The Differences in the Li Enrichment Mechanism between the No. 6 Li-Rich Coals and Parting in Haerwusu Mine, Ordos Basin: Evidenced Using In Situ Li Microscale Characteristics and Li Isotopes
Abstract
:1. Introduction
2. Geological Setting
2.1. Stratigraphy
2.2. Coal Seam Characteristics
3. Samples and Methods
3.1. Sample Collection
3.2. Analytical Method
4. Results
4.1. Coal Chemistry
4.2. Trace Elements
4.3. Mineralogy
4.4. Li Isotopes
5. Discussion
5.1. In Situ Li Microscopic Characteristics
5.1.1. In Situ Micro-Geochemical Characteristics of Li in Coal
5.1.2. In Situ Micro-Geochemical Characteristics of Li in Parting
5.2. Li Isotopes
5.3. Lithium Enrichment Mechanism of the No. 6 Li-Rich Coals and Parting
6. Conclusions
- By comparing the in situ micro-geochemistry of different elements in HEWS-P (parting) and HEWS-4 (coal), it was found that Li in the No. 6 coal seam is mainly found in the cryptocrystalline or amorphous lamellae aluminosilicate materials, and the lenticular aggregate kaolinite is almost free of Li, suggesting that the lenticular aggregate kaolinite formed before the Li element was enriched and that it might have been formed during transportation.
- In the parting, the microscale distribution of Li is similar to that of Fe and Mg. Comparing the in situ micro-geochemical characteristics of Li, Mg, and Fe, it is assumed that the occurrence of Li in clay minerals is either due to adsorption onto clay surfaces or through the substitution of Fe/Mg within the crystal lattice.
- The δ7Li value of the Li-rich coal (HEWS-1) in the No. 6 coal is 3.86‰, and the δ7Li value of the parting (HEWS-P) is 7.86‰. The δ7Li value in the parting is obviously higher than that in the bottom coal seam and Yinshan Oldland granite. When compared with the Li isotope of Yinshan Oldland granite, it was found that the Li isotope ratio in the bottom coal seam is similar to that in Yinshan Oldland granite.
- The microscopic characteristics of Li in two different Li-rich samples taken from the No. 6 coal seam in the Haerwusu Mine were compared, and the provenance analysis, sedimentary environment evolution, and Li isotope fractionation mechanisms of the No. 6 coal seam were combined. It was found that the enrichment of Li in the coal mainly occurred during sedimentation and diagenesis and is related to the introduction of terrestrial debris and water into the peat bog. Late compaction might also lead to the secondary enrichment of Li in the coal seam and parting.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Liu, C.; Zhao, L.; Liu, J.; Wang, X.; Ren, D. Strategic metal mineral resources in coal measures: Significance and challenge. J. China Coal Soc. 2012, 47, 1743–1749. (In Chinese) [Google Scholar]
- Zhai, M.; Wu, F.; Hu, R.; Jiang, S.; Li, W.; Wang, R.; Wang, D.; Qi, T.; Qin, K.; Wen, H. Strategic key metal mineral resources: Current situation and problems. Sci. Found. China 2019, 33, 106–111. (In Chinese) [Google Scholar]
- Wang, D.; Dai, H.; Liu, S.; Li, J.; Wang, C.; Lou, D.; Yang, Y.; Li, P. Ten new developments and trends in exploration practice and theoretical research of lithium deposits in China in the past ten years. Chinese. J. Geomechan 2019, 28, 743–764. (In Chinese) [Google Scholar]
- Liu, L.; Wang, D.; Liu, X.; Li, J.; Dai, H.; Yan, W. Main types, distribution characteristics and exploration and development status of lithium deposits at home and abroad. Geol. China 2017, 44, 16. (In Chinese) [Google Scholar]
- Cao, D.; Wei, Y.; Qin, G.; Ning, S.; Wang, A.; Zhang, Y.; Li, X.; Wei, J.; Xu, L. Structural control of strategic metal element enrichment and mineralization in coal measures. Coal Geol. Explor. 2023, 51, 66–85. (In Chinese) [Google Scholar]
- Cao, D.; Wei, Y.; Li, X.; Zhang, Y.; Xu, L.; Wei, J.; Dong, B. Discussion on theoretical and technical framework of cooperative exploration of coal and coal measures strategic metal minerals. J. China Coal Soc. 2024, 49, 479–494. (In Chinese) [Google Scholar]
- Cao, D.; Qin, G.; Wei, Y.; Wang, A. Basin dynamics control of coal measure mineral resources occurrence: Research status and prospect. Coal Geol. China 2020, 32, 38–46. (In Chinese) [Google Scholar]
- Wei, Y.; Li, X.; Cao, D.; Zhang, Y.; Wei, J.; Xu, L.; Wang, A. Technology and method of cooperative exploration for strategic metal minerals of coal and coal measures. Coal. Sci. Tech. 2023, 51, 27–41. (In Chinese) [Google Scholar]
- Qin, S.; Xu, F.; Cui, L.; Wang, J.; Li, S.; Zhao, Z.; Xiao, L.; Guo, Y.; Zhao, C. Geochemical characteristics and resource utilization of key trace elements in coal-type strategy. Coal. Sci. Tech. 2022, 50, 1–38. (In Chinese) [Google Scholar]
- Ning, S.; Huang, S.; Zhu, S.; Zhang, W.; Deng, X.; Li, C.; Qiao, J.; Zhang, J.; Zhang, N. Metallogenic belt of metal elements in coal in China. Chin. Sci. Bull 2019, 64, 2501–2513. (In Chinese) [Google Scholar]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Vladimir, V.; Li, D.; Zhang, M.; James, C.H.; Colin, R.W.; Wang, X.; Zhao, L.; et al. Coal type rare metal deposit: Genetic type, occurrence state and utilization evaluation. J. China Coal Soc. 2014, 39, 1707–1715. (In Chinese) [Google Scholar]
- Li, X.; Wei, Y.; Cao, D.; Wei, J.; Liu, X.; Zhang, Y.; Dong, B. Cooperative Exploration Model of Coal–Lithium Deposit: A Case Study of the Haerwusu Coal–Lithium Deposit in the Jungar Coalfield, Inner Mongolia, Northern China. Minerals 2024, 14, 179. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Cao, D.; Xu, L.; Zhang, Y.; Wei, J.; Dong, B. Cooperative exploration model of coal–Ge deposit: A case study of the Wulantuga coal–Ge deposit in Shengli coalfield, Inner Mongolia, China. Energy Explor. Exploit. 2024; 2024, ahead of print. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Cao, D.; Li, X.; Wei, J.; Xu, L.; Dong, B.; Xu, T. Cooperative Exploration Model ofCoal–Gallium Deposit: A Case Studyof the Heidaigou Coal–GalliumDeposit in the Jungar Coalfield, InnerMongolia, China. Minerals 2024, 14, 156. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.; Zhao, L.; Zhang, Y.; Ren, D. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Zhang, J.; Jin, Z.; Lin, M.; Kalkreuth, W. Further Information of the Associated Li Deposits in the No.6 Coal Seam at Jungar Coalfield, Inner Mongolia, Northern China. Acta Geol. Sin. Engl. Ed. 2013, 87, 1097–1108. [Google Scholar] [CrossRef]
- Wei, Y.; He, W.; Qin, G.; Fan, M.; Cao, D. Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals 2020, 10, 521. [Google Scholar] [CrossRef]
- Wei, Y.; Hua, F.; He, W.; Ning, S.; Zhang, N.; Qin, Y.; Cao, D. Study on the difference of trace element enrichment characteristics in No. 2 coal in Fengfeng Mining area. J. China Coal Soc. 2020, 45, 1473–1487. (In Chinese) [Google Scholar]
- Jiu, B.; Huang, W.; Mu, N. Mineralogy and elemental geochemistry of Permo-Carboniferous Li-enriched coal in the southern Ordos Basin, China: Implications for modes of occurrence, controlling factors and sources of Li in coal. Ore Geol. Rev. 2022, 141, 104686. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Spiro, B.; Hao, R.; Mu, N.; Wen, L.; Hao, H. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. Int. J. Coal Geol. 2023, 267, 104184. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Dai, S. Lithium minerals in coal measures: Occurrence, distribution, mineralization and resource potential. J. China Coal Soc. 2022, 47, 1750–1760. (In Chinese) [Google Scholar]
- Qin, G.; Cao, D.; Wei, Y.; Wang, A.; Liu, J. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district, northeastern Ordos Basin, China: Key role of paleopeat-forming environments in Ga-Li-REY enrichment. J. Geochem. Explor. 2020, 213, 106494. [Google Scholar] [CrossRef]
- Qin, S.; Gao, K.; Lu, Q.; Hou, X.; Dai, H. Research progress of lithium in coal. J. Jilin Univ. Earth Sci. Ed. S.1 2015, 45, 2214–2225. (In Chinese) [Google Scholar]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Garich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Bouman, C.; Elliott, T.; Vroon, P.Z. Lithium inputs to subduction zone. Chem. Geol. 2004, 212, 59–79. [Google Scholar] [CrossRef]
- Chan, L.H.; Leeman, W.P.; Plank, T. Lithium isotopic composition of marine sediments. Geochem. Geophys. Geosyst. 2006, 7, 6. [Google Scholar] [CrossRef]
- Simons, K.K.; Harlow, G.E.; Brueckner, H.K.; Goldstein, S.L.; Sorensen, S.S.; Hemming, N.G.; Langmuir, C.H. Lithium isotopes in Guatemalan and Franciscan HP–LT rocks: Insights into the role of sediment-derived fluids during subduction. Geochem. Et Cosmochim. Acta 2010, 74, 3621–3641. [Google Scholar] [CrossRef]
- Négrel, P.; Millot, R.; Brenot, A.; Bertin, A. Lithium isotopes as tracers of groundwater circulation in a peat land. Chem. Geol. 2010, 276, 119–127. [Google Scholar] [CrossRef]
- Su, B.; Zhang, H.; Deloule, E.; Vigier, N.; Sakyi, P. Lithium elemental and isotopic variations in rock-melt interaction. Geochemistry 2014, 74, 705–713. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, H.F.; Deloule, E.; Su, B.; Ying, J.; Santosh, M.; Xiao, Y. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Sci. Rep. 2014, 4, 4274. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.; Liu, X.; Rudnick, R. Lithium isotope geochemistry. Rev. Mineral. Geochem. 2017, 82, 165–217. [Google Scholar] [CrossRef]
- He, H.; Wang, J.; Xing, L.; Zhao, S.; He, M.; Zhao, C.; Sun, Y. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. J. Geochem. Explor. 2020, 213, 106510. [Google Scholar] [CrossRef]
- Li, Q.; Lu, X.; Chen, M.; Zhang, L.; Cheng, Y.; Liu, X.; Yin, Z. Lithium partition and isotopic fractionation for cation exchange in clay: Insights from molecular simulations. Geochem. Et Cosmochim. Acta 2023, 358, 148–161. [Google Scholar] [CrossRef]
- Li, S.; Nie, J.; Ren, X.; Xing, L.; Tong, F.; Xiao, Y. Increased primary mineral dissolution control on a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum. Geochim. Et Cosmochim. Acta 2023, 348, 41–53. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.M.; Chadwick, O.A. Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges. Geochim. Et Cosmochim. Acta 2020, 285, 175–192. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Zhao, Z.; Liu, C. Geochemical behavior of lithium isotopes in a small mountainous river of the Tibetan Plateau: A case study from Niyang River. Sci. China Earth Sci. 2023, 66, 1853–1864. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Wei, J.; Wei, Y.; Qin, G.; Ning, S.; Cao, D.; Wang, A. Geochemistry, Mineralogy, and Coal Petrology of No. 4 Coal in Sandaoling Mine, Turpan-Hami Basin, Northwest China: Provenance and Peat Depositional Environment. Minerals 2023, 13, 837. [Google Scholar] [CrossRef]
- Gou, L.; Jin, Z.; He, M. Lithium isotope tracing of continental weathering: Advances and challenges. J. Earth Environ. 2017, 8, 89–102. (In Chinese) [Google Scholar]
- Yang, D.; Hou, Z.; Zhao, Y.; Hou, K.; Yang, Z.; Tian, S.; Fu, Q. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system. Sci. Rep. 2015, 5, 13812. [Google Scholar] [CrossRef]
- Sun, H.; Gao, Y.; Xiao, Y.; Gu, H.; Casey, J.F. Lithium isotope fractionation during incongruent melting: Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China. Chem. Geol. 2016, 439, 71–82. [Google Scholar] [CrossRef]
- Sun, H.; Xiao, Y.; Gao, Y.; Zhang, G.; Casey, J.F.; Shen, Y. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc. Natl. Acad. Sci. USA 2018, 115, 3782–3787. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.M.; Brey, G.P.; Harris, J.W.; Durali-Muller, S.; Ludwig, T.; Hofer, H.E. Ferropericlase inclusions in ultradeep diamonds from Sao Luiz (Brazil): High Li abundances and diverse Li-isotope and trace element compositions suggest an origin from a subduction mélange. Indian Med. J. 2018, 112, 291–300. [Google Scholar] [CrossRef]
- Weng, M.; Yang, D. Variation of lithium and boron isotope fractionation in water-rock reaction. J. Petrol. Mineral. 2018, 37, 128–142. (In Chinese) [Google Scholar]
- Chen, C.; Yan, C.; Zhang, R.; Li, Q.; Jiang, H.; Liu, H.; Qin, Z.; Zhang, X.; Sun, W. Lithium cycle and resource enrichment process: From plateau salt lake to orogenic pegmatite. Acta Petrol. Sin. 2018, 40, 591–604. (In Chinese) [Google Scholar] [CrossRef]
- He, M.; Luo, C.; Lu, H.; Jin, Z.; Deng, L. Measurements of lithium isotopic compositions in coal using MC-ICP-MS. J. Anal. At. Spectrom. 2019, 34, 1773–1778. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.; Tajcmanova, L.; Liu, C.; Wu, J. In-situ analysis of the lithium occurrence in the no.11 coal from the Antaibao mining district, Ningwu Coalfield, northern China. Ore Geol. Rev. 2022, 144, 104825. [Google Scholar] [CrossRef]
- Sun, B.; Guo, Z.; Liu, C.; Kong, Y.; French, D.; Zhu, Z. Lithium isotopic composition of two high lithium coals and their fractions with different lithium occurrence modes, Shanxi Province, China. Int. J. Coal Geol. 2023, 277, 104338. [Google Scholar] [CrossRef]
- Rahmani, R.A.; Flores, R.M. Sedimentology of Coal and Coal-Bearing Sequences. The International Association of Sedimentologists. 1985, 331–347. [Google Scholar]
- Liu, A. Coal Quality Characteristics and Geological Origin of Coal Seam in the First Mining Area of Haarwusu Coal Mine, Inner Mongolia; China University of Mining and Technology: Xuzhou, China, 2021. [Google Scholar]
- ASTM Standard D3173-11; Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM Standard D3174-11; Annual Book of ASTM Standards. Test Method for Ash in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM Standard D3175-11; Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2011.
- Chung, F. Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Hu, Z.; Yang, L.; Cheng, K.; Chen, H.; Zong, K.; Gao, S. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J. Anal. At. Spectrom. 2016, 31, 390–397. [Google Scholar] [CrossRef]
- Bohlin, M.S.; Misra, S.; Lloyd, N.; Elderfield, H.; Bickle, M.J. High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Lanari, P.; Vho, A.; Bovay, T.; Airaghi, L.; Centrella, S. Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geol. Soc. Lond. Spec. Publ. 2019, 478, 39–63. [Google Scholar] [CrossRef]
- Lanari, P.; Vidal, O.; De Andrade, V.; Dubacq, B.; Lewin, E.; Grosch, E.; Schwartz, S. XMapTools: A MATLAB-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef]
- China National Administration of Coal Geology. Comprehensive Evaluation of Mineral Resources in Coal-Bearing Series; National Technical Standard System for Mineral Resources Reserve Construction Project (China); China National Administration of Coal Geology: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Ketris, M.; Yudovich, Y. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Grigoriev, N.A. Chemical Element Distribution in the Upper Continental Crust; UB RAS: Ekaterinburg, Russia, 2009; p. 383. [Google Scholar]
- Finkelman, R.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Wang, J. Sedimentary Control of Lithium Enrichment in Permian Carboniferous Coal in Ningwu Basin; China University of Mining and Technology: Xuzhou, China, 2019. [Google Scholar]
- Dai, S.; Jiang, Y.; Ward, C.; Gu, L.; Seredin, V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Fisher, S.R.; Land, L.S. Diagenetic history of Eocene Wilcox sandstones, South-Central Texas. Geochim. Et Cosmochim. Acta 1986, 50, 551–561. [Google Scholar] [CrossRef]
- Zhu, R. Study on mineral defect structure of kaolinite—A case study of Kaolinite in Late Paleozoic coal measures in Northern Shanxi Province. J. Mineral. 1996, 3, 245–252. (In Chinese) [Google Scholar]
- Balaram, V.; Santosh, M.; Satyanarayanan, M.; Srinivas, N.; Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. [Google Scholar] [CrossRef]
- Rosman, K.; Taylor, P. Isotopic compositions of the elements 1997 (Technical Report). Pure Appl. Chem. 1998, 70, 217–235. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, H.F.; Nakamura, E.; Moriguti, T.; Kobayashi, K.; Ying, J. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for melt–rock interaction in the considerably thinned lithospheric mantle. Geochim. Et Cosmochim. Acta 2007, 71, 4327–4341. [Google Scholar] [CrossRef]
- You, C.; Gieskes, J. Hydrothermal alteration of hemi-pelagic sediments: Experimental evaluation of geochemical processes in shallow subduction zones. Applied. Geochem 2001, 16, 1055–1066. [Google Scholar] [CrossRef]
- Zack, T.; Tomascak, P.; Rudnick, R.; Dalpe, C.; Mcdonough, W.F. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci. Lett. 2003, 208, 279–290. [Google Scholar] [CrossRef]
- Wunder, B.; Meixner, A.; Romer, R.; Heinrich, W. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib. Mineral. Petrol. 2006, 151, 112–120. [Google Scholar] [CrossRef]
- Teng, F.Z.; Li, W.Y.; Rudnick, R.L.; Gardner, L.R. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci. Lett. 2010, 300, 63–71. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.F.; Deloule, E.; Su, B.; Tang, Y.; Sakyi, P.A.; Hu, Y.; Ying, J. Large lithium isotopic variations in minerals from peridotite xenoliths from the Eastern North China Craton. J. Geol. 2015, 123, 79–94. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.M. Mineralogy and fluid chemistry controls on lithium isotope fractionation during clay adsorption. Sci. Total Environ. 2022, 851, 158138. [Google Scholar] [CrossRef]
- Liu, F.; Yin, X.; Liu, Q. Lithium isotopes and continental weathering. Acta Minerol. Sin. 2021, 41, 127–138. (In Chinese) [Google Scholar]
- Chen, Y.; Xu, F.; Cheng, H.; Chen, X.; Wen, H. Recent advances in lithium isotope geochemistry. Earth Sci. Front. 2019, 30, 469–490. (In Chinese) [Google Scholar]
- Liu, Y.; Cao, L.; Li, Z.; Wang, H.; Chu, T.; Zhang, J. Geochemistry of the Elements; Science Press: Beijing, China, 1984; pp. 125–380. (In Chinese) [Google Scholar]
- Huh, Y.; Chan, L.H.; Edmond, J.M. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci. Lett. 2001, 194, 189–199. [Google Scholar] [CrossRef]
- Huh, Y.; Chan, L.H.; Zhang, L.; Edmond, J.M. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochim. Et Cosmochim. Acta 1998, 62, 2039–2051. [Google Scholar] [CrossRef]
- Chan, L.; Gieskes, J.M.; You, C.; Edmond, J.M. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas basin, Gulf of California. Geochim Et Cosmochimca Acta 1994, 58, 4443–4454. [Google Scholar] [CrossRef]
- Wimpenny, J.; Gíslason, S.R.; James, R.H.; Gannoun, A.; Von Strandamann, P.A.E.P.; Burton, K.W. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim. Et Cosmochim. Acta 2010, 74, 5259–5279. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Zhang, Q.; Liu, J.; Qu, R. Contrasting riverine K and Li isotope signatures during silicate weathering in the southeastern Tibetan Plateau. Earth Planet Sci. Lett. 2023, 622, 118402. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Liu, J.; Ju, Y.; Liu, J.; Yang, Z.; Shi, Y. Equilibrium lithium isotope fractionation in Li-bearing minerals. Geochim. Et Cosmochim. Acta 2018, 235, 360–375. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Li, X.; Yan, Y.; Lang, Y.; Ding, H.; Cui, L.; Meng, J.; Liu, C. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou, southern China. Appl. Geochem. 2021, 125, 104825. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Yan, Y.; Cui, L.; Wang, Q.; Meng, J.; Li, X.; Liu, C. Lithium and its isotopes behavior during incipient weathering of granite in the eastern Tibetan Plateau, China. Chem. Geol. 2021, 559, 119969. [Google Scholar] [CrossRef]
- Zhou, R. Study on the Relationship between Late Late Paleozoic and Early Mesozoic Sediments and Tectonic Processes in Central and Northern North China; Taiyuan University of Technology: Taiyuan, China, 2019. (In Chinese) [Google Scholar]
- Duan, R. The Nature and Significance of the Late NeoArchaean and Late Paleoproterozoic Tectonic Thermal Events in the Southern Margin of Yinshan Land Block, North China Craton; Chinese Academy of Geological Sciences: Beijing, China, 2021. (In Chinese) [Google Scholar]
Sample | Area/μm | Speed/μm/s | Laser Size/μm | Frequency/Hz |
---|---|---|---|---|
HEWS-P | 462 × 524 | 5 | 10 × 10 | 10 |
HEWS-4 | 274 × 538 | 4 | 6 × 10 | 10 |
Sample | Mad | Aad | Vad | FCad |
---|---|---|---|---|
HEWS-1 | 5.01 | 31.73 | 28.39 | 34.88 |
HEWS-P | 1.83 | 72.84 | 16.64 | 8.70 |
HEWS-2 | 6.01 | 14.14 | 32.73 | 47.13 |
HEWS-3 | 3.42 | 29.73 | 25.70 | 41.16 |
HEWS-4 | 2.79 | 43.26 | 23.46 | 30.50 |
Average | 4.31 | 29.71 | 27.57 | 38.41 |
Sample | Li | Be | B | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEWS-1 | 3.8 | 11 | 20 | 5.5 | 12 | 36 | 8.4 | 9.9 | 19 | 4.6 | 9.9 | 1.7 | 19 |
HEWS-P | 290 | 1.5 | 23 | 6.2 | 23 | 8.9 | 1.1 | 4.4 | 11 | 14.7 | 48 | 14 | 55 |
HEWS-2 | 31 | 1.1 | 24 | 3.7 | 9.3 | 4.3 | 1.3 | 1.5 | 8.8 | 2.9 | 13 | 1.8 | 175 |
HEWS-3 | 108 | 2.1 | 16 | 8.6 | 24 | 5.9 | 1.7 | 3.3 | 11 | 6.1 | 24 | 2.2 | 146 |
HEWS-4 | 190 | 2.5 | 23 | 8.4 | 21 | 8.0 | 1.9 | 3.9 | 11 | 7.9 | 28 | 2.9 | 360 |
Average | 83 | 4.2 | 21 | 6.5 | 17 | 13 | 3.3 | 4.6 | 13 | 5.4 | 19 | 2.2 | 175 |
Common Chinese Coal | 32 | 2.1 | 53 | 4.4 | 35 | 15 | 7.1 | 14 | 18 | 41 | 6.6 | 9.3 | 140 |
World Hard Coals | 12 | 1.6 | 52 | 3.9 | 25 | 16 | 5.1 | 13 | 16 | 23 | 5.8 | 14 | 110 |
World Clays | 54 | 3 | 110 | 15 | 120 | 110 | 19 | 49 | 36 | 89 | 16 | 133 | 240 |
Sample | Y | Zr | Nb | Sn | Cs | Ba | Hf | Ta | Tl | Pb | Th | U | REE |
HEWS-1 | 21 | 56 | 2.9 | 1.08 | 0.10 | 72 | 1.6 | 0.18 | 0.06 | 13 | 2.8 | 1.9 | 108 |
HEWS-P | 19 | 247 | 41 | 5.3 | 0.77 | 42 | 9.2 | 3.02 | 0.13 | 33 | 28 | 5.4 | 95 |
HEWS-2 | 11 | 91 | 5.4 | 0.79 | 0.23 | 18 | 2.4 | 0.26 | 0.17 | 16 | 3.7 | 2.0 | 147 |
HEWS-3 | 26 | 233 | 8.8 | 1.9 | 0.17 | 12 | 5.8 | 0.74 | 0.06 | 29 | 14 | 3.0 | 199 |
HEWS-4 | 25 | 281 | 22 | 4 | 0.29 | 29 | 8.2 | 1.40 | 0.07 | 32 | 21 | 4.6 | 157 |
Average | 21 | 166 | 9.7 | 1.9 | 0.20 | 33 | 4.5 | 0.65 | 0.09 | 23 | 10 | 2.9 | 153 |
Common Chinese Coal | 18 | 90 | 9.4 | 2.1 | 1.13 | 159 | 3.7 | 0.62 | 0.47 | 15 | 5.8 | 2.4 | 136 |
World Hard Coals | 8.4 | 36 | 3.7 | 1.1 | 1 | 150 | 1.2 | 0.28 | 0.63 | 7.8 | 3.3 | 2.4 | 68 |
World Clays | 31 | 190 | 11 | 3.5 | 13 | 460 | 5 | 1.4 | 1.3 | 14 | 14 | 4.3 | 226 |
Sample | Mineral Content (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Quartz | Calcite | Boehmite | Siderite | Ankerite | Clay Minerals | |||||
Kao | It | S | C | I/S | ||||||
HEWS-1 | 84.0 | / | / | / | / | 16.0 | \ | \ | \ | \ |
HEWS-P | 0.3 | / | 19.4 | / | / | 80.3 | \ | \ | \ | \ |
HEWS-2 | 0.2 | 17.2 | 42.2 | 4.1 | 6.4 | 29.9 | \ | \ | \ | \ |
HEWS-3 | 1.7 | 13.0 | 10.1 | / | / | 75.2 | \ | \ | \ | \ |
HEWS-4 | 4.4 | 1.9 | 4.1 | / | / | 89.6 | \ | \ | \ | \ |
Average in coal | 22.6 | 8.03 | 14.1 | 1.02 | 1.6 | 64.9 | \ | \ | \ | \ |
Sample | Li Content (μg/g) | δ7Li (‰) | 2SD | n |
---|---|---|---|---|
HEWS-P | 290.32 | 7.86 | 0.34 | 3 |
HEWS-4 | 190.33 | 3.86 | 0.28 | 3 |
Granite-1 a | 10.1 | 3.87 | - | - |
Granite-2 a | 12.6 | 3.21 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Wei, J.; Wei, Y.; Cao, D.; Li, X.; Zhang, Y. The Differences in the Li Enrichment Mechanism between the No. 6 Li-Rich Coals and Parting in Haerwusu Mine, Ordos Basin: Evidenced Using In Situ Li Microscale Characteristics and Li Isotopes. Minerals 2024, 14, 836. https://doi.org/10.3390/min14080836
Qin G, Wei J, Wei Y, Cao D, Li X, Zhang Y. The Differences in the Li Enrichment Mechanism between the No. 6 Li-Rich Coals and Parting in Haerwusu Mine, Ordos Basin: Evidenced Using In Situ Li Microscale Characteristics and Li Isotopes. Minerals. 2024; 14(8):836. https://doi.org/10.3390/min14080836
Chicago/Turabian StyleQin, Guohong, Jinhao Wei, Yingchun Wei, Daiyong Cao, Xin Li, and Yun Zhang. 2024. "The Differences in the Li Enrichment Mechanism between the No. 6 Li-Rich Coals and Parting in Haerwusu Mine, Ordos Basin: Evidenced Using In Situ Li Microscale Characteristics and Li Isotopes" Minerals 14, no. 8: 836. https://doi.org/10.3390/min14080836
APA StyleQin, G., Wei, J., Wei, Y., Cao, D., Li, X., & Zhang, Y. (2024). The Differences in the Li Enrichment Mechanism between the No. 6 Li-Rich Coals and Parting in Haerwusu Mine, Ordos Basin: Evidenced Using In Situ Li Microscale Characteristics and Li Isotopes. Minerals, 14(8), 836. https://doi.org/10.3390/min14080836