Patra, S.; Pattanaik, A.; Venkatesh, A.S.; Venugopal, R. Mineralogical and Chemical Characterization of Low Grade Iron Ore Fines from Barsua Area, Eastern India with Implications on Beneficiation and Waste Utilization. J. Geol. Soc. India 2019, 93, 443–454. [Google Scholar] [CrossRef]
- Solving Iron Ore Quality Issues for Low-Carbon Steel. Available online: https://ieefa.org/resources/solving-iron-ore-quality-issues-low-carbon-steel (accessed on 29 April 2024).
- Ramakgala, C.; Danha, G. Mineralogical characterisation of Matsitama banded iron ore. IOP Conf. Ser. Mater. Sci. Eng. 2019, 641, 012029. [Google Scholar] [CrossRef]
- Iron Ore in Africa. Available online: https://web.archive.org/web/20200922095413/https://www.miningafrica.net/natural-resources-africa/iron-ore-in-africa/ (accessed on 1 September 2023).
- Ramaphane, R. Ikongwe Iron Ore Mine near Shoshong to Boost Botswana’s Steel Industry. The Projects Magazine. Available online: https://theprojectsbw.com/ikongwe-iron-ore-mine-near-shoshong-to-boost-botswana-s-steel-industry/ (accessed on 30 April 2024).
- Benza, B.; Huge Iron Ore Deposits Discovered in Shakawe. Mmegi Online. Available online: https://www.mmegi.bw/business/huge-iron-ore-deposits-discovered-in-shakawe/news (accessed on 30 April 2024).
- Zhang, X.; Gu, X.; Han, Y.; Parra-Álvarez, N.; Claremboux, V.; Kawatra, S.K. Flotation of Iron Ores: A Review. Miner. Process. Extr. Metall. Rev. 2021, 42, 184–212. [Google Scholar] [CrossRef]
- Arora, N.K.; Fatima, T.; Mishra, I.; Verma, M.; Mishra, J.; Mishra, V. Environmental sustainability: Challenges and viable solutions. Environ. Sustain. 2018, 1, 309–340. [Google Scholar] [CrossRef]
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Roy, S.; Das, A. Nature of low-grade Indian iron ores and the prospects of their enrichment through gravity separation. Min. Metall. Explor. 2009, 26, 141–150. [Google Scholar] [CrossRef]
- Das, B.; Rath, S.S. Existing and New Processes for Beneficiation of Indian Iron ores. Trans. Indian Inst. Met. 2020, 73, 505–514. [Google Scholar] [CrossRef]
- Muthaimanoj, P. Design of Semiconductor Nanocrystals from Low Grade Iron Ore for Environmental Remediation. Ph.D. Thesis, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India, 2023. Available online: https://shodhganga.inflibnet.ac.in:8443/jspui/handle/10603/546587 (accessed on 15 May 2024).
- Ghosh, A.; Chatterjee, A. Iron Making and Steelmaking: Theory and Practice; PHI Learning Pvt. Ltd.: New Dehli, India, 2008; Available online: https://books.google.com/books?hl=en&lr=&id=7_GcmB4i_dsC&oi=fnd&pg=PA2&dq=iron+ore+steelmaking&ots=vI-6ZmcU13&sig=eNEJvCZdoGytunIIoLJWjKirNCw (accessed on 13 June 2024).
- Mineralogical, Chemical, and Physical Characteristics of Iron Ore | Request PDF. Available online: https://www.researchgate.net/publication/284897614_Mineralogical_chemical_and_physical_characteristics_of_iron_ore (accessed on 29 April 2024).
- Anderson, K.F.; Wall, F.; Rollinson, G.K.; Moon, C.J. Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geol. Rev. 2014, 62, 25–39. [Google Scholar] [CrossRef]
- Dwari, R.K.; Rao, D.S.; Reddy, P.S.R. Mineralogical and Beneficiation Studies of a Low Grade Iron Ore Sample. J. Inst. Eng. India Ser. D 2014, 95, 115–123. [Google Scholar] [CrossRef]
- Panda, J.N.; Nayak, D.; Dash, N.; Angadi, S.; Rath, S.S. Insight of Reduction Roasting of a Low-Grade Goethitic Indian Iron Ore in a Rotary Kiln: Process Optimization and Characterization. Trans. Indian Inst. Met. 2023, 77, 1–9. [Google Scholar] [CrossRef]
- Sahu, S.N.; Meikap, B.C.; Biswal, S.K. Beneficiation of Clay-Rich High-LOI Low-Grade Iron Ore Fines: Assessment of Conventional Deep Beneficiation and Magnetization Roasting Using High-Ash Non-coking Coal. Min. Metall. Explor. 2022, 39, 1655–1666. [Google Scholar] [CrossRef]
- Jankovic, A. Developments in iron ore comminution and classification technologies. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 251–282. [Google Scholar] [CrossRef]
- Kanda, Y.; Kotake, N. Chapter 12 Comminution Energy and Evaluation in Fine Grinding. In Handbook of Powder Technology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 529–550. [Google Scholar] [CrossRef]
- Das, A.; Roy, S. Comminution—Theory and Plant Practice. In Processing of Iron Ore; NML: Jamshedpur, India, 2007. [Google Scholar]
- Wills, B.A.; Finch, J.A. (Eds.) Chapter 6—Crushers. In Wills’ Mineral Processing Technology, 8th ed.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 123–146. [Google Scholar] [CrossRef]
- Haldar, S.K. Mineral Exploration: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wills, B.A.; Finch, J.A. (Eds.) Chapter 7—Grinding Mills. In Wills’ Mineral Processing Technology, 8th ed.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 147–179. [Google Scholar] [CrossRef]
- Gupta, A.; Yan, D.S. (Eds.) Chapter 9—Autogenous and Semi-Autogenous Mills. In Mineral Processing Design and Operation; Elsevier: Amsterdam, The Netherlands, 2006; pp. 234–254. [Google Scholar] [CrossRef]
- Minerals | Free Full-Text | Optimizing Performance of SABC Comminution Circuit of the Wushan Porphyry Copper Mine—A Practical Approach. Available online: https://www.mdpi.com/2075-163X/6/4/127 (accessed on 4 May 2024).
- Nirlipta, P.N. Assessment of Reuse Potential of Low-Grade Iron Ore Fines through Beneficiation Routes. i-Manag. J. Mater. Sci. 2022, 10, 30. [Google Scholar] [CrossRef]
- Chandio, A.D.; Channa, I.A.; Shaikh, A.A.; Madad, S.; Rizvi, S.B.H.; Shah, A.A.; Ashfaq, J.; Shar, M.A.; Alhazaa, A. Beneficiation of Low-Grade Dilband Iron Ore by Reduction Roasting. Metals 2023, 13, 296. [Google Scholar] [CrossRef]
- França, J.R.; Barrios, G.K.; Turrer, H.D.; Tavares, L.M. Comminution and liberation response of iron ore types in a low-grade deposit. Miner. Eng. 2020, 158, 106590. [Google Scholar] [CrossRef]
- Campos, T.M.; Bueno, G.; Rodriguez, V.A.; Böttcher, A.-C.; Kwade, A.; Mayerhofer, F.; Tavares, L.M. Relationships between particle breakage characteristics and comminution response of fine iron ore concentrates. Miner. Eng. 2021, 164, 106818. [Google Scholar] [CrossRef]
- Campos, T.M.; Bueno, G.; Tavares, L.M. Modeling comminution of iron ore concentrates in industrial-scale HPGR. Powder Technol. 2021, 383, 244–255. [Google Scholar] [CrossRef]
- Mwanga, A.; Parian, M.; Lamberg, P.; Rosenkranz, J. Comminution modeling using mineralogical properties of iron ores. Miner. Eng. 2017, 111, 182–197. [Google Scholar] [CrossRef]
- Table of Bond Work Index by Minerals. Available online: https://www.911metallurgist.com/blog/table-of-bond-work-index-by-minerals (accessed on 13 June 2024).
- Hanumanthappa, H.; Vardhan, H.; Mandela, G.R.; Kaza, M.; Sah, R.; Shanmugam, B.K.; Pandiri, S. Investigation on Iron Ore Grinding based on Particle Size Distribution and Liberation. Trans. Indian Inst. Met. 2020, 73, 1853–1866. [Google Scholar] [CrossRef]
- Hanumanthappa, H.; Vardhan, H.; Mandela, G.R.; Kaza, M.; Sah, R.; Shanmugam, B.K. Estimation of Grinding Time for Desired Particle Size Distribution and for Hematite Liberation Based on Ore Retention Time in the Mill. Min. Metall. Explor. 2020, 37, 481–492. [Google Scholar] [CrossRef]
- Matsanga, N.; Nheta, W.; Chimwani, N. A Review of the Grinding Media in Ball Mills for Mineral Processing. Minerals 2023, 13, 1373. [Google Scholar] [CrossRef]
- Lima, N.P.; Silva, K.; Souza, T.; Filippov, L. The Characteristics of Iron Ore Slimes and Their Influence on The Flotation Process. Minerals 2020, 10, 675. [Google Scholar] [CrossRef]
- Rosenblum, S.; Brownfield, I.K. Magnetic Susceptibilities of Minerals. US Geological Survey, 2000. Available online: https://pubs.usgs.gov/publication/ofr99529 (accessed on 4 May 2024).
- Helen. How Gravity Separation Works to Recover Metals and Minerals. Sepro Mineral Systems Inc. Available online: https://minerals.seprosystems.com/the-science-behind-gravity-separation/ (accessed on 17 April 2024).
- Nayak, A.; Jena, M.S.; Mandre, N.R. Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview. J. Sustain. Metall. 2021, 7, 315–339. [Google Scholar] [CrossRef]
- Balasubramanian, A. Gravity Separation in Ore Dressing; University of Mysore: Mysore, India, 2017. [Google Scholar] [CrossRef]
- Rath, R.K.; Singh, R. Gravity Concentration of Iron Ore. 2007. Available online: https://eprints.nmlindia.org/5906 (accessed on 1 May 2024).
- Gomes, R.B.; Tomi, G.D.; Assis, P.S. Impact of quality of iron ore lumps on sustainability of mining operations in the Quadrilatero Ferrifero Area. Miner. Eng. 2015, 70, 201–206. [Google Scholar] [CrossRef]
- Gupta, A.; Yan, D.S. Mineral Processing Design and Operations: An Introduction; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Naudé, N.; Lorenzen, L.; Kolesnikov, A.; Aldrich, C.; Auret, L. Observations on the separation of iron ore in a prototype batch jig. Int. J. Miner. Process. 2013, 120, 43–47. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bhattacharjee, D.; Mishra, B. Role of water velocity for efficient jigging of iron ore. Miner. Eng. 2006, 19, 952–959. [Google Scholar] [CrossRef]
- Das, B.; Prakash, S.; Das, S.; Reddy, P. Effective Beneficiation of Low Grade Iron Ore Through Jigging Operation. J. Miner. Mater. Charact. Eng. 2008, 07, 27–37. [Google Scholar] [CrossRef]
- Ramam, D.B.S. Jigging in Iron Ore Beneficiation: Process Parameter Optimization to Improve Consistency in Product Quality. OneMine. Available online: https://onemine.org/documents/jigging-in-iron-ore-beneficiation-process-parameter-optimization-to-improve-consistency-in-product-quality (accessed on 14 June 2024).
- Kukkala, P.C.; Kumar, S.; Nirala, A.; Khan, M.A.; Alkahtani, M.Q.; Islam, S. Beneficiation of Low-Grade Hematite Iron Ore Fines by Magnetizing Roasting and Magnetic Separation. ACS Omega 2024, 9, 7634–7642. [Google Scholar] [CrossRef]
- Bahrami, A.; Farajzadeh, S.; Kazemi, F. The Effect of Particle Size Distribution and Liberation Degree on the Separation Performance of Industrial Spirals in Low-grade Chromite Processing. Min. Metall. Explor. 2021, 38, 277–287. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, J.; Li, H.; Chen, J.; Cui, Z.; Xu, Z. Recent Advances in Jigging Used for Mineral Separation. Recent Pat. Eng. 2023, 17, 36–55. [Google Scholar] [CrossRef]
- Shukla, V.; Kumar, C.R.; Chakraborty, D.P.; Kumar, A. Optimization of Jigging Process Parameters to Beneficiate Iron Ore Fines—A Case Study of Tatasteel. Inż. Miner. 2019, 21, 165–170. [Google Scholar]
- Myburgh, H.A. The influence of control and mechanical conditions of certain parameters on jigging. J. S. Afr. Inst. Min. Metall. 2010, 110, 655–661. [Google Scholar]
- Myburgh, H.A.; Nortje, A. Operation and performance of the Sishen jig plant. J. S. Afr. Inst. Min. Metall. 2014, 114, 569–574. [Google Scholar]
- Van Dam, J.C.J.; Schaap, P.J.; Dos Santos, V.A.M.; Suárez-Diez, M. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC Syst. Biol. 2014, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Raghukumar, C.; Tripathy, S.K.; Mohanan, S. Beneficiation of Indian high alumina iron ore fines–a case study. Int. J. Min. Eng. Miner. Process. 2012, 1, 94–100. [Google Scholar] [CrossRef]
- Akbari, H.; Noaparast, M.; Shafaei, S.Z.; Hajati, A.; Aghazadeh, S.; Akbari, H. A Beneficiation Study on a Low Grade Iron Ore by Gravity and Magnetic Separation. Russ. J. Non-Ferr. Met. 2018, 59, 353–363. [Google Scholar] [CrossRef]
- Dixit, P.; Tiwari, R.; Mukherjee, A.K.; Banerjee, P.K. Application of response surface methodology for modeling and optimization of spiral separator for processing of iron ore slime. Powder Technol. 2015, 275, 105–112. [Google Scholar] [CrossRef]
- Rao, G.V.; Rath, B.; Sharma, P.; Chaurasiya, S.K. Modeling and Optimisation of Spiral Concentrator for Beneficiation of Iron Ore Slimes from Kirandul, India. Trans. Indian Natl. Acad. Eng. 2020, 5, 497–508. [Google Scholar] [CrossRef]
- Kari, C.; Kapure, G.; Rao, S.M. Effect of Operating Parameters on the Performance of Spiral Concentrator. 2006. Available online: https://eprints.nmlindia.org/6252/ (accessed on 14 June 2024).
- Dixit, P.; Makhija, D.; Mukherjee, A.K.; Singh, V.; Bhatanagar, A.; Rath, R.K. Characterization and Beneficiation of Dry Iron Ore Processing Plant Reject Fines to Produce Sinter/Pellet Grade Iron Ore Concentrate. Min. Metall. Explor. 2019, 36, 451–462. [Google Scholar] [CrossRef]
- Boucher, D.; Deng, Z.; Leadbeater, T.; Langlois, R.; Waters, K. Speed analysis of quartz and hematite particles in a spiral concentrator by PEPT. Miner. Eng. 2016, 91, 86–91. [Google Scholar] [CrossRef]
- Richards, R.G.; MacHunter, D.M.; Gates, P.J.; Palmer, M.K. Gravity separation of ultra-fine (−0.1 mm) minerals using spiral separators. Miner. Eng. 2000, 13, 65–77. [Google Scholar] [CrossRef]
- Vysyaraju, R.; Pukkella, A.K.; Subramanian, S. Enhanced gravity closed spiral classifier: Experimental investigation. Adv. Powder Technol. 2022, 33, 103743. [Google Scholar] [CrossRef]
- Holland-Batt, A. Some design considerations for spiral separators. Miner. Eng. 1995, 8, 1381–1395. [Google Scholar] [CrossRef]
- Deng, Z.T. Experimental Investigation of Particle Flow in a Spiral Concentrator. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2015. Available online: https://search.proquest.com/openview/58e2097ccb55ac6ea10101c5b5b20266/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 14 June 2024).
- Ali, S.; Nawaz, F.; Iqbal, Y. Phase, Microstructural Characterization and Beneficiation of Iron Ore by Shaking Table. Pak. J. Sci. Ind. Res. Ser. Phys. Sci. 2021, 64, 19–25. [Google Scholar] [CrossRef]
- Ajaka, E.O.; Adesina, A.E.; Lawal, A.I. Determination of the Optimum Conditions for Beneficiation of Selected Nigerian Iron Ores Using Shaking Table. Ann. Fac. Eng. Hunedoara 2015, 13, 205. [Google Scholar]
- Ozkahriman, F.; Wartman, J. Reliability of one-g shaking table experiment. In Physical Modelling in Geotechnics; Springman, S., Laue, J., Seward, L., Eds.; CRC Press: London, UK, 2010; pp. 153–158. [Google Scholar]
- Minowa, C.; Nakamura, I.; Furuya, O. First Large Scale Shaking Table. In Proceedings of the ASME 2022 Pressure Vessels & Piping Conference, Las Vegas, NV, USA, 17–22 July 2022; p. V005T08A017. Available online: https://asmedigitalcollection.asme.org/PVP/proceedings-abstract/PVP2022/86199/1150022 (accessed on 15 June 2024).
- Seifelnasr, A.A.; Tammam, T.; Abouzeid, A.Z.M. Gravity concentration of sudanese chromite ore using laboratory shaking table. Physicochem. Probl. Miner. Process. 2012, 48, 271–280. [Google Scholar]
- Gülsoy, Ö.Y.; Gülcan, E. A new method for gravity separation: Vibrating table gravity concentrator. Sep. Purif. Technol. 2019, 211, 124–134. [Google Scholar] [CrossRef]
- Svoboda, J.; Fujita, T. Recent developments in magnetic methods of material separation. Miner. Eng. 2003, 16, 785–792. [Google Scholar] [CrossRef]
- Chaurasia, R.C.; Nikkam, S. Beneficiation of low-grade iron ore fines by multi-gravity separator (MGS) using optimization studies. Part. Sci. Technol. 2017, 35, 45–53. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Quast, K.; Zanin, M.; Addai-Mensah, J.; Skinner, W. A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technol. 2019, 344, 897–913. [Google Scholar] [CrossRef]
- Burt, R. The role of gravity concentration in modern processing plants. Miner. Eng. 1999, 12, 1291–1300. [Google Scholar] [CrossRef]
- Uslu, T.; Celep, O.; Savaș, M. Enrichment of low-grade colemanite concentrate by Knelson Concentrator. J. S. Afr. Inst. Min. Metall. 2015, 115, 229–233. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.-Y.; Tong, L.-L.; Niu, H.-Q.; Zhang, F.-S.; Chen, G.-M. Research and application of a Knelson concentrator: A review. Miner. Eng. 2020, 152, 106339. [Google Scholar] [CrossRef]
- Vapur, H.; Top, S.; Altiner, M.; Uçkun, Ş.; Sarikaya, M. Comparison of iron ores upgraded with Falcon concentrator and magnetic separators assisted by coal reduction-conversion process. Part. Sci. Technol. 2020, 38, 409–418. [Google Scholar] [CrossRef]
- Roy, S. Recovery improvement of fine iron ore particles by multi gravity separation. Open Miner. Process. J. 2009, 2, 17–30. Available online: https://benthamopen.com/ABSTRACT/TOMPJ-2-17 (accessed on 14 June 2024). [CrossRef]
- Patil, D.; Govindarajan, B.; Rao, T.; Kohadi, V.; Gaur, R. Plant trials with the multi gravity separator for the reduction of graphite. Miner. Eng. 1999, 12, 1127–1131. [Google Scholar] [CrossRef]
- Dey, S.; Pani, S.; Mohanta, M.K.; Singh, R. Utilization of Iron Ore Slimes: A Future Prospective. Sep. Sci. Technol. 2012, 47, 769–776. [Google Scholar] [CrossRef]
- Carpenter, J.L.; Iveson, S.M.; Galvin, K.P. Ultrafine desliming using a REFLUXTM classifier subjected to centrifugal G forces. Miner. Eng. 2019, 134, 372–380. [Google Scholar] [CrossRef]
- Galvin, K.; Dickinson, J. Particle transport and separation in inclined channels subject to centrifugal forces. Chem. Eng. Sci. 2013, 87, 294–305. [Google Scholar] [CrossRef]
- Chen, L.; Ren, N.; Xiong, D. Experimental study on performance of a continuous centrifugal concentrator in reconcentrating fine hematite. Int. J. Miner. Process. 2008, 87, 9–16. [Google Scholar] [CrossRef]
- Wang, X.; Miles, N.J.; Kingman, S. Numerical study of centrifugal fluidized bed separation. Miner. Eng. 2006, 19, 1109–1114. [Google Scholar] [CrossRef]
- Mohanty, S.; Das, B. Optimization Studies of Hydrocyclone for Beneficiation of Iron Ore Slimes. Miner. Process. Extr. Metall. Rev. 2010, 31, 86–96. [Google Scholar] [CrossRef]
- Hunter, D.M.; Zhou, J.; Iveson, S.M.; Galvin, K.P. Gravity separation of ultra-fine iron ore in the REFLUXTM Classifier. Miner. Process. Extr. Metall. 2016, 125, 126–131. [Google Scholar] [CrossRef]
- Araujo, A.; Viana, P.; Peres, A. Reagents in iron ores flotation. Miner. Eng. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 89–124. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. (Eds.) Chapter 12—Froth Flotation. In Wills’ Mineral Processing Technology, 8th ed.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 265–380. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Y.; Cao, Y. Reverse Flotation of Quartz From Magnetite Ore with Modified Sodium Oleate. Miner. Process. Extr. Metall. Rev. 2013, 34, 320–330. [Google Scholar] [CrossRef]
- Forsmo, S.; Björkman, B.; Samskog, P.-O. Studies on the influence of a flotation collector reagent on iron ore green pellet properties. Powder Technol. 2008, 182, 444–452. [Google Scholar] [CrossRef]
- Filippov, L.; Severov, V.; Filippova, I. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Metals and Metallurgy | NEB Grade 11 Notes | Inorganic Chemistry | Sajha Notes. Available online: https://sajhanotes.com/grade-11-chemistry/metals-and-metallurgy/ (accessed on 14 May 2024).
- Yang, D.C. Reagents in iron ore processing. In Reagents in Mineral Technology; Routledge: Hong Kong, China, 2018; pp. 579–644. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203741214-19/reagents-iron-ore-processing-david-yang (accessed on 12 June 2024).
- Knights, B.D.H.; Satyro, J.C.; Dias, R.A.; de Araújo Freitas, A.C. Performance improvements provided by Mintek’s FloatStarTM advanced control system on reverse flotation of iron ore. J. S. Afr. Inst. Min. Metall. 2012, 112, 203–209. [Google Scholar]
- Batchelor, A.; Jones, D.; Plint, S.; Kingman, S. Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment. Miner. Eng. 2016, 94, 61–75. [Google Scholar] [CrossRef]
- Rocha, L.; Cançado, R.; Peres, A. Iron ore slimes flotation. Miner. Eng. 2010, 23, 842–845. [Google Scholar] [CrossRef]
- Wang, T.-X.; Zhu, Y.-M.; Gui, X.-H. Flotation of a new chelate collector on fine refractory iron ore-containing carbonate. J. Cent. South Univ. 2016, 23, 1058–1065. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Yin, W.-Z.; Yang, B.; Li, C.; Zhu, Z.-L.; Li, D. Effect of sodium alginate on reverse flotation of hematite and its mechanism. Int. J. Miner. Metall. Mater. 2018, 25, 1113–1122. [Google Scholar] [CrossRef]
- Xiong, D.; Lu, L.; Holmes, R.J. 9—Developments in the physical separation of iron ore: Magnetic separation. In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Woodhead Publishing: Cambridge, UK, 2015; pp. 283–307. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, D. Magnetic Techniques for Mineral Processing. In Progress in Filtration and Separation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 287–324. [Google Scholar] [CrossRef]
- Something You Should Know About Magnetic Drum Separator | Stanford Magnets. Available online: https://www.stanfordmagnets.com/something-you-should-know-about-magnetic-drum-separator.html (accessed on 13 May 2024).
- Wills, B.A.; Finch, J.A. (Eds.) Chapter 13—Magnetic and Electrical Separation. In Wills’ Mineral Processing Technology, 8th ed.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 381–407. [Google Scholar] [CrossRef]
- Ravisankar, V.; Venugopal, R.; Bhat, H. Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation. Miner. Process. Extr. Metall. 2019, 128, 175–182. [Google Scholar] [CrossRef]
- Sahu, S.N.; Sharma, K.; Barma, S.D.; Pradhan, P.; Nayak, B.K.; Biswal, S.K. Utilization of low-grade BHQ iron ore by reduction roasting followed by magnetic separation for the production of magnetite-based pellet feed. Met. Res. Technol. 2019, 116, 611. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, R.; Zou, J.; Jiang, T. Effect of Temperature on Reduction Roasting of Low-Grade Iron Ore after Granulating with Coal. In Drying, Roasting, and Calcining of Minerals; Battle, T.P., Downey, J.P., May, L.D., Davis, B., Neelameggham, N.R., Sanchez-Segado, S., Pistorius, P.C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 185–192. [Google Scholar] [CrossRef]
- Coal-Based Direct Reduction and Magnetic Separation of Lump Hematite Ore | Request PDF. Available online: https://www.researchgate.net/publication/279315519_Coal-based_direct_reduction_and_magnetic_separation_of_lump_hematite_ore (accessed on 3 May 2024).
- Review on Coal-Based Reduction and Magnetic Separation for Refractory Iron-Bearing Resources. Available online: http://ijmmm.ustb.edu.cn/article/doi/10.1007/s12613-021-2408-x (accessed on 3 May 2024).
- Rath, S.S.; Rao, D.S.; Mishra, B.K. A novel approach for reduction roasting of iron ore slime using cow dung. Int. J. Miner. Process. 2016, 157, 216–226. [Google Scholar] [CrossRef]
- Zhu, D.-Q.; Chun, T.-J.; Pan, J.; He, Z. Recovery of Iron From High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt. J. Iron Steel Res. Int. 2012, 19, 1–5. [Google Scholar] [CrossRef]
- Youssef, M.A.; Morsi, M.B. Reduction Roast and Magnetic Separation of Oxidized Iron Ores for the Production of Blast Furnace Feed. Can. Metall. Q. 1998, 37, 419–428. [Google Scholar] [CrossRef]
- Jordens, A.; Sheridan, R.S.; Rowson, N.A.; Waters, K.E. Processing a rare earth mineral deposit using gravity and magnetic separation. Miner. Eng. 2014, 62, 9–18. [Google Scholar] [CrossRef]
- Roy, S.K.; Nayak, D.; Rath, S.S. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technol. 2020, 367, 796–808. [Google Scholar] [CrossRef]
- Grynberg, R. Coal Exports and the Diversification of Botswana’s Economy; Botswana Institute for Development Policy Analysis (BIDPA): Gaborone, Botswana, 2012; Available online: https://elibrary.acbfpact.org/acbf/collect/acbf/index/assoc/HASH48eb/f8c7662e/08cb0c3f/a6.dir/coal%20exports.pdf (accessed on 4 May 2024).
- Baruya, P.; Kessels, J. Coal prospects in botswana, mozambique, zambia, zimbabwe and namibia. IEA Clean Coal Cent. 2013, 20, 103–115. [Google Scholar]
- Rayapudi, V.; Agrawal, S.; Dhawan, N. Evaluation of carbothermal reduction for processing of banded hematite jasper ore. Powder Technol. 2020, 362, 826–834. [Google Scholar] [CrossRef]
- Meredith, R.J. Engineers’ Handbook of Industrial Microwave Heating. IET, 1998. Available online: https://books.google.com/books?hl=en&lr=&id=fKXHVc8W64oC&oi=fnd&pg=PR13&dq=(2019)+450.+25.+Meredith,+R.,+Engineers%E2%80%99+Handbook+of+Industrial+Microwave+Heating.+Institution+of+Engineering+and+Technology,+London+(1997).&ots=ZPWLQBZabF&sig=T5QhUguSPrTNR7-Z6J-PPAxLQRE (accessed on 18 April 2024).
- Agrawal, S.; Dhawan, N. Carbothermic Microwave Processing for the Enrichment of Iron Ore Fines. J. Sustain. Metall. 2020, 6, 355–366. [Google Scholar] [CrossRef]
- Nunna, V.; Hapugoda, S.; Pownceby, M.; Sparrow, G. Beneficiation of low-grade, goethite-rich iron ore using microwave-assisted magnetizing roasting. Miner. Eng. 2021, 166, 106826. [Google Scholar] [CrossRef]
- Samal, S.; Mukherjee, P.S.; Mukherjee, T.K. Thermal plasma processing of ilmenite: A review. Miner. Process. Extr. Metall. 2010, 119, 116–123. [Google Scholar] [CrossRef]
- Badr, K. Smelting of Iron Oxides Using Hydrogen Based Plasmas. 2007. Available online: https://pure.unileoben.ac.at/en/publications/smelting-of-iron-oxides-using-hydrogen-based-plasmas (accessed on 31 December 2007).
- Sabat, K.C.; Murphy, A.B. Hydrogen Plasma Processing of Iron Ore. Metall. Mater. Trans. B 2017, 48, 1561–1594. [Google Scholar] [CrossRef]
- Jayasankar, K.; Ray, P.K.; Chaubey, A.K.; Padhi, A.; Satapathy, B.K.; Mukherjee, P.S. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 2012, 19, 679–684. [Google Scholar] [CrossRef]
- Gitau, F.; Alabi, O.O.; Aramide, F.O.; Talabi, K.H.; Ondiaka, M.N. Towards a Sustainable and Enhanced Iron Ore Recovery: Bio-beneficiation Review. Min. Metall. Explor. 2024, 41, 1069–1078. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Past, present and future of biohydrometallurgy. Hydrometallurgy 2001, 59, 127–134. [Google Scholar] [CrossRef]
- Huang, W.H.; Keller, W.D. Organic acids as agents of chemical weathering of silicate minerals. Nat. Phys. Sci. 1972, 239, 149–151. [Google Scholar] [CrossRef]
- Sarvamangala, H.; Natarajan, K. Microbially induced flotation of alumina, silica/calcite from haematite. Int. J. Miner. Process. 2011, 99, 70–77. [Google Scholar] [CrossRef]
- Schneider, I.; Misra, M.; Smith, R.W. Bioflocculation of Hematite Suspensions with Products from Yeast Cell Rupture. Dev. Chem. Eng. Miner. Process. 1994, 2, 248–252. [Google Scholar] [CrossRef]
- Natarajan, K.A. Developments in Biotechnology for Environmentally Benign Iron Ore Beneficiation. Trans. Indian Inst. Met. 2013, 66, 457–465. [Google Scholar] [CrossRef]
- Ponomar, V. Iron-Bearing Wastes—Hazards and Potential Utilization | Geology for Investors. Available online: https://www.geologyforinvestors.com/iron-bearing-wastes-hazards-and-potential-utilization/ (accessed on 18 April 2024).
- Das, P.; Matcha, B.; Hossiney, N.; Mohan, M.K.; Roy, A.; Kumar, A. Utilization of iron ore mines waste as civil construction material through geopolymer reactions. In Geopolymers and Other Geosynthetics; IntechOpen: London, UK, 2018; Available online: https://books.google.com/books?hl=en&lr=&id=aqf8DwAAQBAJ&oi=fnd&pg=PA55&dq=Utilization+of+Iron+Ore+Mines+Waste+as+Civil+Construction+Material+through+Geopolymer+Reactions&ots=QaZ-1_uW4j&sig=RoYrsf4I1EP4NAy751TzNHTuMDo (accessed on 18 April 2024).
- Sirkeci, A.A.; Gül, A.; Bulut, G.; Arslan, F.; Onal, G.; Yuce, A.E. Recovery of Co, Ni, and Cu from the Tailings of Divrigi Iron Ore Concentrator. Miner. Process. Extr. Metall. Rev. 2006, 27, 131–141. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Bai, J.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings. J. Hazard. Mater. 2010, 174, 71–77. [Google Scholar] [CrossRef]
- Yan, M.Z.; Bai, L.M.; Zhang, Y.P.; Zhang, J.R. Current situation, problems and countermeasures of comprehensive utilization of iron tailings in China. Express Inf. Min. Ind. 2008, 7, 9–13. [Google Scholar]
- Shen, H.; Zhou, B.; Huang, X.; Zhang, Y.; Lin, X. Roasting-magnetic separation and direct reduction of a refractory oolitic-hematite ore. Min. Metall. Eng. 2008, 28, 30–34. [Google Scholar]
- Pradip. Scientific and Technological Challenges in Mineral Processing. Miner. Process. Extr. Metall. Rev. 1992, 10, 121–137. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Ehrig, K.; Addai-Mensah, J.; Skinner, W. Recovery of Rare Earth Elements Minerals from Iron-Oxide-Silicate-Rich Tailings: Research Review. Eng 2022, 3, 259–275. [Google Scholar] [CrossRef]
- De Korte, G.J. Dry Processing versus Dense Medium Processing for Preparing Thermal Coal. 2013. Available online: http://researchspace.csir.co.za/dspace/handle/10204/7384 (accessed on 20 April 2024).
- Mijał, W.; Baic, I.; Blaschke, W. Modern Methods of Dry Mineral Separation—Polish Experience. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining; Bui, X.N., Lee, C., Drebenstedt, C., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2021; Volume 109, pp. 407–425. [Google Scholar] [CrossRef]
- Williams, D.J. Chapter VI: The Role of Technology and Innovation in Improving Tailings Management. 2020. Available online: https://globaltailingsreview.org/wp-content/uploads/2020/09/Ch-VI-The-Role-of-Technology-and-Innovation-in-Improving-Tailings-Management.pdf (accessed on 20 April 2024).
- Parbhakar-Fox, A.; Glen, J.; Raimondo, B. A geometallurgical approach to tailings management: An example from the Savage River Fe-ore mine, Western Tasmania. Minerals 2018, 8, 454. [Google Scholar] [CrossRef]
- Sharma, A.; Jha, B.C.; Mahanta, A.; Das, A. A Case Study on Sustainable Iron Ore Tailing Management Using Paste Technology. Trans. Indian Natl. Acad. Eng. 2020, 5, 593–601. [Google Scholar] [CrossRef]
Reference | Name of Deposit | Location | Iron Content (wt.% Fe) | Comment |
---|---|---|---|---|
[20] | Ikongwe iron ore | Ikongwe, Near Shoshong Village | 55–60 | Considered low-grade ore (<64 wt.% Fe) |
[18] | Matsitama deposit | Matsitama village, Central District | ~56 | Considered low-grade ore (<64 wt.% Fe) |
[21] | Shakawe deposit | Shakawe, Northwest Region | 59 | Considered low-grade ore (<64 wt.% Fe) |
Crusher Type | Process Stage | Maximum Feed Size (mm) | Appropriate Maximum Output Size (mm) | Capacities (t/h) |
---|---|---|---|---|
Gyratory crusher | Primary | 1500 | 200–300 | 1200–5000 |
Jaw crusher | Primary | 1400 | 200–300 | ≤1600 |
Horizontal impact crusher | Primary/secondary | 1300 | 200–300 | ≤1800 |
Cone crusher | Secondary | 450 | 60–80 | ≤1200 |
Cone crusher | Tertiary | 150 | <30 | ≤1000 |
Mineral | Bond Work Index (kWh/t) |
---|---|
Hematite | 12–14.3 |
Magnetite | 11–12 |
Goethite | 10 |
Quartz | 13–15 |
Alumina | 17–18 |
Name of Ore | Fe Content (%) | Specific Gravity |
---|---|---|
Hematite | 70 | 5.0–5.3 |
Magnetite | 72.4 | 5.17–5.18 |
Goethite | 62.5 | 3.96 |
Limonite | 60 | 2.7–4.3 |
Siderite | 48.3 | 3.85 |
Iron Pyrite | 46.6 | 4.9–5.2 |
Type of Iron Ore | Equipment | Process Parameters | Results Achieved | Ref |
---|---|---|---|---|
Low-grade ore 56.5% Fe | Jigging (Denver mineral jig and Harz jig) | Feed size: 0.2–5 mm Water flow rate: 10 L/min Amplitude: 14.29 cm | 63.7% with 78.6% recovery | [63] |
BHJ ore with 36.27% Fe | Spirals | Feed size: 0.5–2 mm Spiral pitch: 12 mm Feed rate: 1.5 t/h | 45.79% Fe with 64% Fe recovery | [26] |
Iron ore slimes with ~58% Fe | Hydro cyclone | Feed size: 0.5–10 mm Pulp density: 20% Inlet pressure: 25 psi | 64.2% Fe with 37.9% recovery | [104] |
Ultrafine iron ore (~36% Fe) | Dense Medium Separation (DMS) | Feed size: 0.1–0.3 mm Pulp density: 40% solids Gas velocity: 6.37 cm/s | 66% Fe, at 80% recovery | [105] |
Aspect | Direct Flotation | Reverse Flotation |
---|---|---|
Flotation Target | Iron oxides are floated | Gangue minerals are floated with depression of iron oxides |
Common Reagents | Anionic reagents (petroleum sulfonates, fatty acids) | Cationic reagents (primary amines, quaternary ammonium salt); sometimes, anionic reagents are used depending on the gangue |
pH Modifiers (calcium hydroxide, sodium carbonate, sulfuric acid) | Creates favorable conditions for the flotation of iron oxides | Creates favorable conditions for the flotation of gangue minerals |
Depressants (starch, dextrin, sodium silicate) | Prevents flotation of gangue minerals | Prevents flotation of iron oxides |
Activators (copper sulfate, lead nitrate) | Not typically used | May be used prior to the addition of collectors to activate gangue minerals |
Collectors (dodecanoic acid, sodium dodecyl, amines, fatty acids, xanthates, sulphate) | Aimed at increasing iron oxides hydrophobicity | Aimed at increasing the hydrophobicity of gangue minerals |
Ore Description | Flotation Technique | pH | Depressant (Dosage) | Collector (Dosage) | Frother (Dosage) | Equipment | Impeller Speed (rpm) | Particle Size; Pulp Density | Grade and Recovery | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Hematite (TFe grade of 46.15%) | Direct flotation | 10 | Starch (600 g/t) | W-2 (150 g/t) | CaO (800 g/t) | Column cell | 800 rpm | 0.074 mm; 30% solids | 66.7% Fe with 78% recovery | [116] |
Hematite ore (~51% Fe) | Reverse flotation | 11.5 | Cornstarch (60 mg/L) | Sodium oleate (NaOl; 160 mg/L) | Methyl isobutyl methanol (20 mg/L) | Hallimond tube | 900 rpm | <74 µm; 25% solids | 59% Fe at 80% recovery | [117] |
Iron slimes (~47% Fe) | Reverse flotation | 9.5 | Starch (1000 g/t) | Amine (55 g/t) | Dodecylamine | Column flotation cell | 850 rpm | <32 µm; 10% solids | Recoveries: 41.7% (weight); 80% (iron) | [115] |
Iron ore fines (~58% Fe) | Direct flotation | 10.5 | Sodium silicate (5 kg/t) | MIBC (2.5 kg/t) | Sodium oleate | Column flotation cell | 1000 rpm | +74 µm; 10% solids | 62% Fe at 59% | [52] |
Minerals | Formula | Magnetic ) | Fe Content (%) |
---|---|---|---|
Magnetite | 1156 | , 72.4 | |
Vanadic titano-magnetite | (, ) | 917 | 63.7; , 6.91; , 0.9 |
Hematite | 0.6–2.16 | 69.94 | |
Specularite | 3.7 | , 69.94 | |
Limonite | 0.31–1 | , 48–62.9 | |
Siderite | 0.7–1.5 | , 48.3 | |
Chromite | 0.62-0.89 | , 25; , 67.91 | |
Pyrrhotite | 57 | , 63.53 | |
Ilmenite | 0.35–5 | , 33.33; , 52.66 | |
Wolframite | 0.5 | , 15.60; , 76.58 |
Study (Reference) | Initial Ore Grade (Fe%) | Technique | Process Parameters | Final Grade (Fe%); Recovery |
---|---|---|---|---|
1 [12] | 43.5 | LIMS (dry) | Magnetic intensity: 1000 gauss Feed size: 0.3–500 mm | 67% Fe; 90% recovery |
2 [31] | 43.5 | LIMS (wet) | Magnetic intensity: 1800 gauss Feed size: –0.075 mm Pulp density: 20.0% solids Feed rate: 10.0 kg/h | 69.39% Fe; 87.3% recovery |
3 [122] | ~34 | LIMS (dry) | Magnetic intensity: 1000 gauss Feed size: −0.074 mm | 64.13%; 83.7% recovery |
4 [73] | 44.2 | WHIMS | Magnetic intensity: 12,000 gausses Feed size: −200 µm Flow rate: 2.5 L/min Wash flow rate: 20 L/min | 66.8%; 53.2% recovery |
Study (Reference) | Feed Grade and Size | Reduction Process Parameters | Magnetic Separation Process Parameters | Final Grade (Fe%); Recovery |
---|---|---|---|---|
1 [7] | 51.6% Fe −150 µm | Temperature: 950 °C Reductant: 3% coal Time: 53 min | Magnetic intensity: 3000 gausses | 63% Fe; 79% recovery |
2 [128] | 56.2% Fe 75 µm | Temperature: 700 °C Reductant: 25% cow dung Time: 45 min | Magnetic intensity: 1800 gausses | 64% Fe; 66% recovery |
3 [129] | 50.6% Fe 0.25–1 mm | Temperature: 1050 °C Reductant: 8% sodium bicarbonate Time: 80 min | Magnetic intensity: 0.08 T | 90.87%; 95.8% recovery |
4 [130] | 45.23% Fe −10 mm | Temperature: 500 °C Reductant: gas at flow rate; 1.5 L/min Time: 20 min | Magnetic intensity: 2000 gausses | 59.6%; 90% recovery |
Technique | Advantages | Limitations | References |
---|---|---|---|
Gravity separation |
|
| [59,110,131] |
Magnetic separation |
|
| [15,53,131] |
Flotation |
|
| [22,106,114] |
Reduction roasting |
|
| [32,43,132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulayani, M.M.; Raghupatruni, P.; Mamvura, T.; Danha, G. Exploring Low-Grade Iron Ore Beneficiation Techniques: A Comprehensive Review. Minerals 2024, 14, 796. https://doi.org/10.3390/min14080796
Bulayani MM, Raghupatruni P, Mamvura T, Danha G. Exploring Low-Grade Iron Ore Beneficiation Techniques: A Comprehensive Review. Minerals. 2024; 14(8):796. https://doi.org/10.3390/min14080796
Chicago/Turabian StyleBulayani, Mompati Mpho, Prasad Raghupatruni, Tirivaviri Mamvura, and Gwiranai Danha. 2024. "Exploring Low-Grade Iron Ore Beneficiation Techniques: A Comprehensive Review" Minerals 14, no. 8: 796. https://doi.org/10.3390/min14080796
APA StyleBulayani, M. M., Raghupatruni, P., Mamvura, T., & Danha, G. (2024). Exploring Low-Grade Iron Ore Beneficiation Techniques: A Comprehensive Review. Minerals, 14(8), 796. https://doi.org/10.3390/min14080796